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Abstract

The genetics underlying the autism spectrum disorders (ASDs) is complex and remains poorly understood. Previous work
has demonstrated an important role for structural variation in a subset of cases, but has lacked the resolution necessary to
move beyond detection of large regions of potential interest to identification of individual genes. To pinpoint genes likely
to contribute to ASD etiology, we performed high density genotyping in 912 multiplex families from the Autism Genetics
Resource Exchange (AGRE) collection and contrasted results to those obtained for 1,488 healthy controls. Through
prioritization of exonic deletions (eDels), exonic duplications (eDups), and whole gene duplication events (gDups), we
identified more than 150 loci harboring rare variants in multiple unrelated probands, but no controls. Importantly, 27 of
these were confirmed on examination of an independent replication cohort comprised of 859 cases and an additional 1,051
controls. Rare variants at known loci, including exonic deletions at NRXNT and whole gene duplications encompassing
UBE3A and several other genes in the 15q11-q13 region, were observed in the course of these analyses. Strong support was
likewise observed for previously unreported genes such as BZRAPI, an adaptor molecule known to regulate synaptic
transmission, with eDels or eDups observed in twelve unrelated cases but no controls (p=2.3x10">). Less is known about
MDGA?2, likewise observed to be case-specific (p=1.3x10"%. But, it is notable that the encoded protein shows an
unexpectedly high similarity to Contactin 4 (BLAST E-value =3 x10>°), which has also been linked to disease. That hundreds
of distinct rare variants were each seen only once further highlights complexity in the ASDs and points to the continued
need for larger cohorts.
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CNVs in Autism

Introduction

The Autism spectrum disorders (ASDs, MIM: 209850) are a
heterogeneous group of childhood diseases characterized by
abnormalities in social behavior and communication, as well as
patterns of restricted and repetitive behaviors [1]. Twin studies
have demonstrated much higher concordance rates of ASD in
monozygotic twins (92%) than dizygotic twins (10%) [2,3],
indicating a strong genetic basis for autism susceptibility. Although
previous work has implicated numerous genomic regions of
interest [4-8], the identification of specific genetic variants that
contribute to ASD risk remains challenging.

Substantial progress towards the identification of genetic risk
variants has come from recent characterization of structural
variation (i.e., copy number variation or CNV). For example, an
initial report involving patients with syndromic autism character-
ized genomic variation using array comparative genomic hybrid-
ization (CGH) and identified large de novo CNVs in 28% of cases
[9]. Similarly, subsequent work demonstrated that the frequency
of de novo CNVs is higher in cases versus controls [7,8]. CNV
analyses have proven useful in the identification of regions that are
potentially disease-related [8,10-13] and have begun to be
employed to advance the candidacy of individual genes, including

Author Summary

Autism spectrum disorders (ASDs) are common neurode-
velopmental syndromes with a strong genetic component.
ASDs are characterized by disturbances in social behavior,
impaired verbal and nonverbal communication, as well as
repetitive behaviors and/or a restricted range of interests.
To identify genes likely to contribute to ASD etiology, we
performed high density genotyping in 912 multiplex
families from the Autism Genetics Resource Exchange
(AGRE) collection and contrasted results to those obtained
for 1,488 healthy controls. To enrich for variants most likely
to interfere with gene function, we restricted our analyses
to deletions and gains encompassing exons. Of the many
genomic regions highlighted, 27 were seen to harbor rare
variants in cases and not controls, both in the first phase of
our analysis, and also in an independent replication cohort
comprised of 859 cases and 1,051 controls. More work in a
larger number of individuals will be required to determine
which of the rare alleles highlighted here are indeed
related to the ASDs and how they act to shape risk.
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NRXN1, CNTNAP2, and NHE9 [6,14-16]. Recent work charac-
terizing structural variation in cases and ethnically matched
controls associating ubiquitin-pathway genes with autism with
replicating this finding in the AGRE dataset is likewise notable
[17], although family data was not reported here. Using the
AGRE dataset as a discovery cohort, along with family
information available for AGRE samples, we describe distinct
and complementary analyses, prioritizing exonic events over
CNVs in introns and intergenic intervals, which provide important
new insights into the genetic architecture of the ASDs.

