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Abstract

Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it
requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in
human also present adaptive changes in other primates therefore remains unknown. This question is important because a
gene that has been positively selected independently in the human and in other primate lineages may be less likely to be
involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we
analysed heterozygous Single Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee, orangutan,
and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an
unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several
primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when
comparing genes positively selected during recent human evolution with genes subjected to positive selection in their
coding sequence in other primate lineages and identified using a different test. These findings are further supported by
comparing several published human genome scans for positive selection with our findings in non-human primate genomes.
We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the
same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The
identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were
selected uniquely during recent human evolution.
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Introduction

The respective contribution of neutral and advantageous

mutations to genetic differences between species has been a

pivotal question in molecular evolution for more than half a

century [1]. Until recently, results were based on typically small

genetic samples leading to controversial conclusions. Only during

the past decade did large genetic variation datasets make it

possible to estimate reliable distributions of fitness effects [2] for a

series of species such as drosophila [3] and human [3,4]. Although

estimating this distribution is not trivial under complex demo-

graphic histories and although differences remain between studies

on details, different approaches now converge to conclude that a

substantial proportion of non-deleterious mutations are indeed

weakly to strongly advantageous [4–9]. In drosophila, it was found

that between approximately 25% and 50% of amino-acid

substitutions [6,7] and 20% of intergenic substitutions [8] may

be adaptive. In human where effective population size is smaller,

estimated proportions vary from 10% to 20% [4,10].

Such substantial proportions agree well with several scans for

selective sweeps in the human genome concluding that selective

sweeps are common and affect human genetic diversity [9,11–19].

This may however seem contradictory with results from methods

based on non-synonymous versus synonymous divergence analyses

in coding sequences, such as PAML site and branch-site likelihood

ratio tests for positive selection. Indeed, the PAML branch-site test

2 infers positive selection in the human lineage following

divergence with chimpanzee for far fewer genes than scans for

selective sweeps [20–24], despite the fact that such scans examine

a comparatively much narrower evolutionary period. However,

site and branch-site tests for positive selection are generally

conservative and coding sequences represent only a small part of

mammalian genomes, thus explaining much of the differences

between the two approaches. Despite their conservativeness, site

tests for positive selection were recently able to show that hundreds

of coding sequences experienced multiple rounds of positive

selection during mammalian evolution [22]. Scans for selective

sweeps nevertheless capture many more adaptive events and,

together with an increasing number of striking cases of

parallel/convergent adaptive evolution [25–32], suggest that the

current view of the quantitative importance of positive selection

acting at the same locus independently in distinct species is still

underestimated.

This question is of particular interest in the context of recent

human evolution. Here and in the rest of this manuscript ‘‘recent’’

means detectable at the genetic intraspecific variation level, as
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opposed to positive selection detectable at the divergence level. It is

currently unknown (i) which proportion of genes were positively

selected recently in human but also experienced positive selection

in other primate lineages, either recently or within a more

extensive evolutionary time and (ii) which genes were in contrast

positively selected only in modern human. The distinction is

important to unravel the plausible nature and ‘‘uniqueness’’ of

adaptive changes that underlie selective sweeps. For example if a

selective sweep is found for a gene in human, it is often tempting to

first examine if this gene governs a specifically human phenotype,

and if so to interpret the sweep in terms of a strictly human-specific

adaptation. But knowing that orthologs of this gene are also

associated with positive selection in other primates, although not

excluding the possibility of a human-specific adaptation (same

gene, human-specific nature of phenotypic change), might more

accurately redirect interpretations on the nature of adaptation

towards scenarios that are not restricted to human-specific

phenotypes (same gene, similar nature of phenotypic change in

human and other primates).

Here, we estimated the quantitative importance of positive

selection acting on the same genes independently in human

evolution and three other primate lineages, either recently or

across more extensive evolutionary times (chimpanzee, orangutan

and macaque). Because genome wide genotyping datasets such as

those provided by the HapMap [33] and Perlegen [34] projects for

human populations are not available for non-human primates, we

have developed an empirical method that detects candidate

selective sweeps using complete genomes of single individuals from

natural populations (see Methods). We exploited the fact that

alleles linked to a positively selected mutation also increase in

frequency through genetic hitchhiking [35], which results in a loss

of variants unlinked to the selected haplotypes and thus in a

reduction of the surrounding genetic diversity that defines a

selective sweep. Our results show that positive selection affecting

the same genes independently in human and other primates is (i) a

common phenomenon and (ii) is not restricted to specific functions

such as defence against pathogens or reproduction.

Results

Human selective sweeps from the point of view of two
individuals

Our method is inspired by the HKA test [19,36] and contrasts

the heterozygosity measured in a local genomic window with the

value measured within its surrounding genomic context, while

using inter species divergence to control for variable neutral

mutation rate (including selective constraint). The corrected level

of heterozygosity is indicated by the value of a statistic K computed

for each window (0#K#1). The method thus exploits the localized

nature of the hitchhiking effect of an adaptive mutation, and

controls for natural and experimental factors known to influence

the observed genetic diversity in primate genome sequences

obtained by shotgun sequencing (see Methods; Text S1 and Table

S1). We first validated the method using extensive forward

population simulations [37–40] (Text S2, Figures S1, S2, S3), and

applied the method independently to two individual human

genome sequences [41,42] (respectively J. Craig Venter (CV) and

James Watson (JW)). First, we find extensive overlap (24%; co-

occurrence test P,1025; see Methods) between the 2,244 and

2,193 genes identified in the respective genomes of CV and JW

with K#0.05. This is expected if the method correctly identifies

genes with reduced heterozygosity due either to selective sweeps or

shared demographic history. Second, genes detected with K#0.05

when averaging both individuals include well known examples of

recent positive selection in Europeans, such as the FOXP2 [43],

OCA2-HERC2 [12,44] and SLC24A5 [14,45] loci (Figure 1, Table

S2). Interestingly, we identified a sweep across the lactase locus

LCT [12,32,46] in CV but not in JW, in line with the fact that the

latter is heterozygous for the European lactase advantageous

mutation (Figure 1), while the former is homozygous. Third, we

found that candidate genes detected empirically by our method (K

averaged over the two individuals scanned independently)

significantly overlap with those identified by alternative approach-

es [11–15], which include methods aimed at detecting partial or

complete sweeps (Table 1; see Methods). Visual inspection of our

data in comparison with previous scans (e.g. Williamson et al.,

Carlson et al. and Pickrell et al.; see Methods) in the UCSC Ge-

nome Browser provides additional examples of convergent

detection of positively selected loci by different methods (Table

S3). Fourth, genes located in candidate sweeps tend to be more

strongly expressed in cerebellum, spleen and testes comparatively

to their expression in other tissues [47] (Figure S4), and generally K

is significantly lower for several Gene Ontology biological

processes [48,49] already highlighted in previous scans for

selective sweeps such as defence response or transcription

[12,16,50] (Table S4). Therefore, despite the lower specificity

and sensitivity expected from using data from individual genomes,

the set of candidate sweeps detected by this method are highly

enriched in positively selected loci (Text S2).

Co-occurring sweeps between primates reveal recent
positive selection hotspots

Our method is applicable to individual genomes and was used

to scan the genomes of chimpanzee, orangutan and macaque that

were all sequenced from single outbred individuals [51,52]. We

first used ssahaSNP2 [53] to identify 875,182, 1,364,646 and

2,294,239 heterozygous SNPs in chimpanzee, orangutan and

macaque respectively (see Methods). In order to estimate how

frequently recent positive selection has independently targeted the

same gene in human and these other primate lineages, we

computed the number of orthologous genes candidates for

selection in human and at least one of the three other tested

Author Summary

An advantageous mutation spreads from generation to
generation in a population until individuals that carry it,
because of their higher reproductive success, completely
replace those that do not. This process, commonly known
as positive Darwinian selection, requires the selected
mutation to induce a new non-neutral heritable pheno-
typic trait, and this has been shown to occur unexpectedly
frequently during recent human evolution. Although the
exact advantageous mutation is difficult to identify, it
leaves a wider footprint on neighbouring linked neutral
variation called a selective sweep. We have developed an
empirical method that uses whole-genome shotgun
sequences of single individuals to detect selective sweeps.
By doing so, we were able to extend to chimpanzee,
orangutan, and macaque individuals analyses of recent
positive selection that until now were only available for
human. Comparisons of genes candidates for positive
selection between human and non-human primates then
revealed an unexpectedly high number of cases where a
selective sweep at a gene in humans is mirrored by
independent positive selection at the same gene in
multiple other primates. This result has future implications
for understanding the nature of biological changes that
underlie selective sweeps in humans.

Hotspots of Positive Selection in Primates
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primates, and compared the results with random expectations. We

first selected the 9,972 four-way protein coding orthologous genes

tested in all primates, and identified candidate genes with K lower

than threshold values ranging from 0 to 0.1 in human,

chimpanzee, orangutan and macaque (see Methods; Figure 2

and Table S5). For each K threshold the number of candidates in

non-human primates is higher than in human, because the use of

two human individuals substantially increases specificity in this

species and because non-human primate candidate genes are the

sum of several scans with different window sizes. We devised a co-

occurrence test that compares the observed numbers of genes

found in candidate selective sweeps simultaneously in human and

in one, two or three non-human primate species with the numbers

expected if all genes are equally likely to experience positive

selection (see Methods and Figure S5). The difference between

observed and expected values thus reflects the excess or deficit of

positive selection co-occurring at orthologous genes in multiple

primates relative to the rate of positive selection in each primate.

The ability of the test to detect an excess of co-occurrence, i.e.

hotspots of positive selection, depends on three factors. The first is

the ‘‘usage’’ frequency of a given hotspot by positive selection

during evolution, which will affect the magnitude of the excess of

co-occurrence. Indeed, hotspots might be used rarely enough that

four species may not be sufficient to observe a significant excess.

The second factor is the rate of false positive candidates in each

tested species, which tend to occur randomly across genomes.

False positives thus lead to underestimating the relative difference

between real and random co-occurrences. However, we show that

Table 1. Overlap of the current scan with published scans for selective sweeps.

current scan Williamson et al. Voight et al. Carlson et al. Tang et al. Pickrell et al.

current scan 787 67 (3.57) 3.1025 49 (2.52) 2.1024 178 (4.26) ,1025 68 (1.56) 2.1022 61 (3.06) 6.1025

Williamson et al. 444 41 (3.72) 6.1024 217 (9.16) ,1025 83 (3.37) 1024 53 (4.33) ,1025

Voight et al. 460 71 (2.91) 2.1024 132 (5.17) ,1025 96 (6.81) ,1025

Carlson et al. 986 180 (3.28) ,1025 114 (4.62) ,1025

Tang et al. 1,030 171 (6.55) ,1025

Pickrell et al. 516

Cells in the diagonal indicate for each analysis the total number of candidate genes, which were selected using relaxed criteria to favour sensitivity over specificity (see
Methods). For each comparison, the number of overlapping genes, the enrichment factor (between parentheses) and enrichment p-values measured with our co-
occurrence test are indicated (see Methods).
doi:10.1371/journal.pgen.1000840.t001

Figure 1. Known selective sweeps identified in individual human genomes. From left to right, each graph presents the variation of K at four
known examples of selective sweeps in the European human population, namely the lactase gene LCT, FOXP2, OCA2-HERC2 and SLC24A5. The upper,
middle and lower panels show genome scans (200 kb windows in steps of 10 kb) for CV, JW and the average between both individuals, respectively.
The X axis indicates chromosome coordinates in megabases, the Y axis indicates the log2 of K (+0.001 to avoid null values). Dotted horizontal lines
delineate the K = 0.05 threshold. Genes are highlighted in grey above the X axis, with the gene known to be affected by positive selection highlighted
in black.
doi:10.1371/journal.pgen.1000840.g001

Hotspots of Positive Selection in Primates
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detecting hotspots of positive selection is possible even with a high

rate of false positive candidates within each species (Texts S2, S3;

Figure S6). The third factor is the power of the test to correctly

identify, within each species, candidates for positive selection.

Obviously, the lower the power the higher the risk of missing

hotspots. For instance a hotspot active in three species where the

power to detect positive selection events is only 30% will be

identified with a power of only 2.7% (0.33). Because the second

and third factors act in opposite directions, the optimal K threshold

to identify the footprint of hotspots through a statistically

significant excess of co-occurring candidates of positive selection

is therefore not the most stringent (few false positives but low

power), but the one with the best compromise between power and

the rate of false positives.

Using different K thresholds and controlling for several

potentially confounding factors (see below), we find that although

genes in candidate sweeps are mostly specific of a given primate,

genes found in candidate sweeps in human and two or more other

primates are systematically in significant excess (Figure 2 and

Table S6). Overall, the relative co-occurrence excess increases

with lower, more stringent K thresholds, as expected if false

positives partly dissipate the signal of positive selection hotspots.

Although we cannot precisely estimate their rate for different K

values due to the approximate nature of population simulations,

we expect the false positive rate to be high when using one or two

individuals to detect sweeps, and most likely always above 50% of

genes identified in selective sweeps (Text S2, Figures S1, S2, S3).

Notably, the excess observed at the most stringent K = 0 is slightly

lower than at the second most stringent K#0.005, which likely

reflects a loss of power to detect hotspots. Such a loss of power is

also observed for the most stringent realisations of our test

presented throughout this analysis (see below). Finally, we also

analysed a set of 70 genes identified in common in at least three

out of four previous human genome scans for selective sweeps

[11–14] and thus likely to have a very low rate of false positives.