Towards the identification of additional genes and regions that
may modulate disease risk, we have assembled a resource
characterizing genome-wide structural variation from over nine
hundred multiplex ASD families. Presented below are results from
analyses contrasting events observed in cases and healthy
ethnically matched controls, focusing on three classes of genic
events: exonic deletions (eDels), exonic duplications (eDups), and
whole gene duplication (gDups). Recovery of known ASD loci —
together with the identification of novel regions harboring variants
in multiple cases but no controls — supports the utility of this
dataset. Consistent with enormous inter-individual variation, we
further document a large number of events observed in only
individual cases (Table S4). Importantly, all of these data have
been made available to the scientific community pre-publication
(www.agre.org), greatly enhancing the utility of existing publicly
accessible biomaterials and phenotype data. These data further
highlight the extent of structural variation in both human and the
ASDs and offer an important resource for hypothesis-generation
and interrogation of individual loci.

Results/Discussion

To characterize structural variation in ASD multiplex families
and unrelated controls, we typed individuals at 561,466 SNP
markers using Illumina HumanHap550 version 3 arrays. After
excluding samples that failed to meet QC thresholds (see Table
S1), we obtained array data on 3832 individuals from 912
multiplex families enrolled in the Autism Genetic Resource
Exchange (AGRE) [18], 1070 disease-free children from the
Children’s Hospital of Philadelphia (CHOP), and 418 neurolog-
ically normal adults and seniors from the National Institute of
Neurological Disorders and Stroke (NINDS) control collection
[19]. Using the PennCNV software [20], we detected CNVs with a
mean size of 59.9 Kb and mean frequency of 24.3 events per
individual (see Table S2). Sensitivity compares favorably with
previous BAC array-based [9,21] and SNP-based methods [8], in
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which mean resolution was observed to be in the range of Mbs and
hundreds of Kbs, respectively.

As a first step towards validation of genotyping accuracy we
examined the inheritance of CNVs in the AGRE cohort. Consistent
with high quality, 96.2% of CNV calls made in children were also
detected in a parent. To explore the issue of genotyping accuracy
further, we generated CNV calls for an independently generated
data set in which an overlapping set of 2,518 AGRE samples were
genotyped using the Affymetrix 5.0 platform [11]. For CNVs
(>500 kb) in known ASD regions (e.g. 15q11-13, 16p11.2, and
22q11.21; Table 1) [8,11,21,22], we observed 100% correspon-
dence between the two platforms for individuals genotyped on both
platforms. For further confirmation of CNV calls, we compared de
novo variants identified here to those highlighted in previous analyses
of AGRE families. We identified all five de novo CNVs reported by
Sebat et al [ 7], three of the five de novo CNVs reported by Szatmari et
al [6], one de novo CNV within A2BPI reported by Martin et al [23],
and all five 16p11.2 de novo deletions reported by Weiss et a/ [11] and
Kumar e al [10]. Of the two of thirteen de novo CNVs reported by
Szatmari ef al not detected as de novo in our study, one was very small
(2 SNPs, 180 bp on 8p23.2), and the second clearly appears to be
mnherited (469 SNPs, 1.4 Mb on 17pl2). Thus, our data are
concordant with several other studies, and provide a more
comprehensive picture of de novo CNVs in multiplex autism families.
To further evaluate the quality of these data on another
independent platform, we used Tagman to determine relative copy
number at 12 previously unreported de novo CNVs identified in
AGRE probands, confirming 11/12 loci (Figure 1 and Table S3).
Together these results suggest that the CNVs calls we report are
consistent and reliable.

We therefore undertook additional analyses to identify specific
loci in which structural variants were enriched in cases versus
controls. Because the majority of such variants were intronic or
intergenic, we sought to prioritize CNVs most likely to interfere
with the molecular function of specific genes. We first filtered
CNV calls to include only exonic deletions (eDels) observed to
overlap with a RefSeq gene. Overall, such eDels were observed at
similar frequencies in AGRE cases, 1* degree relatives of AGRE
cases, and unrelated controls (CHOP and NINDS cohorts), with
an average of ~2 such variants per person (Table S2). To identify
events related to the ASDs we then looked for genes harboring
eDels in at least one case but no unrelated controls. Among the
284 genes that met this criteria (Table S4) we observed several
known ASD or mental retardation genes including: ASPM [24],
DPPI0 [8], GNTNAP?2 [25,26], PCDHY [16], and NRXNI [6].