Strikingly, 22 of the 70 genes (31%), nearly three times more than

expected (11% expected, co-occurrence test P = 2.1023; Table S7),

are also in candidate sweeps in at least two non-human primates.

These results are obtained by examining a short period of recent

primate evolution and by comparing only four species with few

individuals. We are therefore likely to underestimate the true

frequency of positive selection hotspots active in human and other

primates, which could plausibly be common and thus significantly

impact the biological interpretations of human selective sweeps.

The level of co-occurrence could also be in principle the

consequence of the presence of coldspots of positive selection

instead of hotspots, where a fraction of genes are constantly under

low rates of positive selection in all the lineages studied, leading to

selective sweeps concentrating on the remaining genes. However,

using a simple analytical model, we show that the level of co-

occurrence observed here is most likely explained by hotspots of

positive selection (Text S3 and Figure S6).

Controlling for potentially confounding genomic factors
Although false positives lead to underestimating the relative

excess of co-occurring candidate genes, several genomic factors

known to correlate with diversity could in contrast lead to

overestimate the observed excess of co-occurrences. Such factors

include sequencing depth, local divergence used in the estimation

of K, base composition, gene density and recombination. As

expected if our method correctly controls for sequencing

heterogeneity, neutral mutation rate and composition (Text S1,

Table S1), these factors explain a very small fraction of the

variance of K (n = 18,605; human-chimpanzee divergence: Spear-

man’s r= 20.015, P = 0.04; human-orangutan divergence:

r= 0.026, P = 3.1024; human-macaque divergence: r= 0.006,

P = 0.43; human base composition: r= 20.014, P = 0.055;

sequencing depth: r= 20.009, P = 0.19). In contrast, correlation

of K is higher with gene density and recombination (n = 18,605;

recombination rate: r= 0.18, P,10215; gene density: r= 20.07,

P,10215). In order to quantify separately the effect of these factors

on the relative excess of observed co-occurring candidate genes,

we divided genes into ten classes of equal sizes according to the 10-

quantiles of one specific factor, and ran separate randomizations in

each class during the co-occurrence test (see Methods). Only gene

density and recombination have a notable yet moderate impact on

the expected level of co-occurrence, in agreement with correlations

observed with K (Figure 3). The effect of recombination on co-

occurrence supports findings that recombination rates tend to be

conserved at a scale of 100 to 1,000 kb between closely related

primates [54,55]. We may however be exaggerating the effect of

recombination in these controls, because the measures of

recombination rates used here may be locally underestimated in

the presence of selective sweeps [56]. As a consequence, low

recombination classes tend to concentrate more candidate sweeps,

thus leading to an overall inflated expected number of co-

occurrences in the control. We nevertheless tested the impact of

recombination and gene density simultaneously by further

defining 100 different gene density/recombination combinations

classes (see Methods). Although reduced, the relative excess of co-

occurring candidates remains significant (Figure 2 and Figure 3).

We also tested the effect of using human-orangutan and

chimpanzee-orangutan divergence instead of human-chimpanzee

and chimpanzee-human divergence to compute K in human and

chimpanzee, respectively. Measures of K with the two approaches

show a 95% correlation coefficient, and more than 80% of genes

are systematically below the same K threshold. None of the co-

Figure 2. Human and other primate orthologous genes co-
occur in selective sweeps more often than expected by chance.
The relative co-occurrence excess (observed score/expected score –1)
between human and other primate candidates was measured for
several upper thresholds of K ranging from 0 to 0.1. *: P#5.1022. **:
P#1022. ***: P#1023.
doi:10.1371/journal.pgen.1000840.g002

Hotspots of Positive Selection in Primates
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occurrence tests we conducted are affected, including the most

compelling cases discussed below.

Selective sweeps versus positive selection in coding
sequences

If a fraction of genes with a low K in multiple primates represent

positive selection hotspots, then those genes may have been

positively selected not only during recent primate evolution, but

also for longer evolutionary times. We therefore used the PAML

branch-site likelihood ratio test 2 [20,21] to analyse positive

selection in orthologous coding sequences along five distinct

branches of a phylogenetic tree including the four primates studied

here, and using mouse as an outgroup [57] (see Methods). Using

the co-occurrence test (Figure S5), we find a significant excess of

co-occurrence between positive selection in coding sequences and

thresholds of K ranging from 0 to 0.1 in human alone or human

and at least one additional primate (Figure 4), thus extending our

analysis to a much wider evolutionary time scale. Notably, the

excess of co-occurrence increases substantially when using both

more stringent K and more stringent inference of positive selection

in coding sequences (with the exception of the most stringent

conditions yielding slightly lower excess, again reflecting a

plausible loss of power). Potentially biasing factors including

recombination and gene density have no effect on this result. This

therefore confirms positive selection hotspots independently from

comparisons based only on recent selection, and shows that genes

positively selected recently in human evolved similarly during

more ancient primate evolution (Table S8).

Non-human primates versus worldwide human
populations

In order to further validate the evidence for positive selection

hotspots, we first compared the results obtained with our statistic K

in chimpanzee, orangutan and macaque with recently published

scans for selective sweeps in seven worldwide human populations

using the XP-EHH test [15]. XP-EHH based scans of a

representative set of human populations have several advantages

over our own scan based only on two European individuals. First,

XP-EHH shows a good power when identifying close to complete

or recently completed selective sweeps even at low fixed false

discovery rates [15,17]. In line with this, XP-EHH has an excellent

overlap with other scans in our comparison (Table 1). This should

make the comparison of human with other primates more

powerful despite a smaller absolute number of high confidence

human candidates. Second, using seven human populations

instead of one makes the comparison more representative. Using

different K thresholds in non-human primates and increasingly

high XP-EHH thresholds at genomic centres of human genes to

isolate candidates, we confirm the previously observed excess of

co-occurring selective sweeps candidates after controlling for

recombination and gene density (Figure 5).

In line with our previous observation that a comparison

between recent (our test) and ancient (PAML’s branch-site test 2)

candidates for positive selection show an excess of co-occurring

cases, we also find significant co-occurrence between worldwide

human population XP-EHH candidates and PAML branch-site

test 2 positive selection candidates in non-human branches of the

primate tree (Figure 6). This last comparison further confirms the

existence of ‘‘primate’’ positive selection hotspots recently active in

human evolution. In particular, it does so independently of our

Figure 3. Orthologous genes co-occur in selective sweeps more
often than expected by chance. There are 61 triplets and 11
quartets of orthologous genes that occur in putative selective sweeps
simultaneously yet independently in human and two or three other
primate genomes respectively (C3+C4 score = 227, black arrow). This is
significantly more than expected by chance as shown by a co-
occurrence test (black distribution) with 100,000 iterations, even after
controlling for gene density alone (blue distribution), recombination
alone (red distribution), or gene density and recombination simulta-
neously (green distribution) (see Methods). The dotted black distribu-
tion represents the hypothetical distribution where the observed score
would still be significant at the 5% threshold.
doi:10.1371/journal.pgen.1000840.g003

Figure 4. Recent human versus coding sequence positive
selection. The co-occurrence test was used between coding sequence
positive selection detected with the test 2 of PAML separately in five
primate phylogenetic branches one the one hand, and recent positive
selection in human and at least one additional primate one the other
hand (see Methods; Figure S5). Genes were considered as positively
selected in specific branches if twice the log-likelihood ratio (2DL)
obtained with test 2 was greater than an arbitrary threshold comprised
between 20 and 100. *: P#5.1022. **: P#1022. ***: P#1023.
doi:10.1371/journal.pgen.1000840.g004

Hotspots of Positive Selection in Primates
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own statistic K, and neither gene density nor recombination had an

effect in this configuration of the co-occurrence test.

Functional analysis of hotspot genes
The existence of positive selection hotspots is also supported by

functional gene annotations. Several typical candidates of positive

selection are over-represented among the functions of the 72 genes

with K#0.05 in human and at least two other primates, including

defence response, gametogenesis and forebrain development

(Table 2). Importantly however, these functions are represented

alongside a wide variety of other biological processes and

molecular functions, which cannot be due exclusively to false

positives. Indeed overrepresented functions encompass only 2.1%

of all GO terms included in hotspots, making it highly unlikely that

these would concentrate all true positives. Recent positive selection

hotspots are thus not limited to a few specific functions, but instead

cover a diverse functional repertoire [58].

A finer inspection of candidate hotspots within over-represented

functions reveals particularly interesting cases. Among defence

response candidates, we infer independent selective sweeps in

human, chimpanzee and orangutan for the cluster of Toll-like

receptors (TLR) 1, 6 and 10 (Figure 7 and Figure S7). These

receptors are involved in the non-specific recognition of a wide

variety of bacteria during the first steps of the innate immune

response. Interestingly, TLR 1, 6 and 10 are three of the nine

strongest candidates with K = 0 in human, chimpanzee and

orangutan in our analysis (Table S6), and were recently found as

a strong case of local adaptation in the northern European

population [15,59], to which the two individuals used in the

present study also belong. In addition, the role of TLR 1, 6 and 10

in the response to a broad spectrum of bacteria in multiple species

is consistent with these receptors being hotspots of positive

selection. Within gametogenesis SPIN1 (Figure 7 and Figure S7)

codes for spindlin, a protein involved in oocyte maturation [60].

SPIN1 is one of the top ten candidates of the European population

using the XP-EHH test [15], and is the strongest of our 13

strongest hotspot candidates (Table S6) with K = 0 in human,

chimpanzee, orangutan and macaque, and is therefore a very

strong positive selection hotspot candidate. The fact that several of

the best candidates from the present analysis can be found within

over-represented GO functions and, most importantly, are also

found as top candidates in human using other methods argues

strongly in favour of positive selection hotspots. Gametogenesis

candidates also include the ACVR2A and SPA17 (Figure 7) genes

which both play a role during spermatogenesis [61,62]. These

examples show how multi-species comparisons may order

priorities for deeper functional and evolutionary analyses among

genes with positive selection during recent human evolution. More

surprisingly, we found the FOXP2 gene in candidate selective

sweeps in human (K = 0.049), chimpanzee (K = 0) and orangutan

(K = 0.049) (Figure 7 and Figure S7). FOXP2 is an archetype of

positively selected genes [43,63] interpreted in the context of

human-specific phenotypes, in this case linguistic processing. Yet

our data suggests that positive selection on FOXP2 recently

occurred in other primates. Thus, recent positive selection on

FOXP2 may need to be also considered in the context of other

Figure 5. Co-occurrence between non-human primates selec-
tive sweep candidates and XP–EHH worldwide human popu-
lations selective sweep candidates. The co-occurrence test was
applied using K in chimpanzee, orangutan and macaque to assign
candidate genes on the one hand (Figure S5, group 1) and increasing
XP-EHH values at genomic centers of genes tested in seven human
populations on the other hand [5] (Figure S5, group 2). The histogram
represents the relative co-occurrence excess obtained using 9,873
orthologous genes (observed score/expected score – 1) for XP-EHH
values increasing from 2 to 3.5 with recombination and gene density
being accounted for (see Methods). The excess of co-occurrence
observed is lower for K#0.01 than for K#0.05, likely reflecting a loss of
power to detect hotspots at the most stringent thresholds. *: co-
occurrence test P#0.05. **: P#0.01. ***: P#0.001.
doi:10.1371/journal.pgen.1000840.g005

Figure 6. Co-occurrence between PAML branch-site test 2
positive selection candidates in non-human branches and XP-
EHH worldwide human populations selective sweep candi-
dates. The co-occurrence test was applied using increasing 2DL values
(twice the log-likelihood ratio) to assign positive selection candidate
genes in chimpanzee, orangutan, macaque and human-chimpanzee
branches of a primate phylogenetic tree on the one hand (see Methods;
Figure S5, group 1), and increasing XP-EHH values at genomic centres
of genes tested in seven human populations [5] (Figure S5, group 2) on
the other hand. The histogram represents the relative co-occurrence
excess (observed/expected – 1) for combinations of XP-EHH threshold
values increasing from 2 to 3.5 and branch-site test 2 2DL thresholds
from 20 to 100 (Methods). *: co-occurrence test P#0.05. **: P#0.01. ***:
P#0.001.
doi:10.1371/journal.pgen.1000840.g006
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FOXP2 functions that could be shared among primates. This

example further illustrates how interpretation of selective sweeps in

human evolution can be guided by a broader and comparative

view of positive selection among primates.

Hotspots of positive or background selection?
Could co-occurring candidate genes be due to conserved

background selection hotspots instead of recent positive selection

hotspots [64,65]? Although we cannot completely exclude an

effect of background selection, our results are better explained by

positive selection instead of recurrent deleterious mutations

hotspots. First, functional analyses suggest that regions with low

K in the human genome are dominated by positive selection.

Indeed, several of the Gene Ontology biological processes found

here with downwardly biased values of K were previously found

over-represented for positively, not negatively selected genes [16].

Second, we find an excess of co-occurrence when comparing genes

with K#0.05 in non-human primates with positive selection

candidates found in at least two of three human genome scans for

selective sweeps that are insensitive to background selection

[11,12,14] (relative co-occurrence score C3+C4 excess = 91%, co-

occurrence test P = 7.1023; Figure S5). Third, the co-occurrence

between recent or coding sequence positive selection can be

explained by positive, not background selection hotspots. Although

background selection might have an influence, the presence of

positive selection hotspots in primates active during recent human

evolution remain the only reasonable explanation for our results.