To enrich for genes most likely to contribute to ASD risk, we
used family-based calling to evaluate which of these genes carried
eDels in three or more cases from at least two unrelated families
(Table S5). This stringent filtering resulted in 72 genes at 55 loci,
including NRXNI. This is notable, given that eleven distinct
disease-linked ~ NRXN/  variants have been identified
[6,8,15,27,28]. Neurexin family members are known to interact
functionally with ASD-related neuroligins [29-32], and likewise
play an important role in synaptic specification and specialization
[33,34]. eDels in more recently identified candidates, including
DPPI0 and PCDHY, were likewise retained. Similarly, recovery of
RNF133 and RNFI48 within intron 2 of CADPS? [7,35] highlights
additional complexity at this locus. Although CNV breakpoints
cannot be mapped precisely using SNP data alone, it is possible to
determine overlap with protein coding exons and use these data to
predict impact on gene function. Consistent with perturbation of
function, distinct alleles at the loci highlighted here are predicted
to eliminate or truncated the corresponding protein products

(Figure 2).
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Importantly, CNVs at a majority of these eDel loci show unique
breakpoints in different families and/or result in the loss of distinct
exons, demonstrating that they are independent. Moreover,
because it is well established that CNVs at a subset of loci show
identical breakpoints in unrelated individuals [10], this result is
likely to underestimate the extent to which variants described here
arose independently. Results from multi-dimensional scaling are
likewise consistent with the interpretation that variants we
highlight arose independently (Figure S1).

Given the large number of variants identified, it was critically
important to confirm in an independent case-control analysis, how
many of these eDels were truly overrepresented in cases, as
opposed to being potentially attributable to Type I error. To
address this concern, we sought to determine eDel frequency in
these same genes in a replication dataset comprising 859
independently ascertained ASD cases and 1051 unrelated control
subjects from the Autism Case Control cohort (ACC, see
Description in Methods). One third of the loci identified in the
discovery phase were observed in one or more ACC controls (18/
55; 32.7%), suggesting that while rare, eDels at these loci are not
limited to ASD cases and family members. In contrast, and
providing evidence for formal replication, 14 separate loci
encompassing 22 genes were observed to carry eDels in both
AGRE and ACC cases, but none of 2539 controls (Table S2).

Our replication data lend strong support to the involvement of
specific loci in the ASDs (Table 2). However, to ensure that these
results were not observed by chance alone, we performed 10,000
permutation trials on data from the replication cohort by
permuting case/control status across individuals. In each permut-
ed dataset, we maintained the same numbers of cases and controls
as in the original data, and calculated the number of genes
harboring CNVs exclusively in cases. None of the 10,000
permutation trials gave results comparable to experimental
observations for replicated case-specific loci (n=14; p<<0.0001;
Figure 3). In contrast, findings comparable to those for non-
replicated loci (highlighted as case-specific in the discovery phase
but subsequently seen in replication controls) were seen in controls
in 246/10,000 trials (n=18; p=0.02; Figure S2). Although
additional experimental work in independent cohorts will be
required to determine if variation in any of the genes highlighted
here do in fact impact ASD risk, no more than 5 replicated loci
would be predicted to be observed by chance alone.

Despite the challenges associated with obtaining statistical
support for individually rare events [7,36] we next sought to
assign P values for replicated eDel loci. We were able to obtain
support for each of the following loci: BJRAPI at 17q22
(p=8.0x10"%, NRXNT at 2p16.3 (p=3.3x10"%, MDGA2 at
14g21.3 (p=1.3x10~", MADCAMI at 19q13 (p="5.5x10""), and
a three gene locus at 1511 (p=1.3x107""). CNV calls at each of
15q11 and 19p13 are highly-error prone, suggesting that results
here be mterpreted with caution (see footnotes C and I in Table 2).
Recovery of NRXNI, however, provides confidence for involve-
ment of additional loci that were likewise replicated. Benzodiaza-
pine receptor (peripheral) associated protein 1 (BZRAPI, alterna-
tively referred to as RIMBPI), is an adaptor molecule thought to
regulate synaptic transmission by linking vesicular release
machinery to voltage gated Ca2+ channels [37]. Identification of
this synaptic component here, in a hypothesis-free manner, is
particularly satisfying and also provides additional support for
synaptic dysfunction in the ASDs [29,38]. Less is known about
MDGA?2 [39], although comparison of the predicted protein to all
others within GenBank by BLASTP indicated an unexpectedly
high similarity to Contactin 4 (24% identity over more than 500
amino acids; Expect=3x10""%. Given previous reports of
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Figure 1. TagMan experiments validate large de novo CNV calls. To validate results using an independent method we designed TagMan
assays to evaluate gene dosage. Results from representative experiments highlight results at loci at 1921, 8921, and 10g24. AGRE individual
harboring deletions (red arrows) or gains (green arrows) are indicated.

doi:10.1371/journal.pgen.1000536.g001
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hemizygous loss of GNTN% in individuals with mental retardation
[40] and autism [17,41]. similarity between MDGA2 and
CNTN4, surpassed only by resemblance to MDGAI, is notable.
Likewise intriguing in light of the suggestion that common
variation in cell adhesion molecules may contribute to autism risk
[42] 1s the structural likeness of MDGAZ2 to members of this family
of molecules.