Discussion

We have performed a comparative analysis of positive selection

in human and non-human primate genomes. Because non-human

primate genomes do not benefit from genotyping data, we

developed a new test to identify selective sweeps in single

individual genomes. As shown by population simulations, this test

is only moderately sensitive to demographic changes, and is thus

widely applicable to genomes from single outbred individuals. The

systematic comparison of genes positively selected during recent

human evolution with candidates for positive selection in

chimpanzee, orangutang and macaque shows a clear excess of

genes that were positively selected independently in multiple

primate lineages. This is independently confirmed by comparing

recently published human positively selected genes [11–15] either

to candidates identified by our test in non-human primates or to

genes positively selected at the level of their coding sequence

during more extensive evolutionary times. All these independent

lines of evidence converge towards the same conclusion: primate

genomes share hotspots of positive selection, including during

recent human evolution.

Positive selection hotspots in primates raise several questions.

First, do they mainly represent cases of parallel/convergent

evolution, or cases of adaptations in different phenotypic directions

involving the same locus? In the first scenario, hotspots could be

seen as recurrent targets of positive selection for species under

similar selective pressures. In the second scenario, hotspots would

rather be considered as a toolbox to fine tune shared molecular

functions according to different selective pressures. Second, we do

not know how many genes can be described as positive selection

hotspots in a primate genome. Each primate genome scan

produced a high number of false positives, thus preventing

unbiased attempts at estimating the minimal number of positive

selection hotspots needed to explain our results. Third, the

phylogenetic depth at which hotspots can be detected remains to

Table 2. Gene Ontology biological processes enriched in hotspots of recent positive selection.

GO biological process number of genes expected number HGNC gene symbols p-value

M phase (GO:0000279) 4 0.94 CUL7, CDC6, NCAPG, KLHDC3 0.01

defense response (GO:0006952) 6 1.86 AOC3, CAMLG, LONP1, TLR1, TLR6, TLR10 0.01

gametogenesis (GO:0007276) 5 0.95 SPA17, SPIN1, ACVR2A, SPATA2, TSSK3 0.002

spermatogenesis (GO:0007283) 4 0.74 SPA17, ACVR2A, SPATA2, TSSK3 0.006

forebrain development (GO:0030900) 3 0.17 TOP2B, FOXP2, HTRA2 0.0006

Significantly enriched Gene Ontology biological processes among the 72 candidate hotspots of recent positive selection in human and at least two other primates. The
p-values and expected numbers are obtained with a randomization test (1 million repeats) based on annotations retrieved from FatiGO [48,49] and were not corrected
for multiple testing.
doi:10.1371/journal.pgen.1000840.t002

Figure 7. Candidate hotspots of recent positive selection at the
Toll-like receptors 1, 6, and 10 cluster and the FOXP2 locus. Each
graph shows the variation of the log2 of K (+0.001 to avoid null values)
at two candidate hotspots of recent adaptive evolution in human
(average of the two individuals, red), chimpanzee (blue) and orangutan
(green). To facilitate comparisons between genomes, values of K for
chimpanzee and orangutan were projected on their human ortholo-
gous coordinates and gene symbols are those for human in all three
species. Other legends are identical to Figure 1.
doi:10.1371/journal.pgen.1000840.g007
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be investigated. Our analysis in primates does not preclude that a

subset of primate hotspots may be found under positive selection

also in other mammals, or in other vertebrates. Indeed, isolated

cases of parallel evolution have been observed between birds and

rodents and human and fish [29,31], raising the possibility that

some hotspots may be shared among distant vertebrates.

A deeper knowledge of positive selection hotspots has additional

practical and conceptual implications. Most scans for positively

selected genes deliver false positive results [58,66], thus making it

difficult to interpret the evolution of any given gene in a biological

context. Yet genes inferred to be positively selected independently

in multiple scans or alternatively in multiple species within the

same evolutionary period reduce this uncertainty because they are

more likely to be true positives. More importantly, hotspots

provide a means to identify positive selection events more specific

to one species, and in particular positive selection events specific to

human. For instance, 19 of the 70 human genes identified in

common between at least three previous scans for selective sweeps

[11–14] are not candidates in any of the three other primates, and

are therefore more likely to be linked to specific human changes.

For instance several of the 19 candidates belong to the same sweep

as the lactase gene, an adaptive event associated with the

emergence of cattle breeding and thus expected to be human-

specific (Table S9). However, because our test and most of the

published scans used for comparisons (except the scan of Voight

et al.) aim at detecting complete sweeps, we cannot exclude that the

most recent events of positive selection, those with still ongoing

selective sweeps, reflect more specific human adaptation events.

We show here through independent comparisons based on a

diverse array of methods that positive selection hotspots have been

frequent during primate evolution, and in particular that genes

positively selected during recent human evolution were also

positively selected in other primate lineages, either recently or not.

Yet importantly, our sampling of species and individuals is

necessarily limited to sequenced genomes, and it is likely that

the identification of hotspots of positive selection will increase in

power as the genomes and variation information of more species

become available. We predict that this will greatly facilitate the

interpretation of biological changes underlying human selective

sweeps. In particular, the identification of genes positively selected

in human but never or infrequently in other primates will help to

better outline truly specific aspects of recent human evolution. Our

results provide a glimpse of the benefits of a hypothetical ‘‘1,000

Primate Genomes’’ project for the understanding of human

adaptive evolution.

Methods

Estimation of K
We developed a new method inspired by the HKA test [36] to

estimate the probability that a given locus has recently been

subject to positive selection, using genome wide heterozygous sites

and divergence data from single individuals. K values are

computed for a given region L of size q (here 100 kb#q#300 kb)

by first computing the ratio rl between the number of heterozygous

sites and the number of divergent sites observed with a closely

related species (e.g. human-chimpanzee when scanning the human

and chimpanzee genomes, human-orangutan when scanning the

orangutan genome and human-macaque when scanning the

macaque genome). The same ratio rg is then computed for a

region G extending 10 times q on both sides of L. A weighing

scheme is applied to ratio rg to control for repeats, shotgun

coverage and nucleotide composition (see next paragraph). The

ratio Robs = rl/rg then expresses the local reduction (Robs,1) or

increase (Robs.1) in heterozygosity given its level in the

surrounding genomic region and the local divergence. Next, the

ratio R is computed for 5,000 additional windows of size q

randomly sampled within G but at a distance at least five times q

from L (this is done with replacement, meaning that the same

position in the background window can be represented in several

random q sized windows). This generates an empirical distribution

of R across the region G, thus providing an empirical means to

estimate the probability of observing R lower than Robs in this

region: K is the proportion of random windows with R lower than

Robs. Because randomly sampled windows have globally compa-

rable demographic histories, increases or decreases of the local

diversity variance due to demographic expansions or contractions

should be partially accounted for in the estimation of K (Text S2).