Although some published analyses emphasize the greater
contribution of gene deletion events in autism pathogenesis [7],
there are also clear examples of duplications that strongly
modulate ASD risk [43,44]. We therefore conducted a parallel
analysis of duplications, distinguishing between events involving
entire genes (gDups) which might increase dosage and those

@ PLoS Genetics | www.plosgenetics.org

Table 1. CNVs (>500 kb) on 16p11, 15q11-13, and 22q11 are present in a subset of AGRE families.

Region #SNP Length (bp) Type AGREID Scored status Inheritance status Shared by affected sibling? Previous reports

15q11-13 1246 5,902,313 dup AU010601 parent [22]

15q11-13 1246 5,902,313 dup AU010604 Autism Inherited No [22]

15q11-13 1246 5,902,313 dup AU1331202 parent

15q11-13 1246 5,902,313 dup AU1331302 Autism inherited Yes

15q11-13 1246 5,902,313 dup AU1331303 Autism inherited Yes

15q11-13 1130 5,008,629 dup AU006501 parent

159q11-13 1130 5,008,629 dup AU006503 Spectrum inherited Yes AGRE cytogenetic
annotation

159q11-13 1130 5,008,629 dup AU006504 Autism inherited Yes AGRE cytogenetic
annotation, [21]

15q11-13 1130 5,008,629 dup AU1135202 Autism de novo NA

15q11-13 1127 4,993,869 dup AU023303 Spectrum NA Yes [22]

15q11-13 1127 4,993,869 dup AU023304 Autism NA Yes [21,22]

159q11-13 1127 4,993,869 dup AU1607307 Autism de novo No

159q11-13 569 3,540,078 del AU1024202 parent

159q11-13 569 3,540,078 del AU1024301 Autism inherited NA

15q11-13 437 1,347,744 dup AU038504 Autism de novo No [22]

15q11-13 287 1,578,642 dup AU1208301 Autism de novo No

15q11-13 273 1,517,841 dup AU1875202 parent

15q11-13 98 572,462 dup AU052003 Autism NA Yes [21]

15q11-13 98 572,462 dup AU052004 Autism NA Yes

16p11.2 47 530,466 del AUO0154302 Autism de novo Yes [10,11]

16p11.2 47 530,466 del AU0154303 Autism de novo Yes [10,11,21]

16p11.2 47 530,466 del AU029803 Autism de novo No [10,11,21]

16p11.2 47 530,466 del AU041905 Autism de novo No [10,11,21]

16p11.2 47 530,466 del AU0938301 Autism de novo No [10,11,21]

16p11.2 47 530,466 dup AU002901 parent [11]

16p11.2 47 530,466 dup AU002903 Autism inherited Yes [11]

16p11.2 47 530,466 dup AU002904 None inherited [11]

16p11.2 47 530,466 dup AU002905 Autism inherited Yes [10,11]

22q11.21 512 2,534,567 dup AU001802 parent [22]

22q11.21 512 2,534,567 dup AU001804 Autism inherited No [21,22]

22q11.21 512 2,534,567 dup AU004903 Autism de novo No [21,22]