We introduced a weighing scheme to account for varying base

composition and repeat density, two major factors that are known

to affect genetic diversity in primate genomes. This scheme also

controls for the random nature of genome shotgun sequencing,

where variable numbers of reads covering a given position affect

the probability of detecting the two alleles. To do so, we first

compute nij the number of positions of the tested window L

occupied by a specific base i (A,T,C or G) identified or not in a

repeat by RepeatMasker and covered by a number of reads j. For

instance if a given window includes 4,500 positions occupied by

nucleotide G outside of a repeat and covered by four reads then

nG4 = 4,500. The same procedure is applied for DNA inside

repeats. Next, we compute rg for the genomic background window

weighted by nij in the tested window:

rg~

P

ij

nijpHij

P

ij

nijpDij

where pHij and pDij are respectively the proportions of heterozy-

gous and divergent sites for all sites of class nucleotide i and

coverage j in the genomic background window. We show, using

simulations, that this weighing scheme removes the effect of a

diverse range of factors that may bias measures of genetic diversity

(Text S1). In this study, K was measured for local window sizes of

200 kb for human, 100, 150 and 200 kb for orangutan, 200 kb

and 300 kb for chimpanzee, 70 kb, 100 kb and 140 kb for

macaque. Larger windows were used for chimpanzee to account

for its lower level of heterozygosity, while smaller windows were

used for macaque due to its higher heterozygosity. The power to

detect sweeps depends on the average initial level of heterozygosity

(a lower initial level of heterozygosity means that there will be less

contrast between a selective sweep and the neutral background),

which can be compensated by adjusting window size so that the

average number of heterozygous sites per window remains similar

between species. Windows were excluded if they did not meet

specific criterions: at least 60% of sites must be sequenced in the

two species and be covered by less than 20 shotgun reads. For each

measure of K, the genomic background window was adjusted to

span 20 times the size of local windows, 10 times downstream and

10 times upstream. K was measured using 5,000 random

resamplings for analyses with windows centred on genes (method

validation and co-occurrence test), and 1,000 random samplings

for windows sliding along chromosomes (Figure 1, Figure 7, Figure

S7, Table S3).

Co-occurrence test
The four primate species possess 14,480 mutual orthologs, of

which 9,972 were tested in all four species. The remaining genes
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either reside on sexual chromosomes (human and chimpanzee

genomes are sequenced from males, and thus provide no

heterozygosity data for the X chromosome) or are located in

windows that did not meet the required criterions to measure K.

To test for co-occurrence, the following datasets were used for

each species. In human, the average K between CV and JW was

used to select candidate genes with K lower than a fixed threshold

in 200 kb windows centred on the genomic centres of genes. These

criterions showed the best overlap with published scans for

selective sweeps [11–14]. In other primates, a candidate gene was

selected if one of the three window sizes centred on this gene had K

lower than the same threshold used for human. We then

computed the sum of pairs (C2), triplets (C3) and quartets (C4) of

genes seen in a putative sweep respectively in human and one, two

or three species simultaneously (Figure S5). The human genome

was then shuffled randomly and C2, C3 and C4 computed for

100,000 iterations. More specifically, for each iteration, the human

genome was randomly divided into 20 intervals, with the gene

order preserved within a given interval. Intervals were then

rearranged in a random order and the sum C2, C3 and C4

computed across the randomized genome. The preservation of

gene order within the intervals accounts for the clustered

organisation of candidate sweep-associated orthologous genes.

Clustering reflects the fact that a selective sweep in primate

genomes often spans several neighbouring genes. This increases

the variance, while leaving the average sum of co-occurrences

unaffected. Increasing the number of intervals used for shuffling

genes at each iteration did not change the results.

Several genomic factors such as recombination or gene density

are correlated with K and have to be accounted for in our co-

occurrence test. Such factors are indeed likely to increase the

expected co-occurrence if they are conserved across species. We

controlled for these factors separately by dividing the genes into n

classes delimited by the n21 quantiles of the factor to account for,

and then running permutations within each class separately. We

found that dividing the genes into 10 classes is sufficient in each

case, since no gain of co-occurrence was observed when using

more classes. Introducing classes however requires two correc-

tions. First, dividing genes into classes can destroy clusters of

contiguous candidate genes, thus reducing the variance of co-

occurrence obtained after 100,000 permutations. Since the

distribution of random co-occurrences is normal and since

clustering does not affect the mean of this distribution but only

its variance, we can address this issue by allocating the variance

measured on the distribution without any class, to the distribution

with 10 classes (Figure 3). Second, the simple fact of dividing genes

into classes inflates the expected average level of co-occurrence in

the presence of hotspots. This is due to the fact that each hotspot

once ‘‘trapped’’ into a specific class will be randomized across a

much smaller number of genomic locations and thus reconstructed

randomly more frequently than when no class is defined. We

accounted for this effect as follows: measures of K were first

randomly permuted across genes, thus effectively removing the

specific effect of any putative correlated genomic factors. This step

was followed by 100 iterations of the co-occurrence test, and the

two successive operations were repeated 1,000 times. The

difference between the resulting average co-occurrence score

and the average score when no classes are used finally represents

the effect of using classes, independently of any genomic factor.

This difference was therefore substracted from the average co-

occurrence score every time classes were defined to account for

genomic factors.

Finally, two factors could be tested simultaneously based on the

information that a specific gene may for instance be in class 3 (out

of 10) for factor 1 and in class 6 for factor 2, thus belonging to the

class (3,6) used together with 99 other combinations in the co-

occurrence test. This was done in particular to test the effect on co-

occurrence of recombination and gene density considered

simultaneously.

Genome assemblies and alignments
Genome assemblies with softmasked repeated sequences identi-

fied by RepeatMasker, for human (HG18), chimpanzee (PanTro2),

orangutan (PonAbe2) and macaque (RheMac2) were down-

loaded from the UCSC genome browser (http://hgdownload.

cse.ucsc.edu/). Human-chimpanzee, chimpanzee-human, orangu-

tan-human, human-orangutan, macaque-human and human-

macaque Blastz alignments [67] in axt.net format were also

downloaded from the UCSC genome browser.

Coverage information
Levels of shotgun sequencing coverage were measured using

different strategies depending on the availability of read location

information. For chimpanzee, orangutan and macaque, coverage

was directly deduced from read positions downloaded from the

Washington University Genome Sequencing Center WUGSC

website (http://genome.wustl.edu/pub/organism/Primates/) in

reads.placed files. For the two human individuals, reads were first

downloaded from the NCBI Trace archive site (ftp://ftp.ncbi.nih.

gov/pub/TraceDB/) and mapped on the NCBI36 human

genome assembly using Blat [68] with the -fastMap and minimal

95% identity options activated. Only those reads mapped on more

than 80% of their length were retained to measure coverage.