22q11.21 335 1,429,207 dup AU0991301 Autism NA No

22q11.21 177 728,859 dup AU1334201 parent

22q11.21 177 728,859 dup AU1334302 Spectrum inherited No

22q11.21 149 601,423 del AU1555302 Autism NA NA

doi:10.1371/journal.pgen.1000536.t001

restricted to internal exons (eDups) which could give rise to a
frameshift or map to a chromosomal region distinct from the
reference gene. For gDups, we identified 449 genes that were
duplicated in at least one AGRE case but no CHOP/NINDS
controls (Table S4). Of those, 200 genes at an estimated 63 loci,
including genes at 15q11.2 [43], met the more stringent criteria of
being present in three or more cases from at least two independent
families (Table S5). Of these, 11.5% (23/200) were also seen in
ACC controls, whereas 24.5% (49/200) were case-specific in the
replication cohort. Strong statistical support was obtained for
established loci (e.g. p=9.3x107° for UBE3A and other genes in
the PWS/AS region at 15q11-q13), and nominal evidence was
observed for the following novel loci: CD84 at 2p11.2 (p=0.069),
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Figure 2. Rare exonic deletions (eDels) in NRXN7 and novel candidate genes alter predicted protein structures. For each of BZRAP1 (a)
NRXN1 (b) and MDGA?2 (c) reference loci and encoded proteins (top) are contrasted against mutant loci and corresponding proteins (bottom; grey
shading). Unique genomic deletions and corresponding protein truncations are highlighted in red and with black hatching, respectively. Schematized
protein domains genes are as follows: BZRAP1—Src homology-3 (orange square), Fibronectin, type Ill (blue oval); NRXNT—Laminin G (orange
hexagon), EGF-like (blue oval), 4.1 binding motif (green rectangle); MDGA2—IG-like domains (blue pentagon), MAM aka Meprin/A5-protein/PTPmu

(blue oval).
doi:10.1371/journal.pgen.1000536.9002
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actual dataset (n=14; p<<0.0001).
doi:10.1371/journal.pgen.1000536.g003

LOC285498 at 4pl16.3 (p=0.028), and CARDY/LOC728489 at
9q34.3 (p=10.005).

For eDups, we reasoned that duplication of one or more
internal exons could serve to disrupt the corresponding open
reading frame and be predicted to impair gene function as a
result. Despite the caveat that observed copy number gains need
not map to the wild-type locus, known ASD genes including
TSC2 [45] and RAII [44,46] within the Potocki-Lupski Syndrome
critical interval were amongst the 159 loci observed in at least one
AGRE case, but no CHOP/NINDS controls (Table S4). Such
events were also seen in one family at the NLGNI locus, which is
of interest given previous support for NLGN3 and NLGN4 [29].
Filtering of these results, using the more stringent criteria
employed above in consideration of eDels, limited this set of
events to 76 loci observed in at least three cases from two separate
families (Table S5). Interestingly, BJRAPI, reported above to
harbor eDels at significantly higher frequencies in AGRE and
ACC cases versus controls (p=8.0x10""), was amongst these,
with eDups observed here in four unrelated AGRE cases
(screening p=0.021). Eight other genes, including the voltage
gated potassium channel subunit KCNAB2 (p=4.7x1077) re-
mained absent from ACC controls and were also replicated in the
independent case cohort. Although eDups at BZRAPI were not
detected in ACC cases, eDels at this locus were replicated,
underscoring the importance of variation here. When considering
eDels and eDups at the BZRAPI locus together, the likelihood of
such an observation occurring by chance alone is small
(p=2.3x1077).

Although none of the variants we highlight were observed in
any of 2539 unrelated controls, key events, including eDels at
NRXNI1, BZRAPI, and MDGAZ2 were observed in both cases and
non-autistic family members (Figure 4). This is in keeping with
previous work which suggests that haploinsufficiency at NRXNI
may contribute to the ASDs [15], but is insufficient to cause
disease. Such data are also consistent with the well established
finding of the “broader autism phenotype”, such as subclinical

@ PLoS Genetics | www.plosgenetics.org

language and social impairment in first degree relatives of cases
with an ASD, which supports a multi-locus model [47,48]. We
were also surprised to see that key variants at these loci appear to
be transmitted to only a subset of affected individuals in some
families (Figure 4). These observations parallel findings at other
major effect loci including 16p11.2 [11] and DISCI [49,50] and
are consistent with a model in which multiple variants, common
and rare, act in concert to shape clinical presentation [51-53].
Results are also consistent with the idea that true risk loci are likely
to show incomplete penetrance and imperfect segregation with
disease [13], a reality that will complicate gene finding efforts.
Related to this is that substantial effort will be required to
determine whether rare alleles of moderate effect act indepen-
dently on distinct aspects of disease (endophenotype model) or
together to undermine key processes in brain development
(threshold model). How distinct alleles may interact to shape
presentation is yet another question that will require larger cohorts
along with multigenerational families to resolve [54].

By limiting CNV calls to include only exonic deletions (eDels)
and duplications (eDups and gDups), we have attempted to enrich
for variants most likely to impact gene function and in doing so
improve the signal to noise ratio similar to work in other complex
diseases [55]. At the same time, like other gene-based strategies,
we preserve our ability to consider eDels involving the same
transcriptional unit as separate but equivalent. Given that such
events appear rare, this is an important consideration.