Heterozygous SNP detection
Heterozygous sites for the two human individuals were retrieved

from the J. Craig Venter Institute web site (http://www.jcvi.org/)

and from the Jim Watson Sequence website at CSHL (ftp://

jimwatsonsequence.cshl.edu/jimwatsonsequence/), respectively.

For chimpanzee, orangutan and macaque reads were first

downloaded from the NCBI Trace archive (ftp://ftp.ncbi.nih.

gov/pub/TraceDB/). Reads were then mapped on genome

assemblies using ssahaSNP2 [53] (parsing parameters -identi-

ty = 92 -match = 80 -copy = 20 -cover = 20) to detect heterozygous

SNPs.

Gene annotations and orthology relationships
All analyses were conducted using Ensembl v48 annotations for

protein coding genes and their homology relationships, except for

PAML analysis where Ensembl v52 were used [69] (http://www.

ensembl.org/). A total of 14,480 human-chimpanzee-orangutan-

macaque four-way orthologs were found.

PAML analysis
We used the likelihood ratio test 2 of the PAML package [20,21]

to detect positive selection separately in the five # labeled

branches of the following phylogenetic tree:

(((human #, chimp #) #, orangutan #), macaque #, mouse)

We first retrieved protein and coding sequences of all Ensembl

v52 human-chimp-orangutan-macaque-mouse five-way one-to-one

orthologs. When a gene had multiple protein and coding sequences,

only the longest were considered for further analysis. Nucleotides in

chimpanzee, orangutan and macaque coding sequences with a

Phred quality lower than 20 were excluded together with their 10

downstream and 10 upstream nucleotides neighbours. Downstream

and upstream positions were also excluded because we noticed that

nucleotides with quality lower than 20 were often found close to
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each other, thus raising doubts about the quality of interspaced

nucleotides. This procedure indeed reduced the rate of false

positives due to sequence inconsistencies (data not shown). Protein

sequences were aligned with MAFFT [70] with high accuracy

options activated. Coding sequence alignments were then obtained

by projection on protein alignments. Only those 11,293 alignments

containing at least 50 codons with no excluded nucleotide, starting

with a start codon in one of the species and with at least one

synonymous substitution between each pair of species were finally

tested for positive selection.

Analysis of microarray expression and Gene Ontology
annotations

Affymetrix Human Exon microarray expression data for eleven

tissues (breast, cerebellum, heart, kidney, liver, muscle, pancreas,

prostate, spleen, testis and thyroid) was downloaded from the

UCSC genome browser database. Values of expression for each

Ensembl gene correspond to the average deduced from all

probesets mapping the exons of a gene. Expressions of human

genes candidates for positive selection were compared with

expressions of the remaining genes using the log of Relative

Abundance [47]. Gene Ontology annotations [71] of biological

processes were analysed using the FatiGO and FatiScan [48,49]

software available at http://babelomics.bioinfo.cipf.es/.

Measures of recombination rates, gene densities, and
other genomic factors

Recombination and gene densities were controlled for in our

test of co-occurrence. Recombination rates from the HapMap

release 22 build 36 and estimated by LDHat [33,54] were

downloaded at http://www.hapmap.org/. The average recombi-

nation rate (cM/Mb) was calculated for 200 kb windows centred

on genes. Gene densities were measured as the number of genes

present within 100 kb downstream and 100 kb upstream of every

gene. Other sizes from 200 kb to 1 Mb and from 100 kb to 2 Mb

were investigated for gene density and recombination, respective-

ly, but 100 kb and 200 kb are the ones showing the strongest

effects when testing co-occurrence, respectively. Average sequenc-

ing depth, proportion of divergent sites for every possible pair of

species, and average GC content were measured for windows

ranging from 100 to 1000 kb, none of which had an impact on co-

occurrence. Correlations shown in Results are for 200 kb

windows.

Comparison with other published human genome-wide
scans

We compared our set of candidate positively selected genes

(K#0.05) in human with those found in four published scans for

selective sweeps in the European population [11–15]. To compare

several sets of genes and measure the level of observed overlap

versus the level of expected overlap, the numbers of genes involved

in the comparison must be of the same order of magnitude and

large enough to avoid exceedingly high variance in estimated

overlap. For these reasons and when needed, we use relaxed

criteria to include larger numbers of genes in a given set than

provided in highly specific shortlists in the original publications. By

doing so, the frequency of potential false positive might increase,

but this makes our conclusions conservative since the objective is

only to compare the sets of genes relative to each other. In the

study by Voight et al. [12] the 460 selected genes overlap regions

where at least 20 out of 50 SNPs show an |iHS|$2 in the

HapMap phase II data. In the analysis by Williamson et al. [11]

444 genes with an associated p-value lower than 1024 were

selected. The 1,030 genes from the Tang et al. study [14] are those

found within the candidate genomic intervals provided as

supporting material of this publication. The 986 genes selected

from the Carlson et al. scan [13] are those found within the 200

largest areas of negative Tajima’s D in the genome. XP-EHH

values were downloaded from the UCSC Genome Browser [15].

516 genes with XP-EHH $2 at their genomic centre were used for

comparison with other scans.

Supporting Information

Figure S1 Performance of the test under panmictic and

European populations demographic models using one individual.

Power (Y axis) versus false positive rate (X axis) of the test to detect

selective sweeps using 200 kb windows and 20 fold greater

genomic background windows sliding every 10 kb are represented

for a panmictic population (blue dots and curves) and for a

demographic model of the European population (red dots and

curves). Power and false positive rates were measured for a range

of K thresholds for adaptive mutations fixed between 0 and 2,500

generations before testing (line 1), 2,500 and 5,000 (line 2), 5,000

and 7,500 (line 3) and 7,500 and 10,000 generations after fixation

(line 4). Left column: selection coefficient s = 0.01. Right column:

s = 0.1. Curves are second order polynomials fitted to the data.

Found at: doi:10.1371/journal.pgen.1000840.s001 (0.13 MB TIF)

Figure S2 Performance of the test under panmictic and

European populations demographic models using two individuals.

Same as Figure S1.

Found at: doi:10.1371/journal.pgen.1000840.s002 (0.15 MB TIF)

Figure S3 Performance of the test under panmictic and

European populations demographic models using 20 individuals.

Same as Figure S1. No curves could be fitted to the data.

Found at: doi:10.1371/journal.pgen.1000840.s003 (0.12 MB TIF)

Figure S4 Expression patterns of human selective sweeps

candidate genes. The distributions of the log of Relative

Abundance (RA) [47] measured for eleven human tissues with

Affymetrix Human Exon microarrays (see Methods) were

compared between human selective sweeps candidate genes (left

distribution; K#0.05, 563 candidates with complete expression

information) and all other genes that were tested (right

distribution; K.0.05, 12,652 genes with complete expression

information). Using the Relative Abundance instead of absolute

intensities allows us to identify tissues where candidate genes

are up-regulated when compared to their expression in other

tissues. *: Mann-Whitney U test, one sided P#0.05. **: P#0.01.

***: P#0.001.

Found at: doi:10.1371/journal.pgen.1000840.s004 (0.24 MB TIF)

Figure S5 Randomization strategy for testing co-occurrence

between two groups. Orange circles: genes with K. fixed

threshold in group 1. Red circles: genes with K# fixed threshold

in group 1. Light blue circles: genes with K. fixed threshold in

group 2. Blue circles: genes with K# fixed threshold in group 2. In

our case, group 1 represents non-human primates and group 2

represents human.

Found at: doi:10.1371/journal.pgen.1000840.s005 (1.71 MB TIF)

Figure S6 Combinations of a and fn that are compatible with the

observed excess of co-occurrence of positive selection. The plot

presents combinations of a, the proportion of genes with a low rate

of positive selection in our model, and fn, the rate of false positives

in non-human primates in our model that are compatible with the

observed excess of co-occurrence between candidate genes for

positive selection (Text S3).
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Found at: doi:10.1371/journal.pgen.1000840.s006 (0.10 MB TIF)

Figure S7 Human-chimpanzee-orangutan candidate hotspots of

recent positive selection at five loci. Each graph of lines 1, 2, and 3

shows the variation of the log2 of K (+0.001 to avoid null values) at

candidate hotspots of recent positive selection in human (average

of the two individuals, red), chimpanzee (blue) and orangutan

(green). All five candidates belong to sets of genes with over-

represented functions in the Gene Ontology. To facilitate

comparisons between genomes, values of K for chimpanzee and

orangutan were projected on their human orthologous coordinates

and gene symbols are those for human in all three species. Other

legends for graphs of lines 1, 2 and 3 are identical to Figure 1.

From graphs on line 4 to graphs on line 12 all values were

measured within 200 kb windows sliding every 10 kb. Line 4:

human Venter + Watson heterozygosity. Line 5: chimpanzee

heterozygosity. Line 6: orangutan heterozygosity. Line 7: Human-

chimpanzee divergence. Line 8: Human-orangutan divergence.

Line 9: Human GC content. Line 10: human sequencing depth

(Venter+Watson). Line 11: chimpanzee sequencing depth. Line

12: orangutan sequencing depth. Importantly, this figure clearly

shows that the five hotspot candidates presented are due to drops

of heterozygosity and not to local anomalies in the other data that

were used to calculate K.

Found at: doi:10.1371/journal.pgen.1000840.s007 (0.79 MB TIF)

Table S1 Evaluation of the weighing scheme to correct for K

biasing factors. The table shows the Spearman’s rank correlations

of K with diverse simulated biasing factors whether or not the

weighing scheme is applied (Methods; Text S1). F(n) (n being null

or a positive integer) gives the probability that a heterozygous site

is detected depending on the function F and the value n taken by

the factor. Factor shape gives the shape of the gamma distribution

used to model factor values and scale gives the scale parameter.

Factor a and b give the values so that the final values n of the

biasing factor were obtained by multiplying values from the

gamma distributions with a and adding b. Any negative resulting

value was set to 0. Region shape gives the shape of the gamma

distribution used to model region sizes, Region scale the scale

parameter. Region a and Region b give the values so that the final

region size values were obtained by multiplying sizes from the

gamma distribution with a and finally adding b. Any size lower

than 1 kb was set to 1 kb.

Found at: doi:10.1371/journal.pgen.1000840.s008 (0.04 MB

DOC)

Table S2 Average K for 19,331 Ensembl human genes. Column

1: Ensembl gene ID. Column 2: chromosome. Columns 3 and 4:

Gene start and end coordinates on NCBI36/HG18. Column 5:

Average K for CV and JW for 200 kb windows centred on the

genomic centre of each genes.

Found at: doi:10.1371/journal.pgen.1000840.s009 (0.85 MB

TXT)

Table S3 Custom tracks for visualizing scan results in the UCSC

Genome Browser. The wiggle file contains three custom tracks

that can be visualized via upload in the UCSC Genome Browser.

The first track represents the average K obtained from 1,000

random samplings for 200 kb windows sliding every 10 kb. Other

tracks highlight regions with CLR P#0.05, and CLR P#1024

remapped on the NCBI36/HG18 assembly in the Williamson et

al. study [11]. Users can also activate the Tajima’s D, XP-EHH

and iHS tracks already available in the UCSC Genome Browser

for further comparisons.

Found at: doi:10.1371/journal.pgen.1000840.s010 (4.08 MB

TXT)

Table S4 Gene Ontology biological processes with significantly

lower distributions of K in the human genome. Gene Ontology

biological processes with lower values of K than the rest of the

genome were identified using the FatiScan [48,49] tool available at

http://babelomics.bioinfo.cipf.es/. Several parent and daughter

significant processes of those indicated were removed. FDR is for

False Discovery Rate.

Found at: doi:10.1371/journal.pgen.1000840.s011 (0.03 MB

DOC)

Table S5 Values of K for human, chimpanzee, orangutan and

macaque used in the co-occurrence test. Column 1: Human

Ensembl gene ID. Column 2: human chromosome. Columns 3

and 4: gene start and end in human. Columns 5, 6, 7, 8: K in

human, chimpanzee, orangutan and macaque, respectively.

Found at: doi:10.1371/journal.pgen.1000840.s012 (0.62 MB

TXT)

Table S6 Best candidate hotspots of recent positive selection.

Column 1: HGNC symbol. Other columns are the same as for

Table S5.

Found at: doi:10.1371/journal.pgen.1000840.s013 (0.05 MB

DOC)

Table S7 Candidate genes for positive selection in three or four

published scans [11–14] and in putative sweeps in two or more

non-human primates.

Found at: doi:10.1371/journal.pgen.1000840.s014 (0.07 MB

DOC)

Table S8 Top candidates identified in both the PAML test on

coding sequences and our test for selective sweeps (recent positive

selection).

Found at: doi:10.1371/journal.pgen.1000840.s015 (0.05 MB

DOC)

Table S9 Ensembl genes observed in a selective sweep only in

human. Note that all candidates on chromosome 2 except the first

correspond to the lactase locus.

Found at: doi:10.1371/journal.pgen.1000840.s016 (0.05 MB

DOC)

Text S1 Weighing scheme evaluation.

Found at: doi:10.1371/journal.pgen.1000840.s017 (0.02 MB

DOC)

Text S2 Forward population simulations.

Found at: doi:10.1371/journal.pgen.1000840.s018 (0.03 MB

DOC)

Text S3 Distinguishing between hotspots and coldspots models.

Found at: doi:10.1371/journal.pgen.1000840.s019 (0.03 MB

DOC)
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