Pathway analysis by DAVID [56] found support for overrep-
resentation of cell adhesion molecules amongst recurrent eDel
genes (uncorrected p=0.002; CDH17, PCDHY9, LAMA2, MAD-
CAM1, NRXN1, POSTN, SPON2) , although it should be noted that
this analysis does not adjust for gene size and may favor larger
genes. Nevertheless, aside from SPON2 no eDels in these genes
were observed in any of the controls interrogated. In contrast, no
evidence for such overrepresentation was observed for genes in the
ubiquitin degradation pathway and neither term was highlighted
as overrepresented amongst eDups or gDups. Given that this study
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Table 2. A subset of eDel loci were observed to harbor rare variants in both discovery and replication cohorts, but none of 2539
controls. eDel: exonic deletion; ACRD: autism chromosome rearrangement database (http://projects.tcag.ca/autism/).

Unrelated Unrelated

Discovery Unaffected Unrelated Replication Combined

Cases UnrelatedDiscovery  Carrier Replication controls P-value

Gene Locus® (n=912) Controls (n=1488) Fraction® cases (n=859) (n=1051) ACRD? (Fisher Exact)

- CA6 1p36 3 0 0.50 1 0 No 0.028

- ORICT 1944 3 0 0.40 1 0 No 0.028

- NRXNT 2p16 5 0 0.46 4 0 Yes 33x107*

- GALNT13 29233 4 0 0.54 1 0 Yes 0.012

- SUCLG2 3p14 2 0 0.25 1 0 Yes 0.069

- KIAA1586 6p12 3 0 0.36 2 0 No 0.012

- RNF133 7q931.3 3 0 0.60 1 0 Yes 0.028

- RNF148

- SSSCA1 11913 3 0 043 1 0 No 0.028

- FAM89B

- UNC93B1 11913 3 0 0.25 1 0 No 0.028

- MDGA2 14921.3 8 0 0.56 2 0 No 1.4x107%

- LOC650137° 15q11.2 26 0 0.64 2 0 Yes 1.3x107"

- OR4M2

- OR4N4

- FLYWCH1® 16p13 3 0 0.40 3 0 No 48x1073

- KREMEN2

- PAQR4

- PKMYT1

- BZRAP1E 17922 6 0 0.50 2 0 No 8.0x107*

- C19orf19°F 19p13 3 0 0.40 8 0 No 55%10°

- MADCAM1

Apredicted event sizes in bps for unrelated AGRE™ and ACC™ cases are as follows: CA6 - 2317, 124647, 191467, 19145%; ORICT - 44644°, 577691, 1464677 , 446437;
NRXNT - 19979", 152437", 241327", 3730157, 439406, 1340107, 161199%, 2563737, 533842%; GALNT13 - 14126", 46413", 113282", 24100%; SUCLG2 - 2192", 1389749",
1389748"; KIAA1586 - 36354", 36902",157321", 36901%, 67160%; RNF133/RNF148 - 33473, 37226", 1515817", 43966"; SSSCA1/FAM89IB - 21993, 21993", 21993",
123569%; UNC93B1-11410", 19223", 84727, 159861%; MDGA2 - 196517, 23292, 57714", 58528", 122985, 131623, 150178", 226468", 194601%, 288518%; LOC650137/
OR4M2/OR4N4 - 591007 in 26 families, 24941% and 926360%; FLYWCH1/KREMEN2/PAQR4/PKMYTT - 40468, 81127, 88373, 827867, 82786%, 124947%; BZRAPT -
10102°, 10102", 16897, 18532", 22806, 34235, 29600%, 28360%; C190rf19IMADCAMT - 100187, 171989", 187147", 98264%, 1037887, 277715%, 280201%, 292525%,
2944467, 3442247, 3843247,

BFor eDels at a given locus, the ratio of unaffected carriers (siblings or parents) to total number of carriers (cases and family members).

“The significant difference in CNV frequency between AGRE and ACC cases (p =2.6x10"°), along with multiple instances of similar variation in the DGV (see Tables 54
and Table S5), suggests that additional factors - including some potentially unrelated to diagnosis — may be relevant here. Sparse SNP coverage along with regional
complexity (large segmental duplications) is also likely to increase false positive and false negatives at this locus. Replication data (and corresponding p Value) is for
OR4N4, as only one eDel at either LOC650137 or OR4M2 was observed amongst ACC cases.

PA comparable number of eDels were observed at multiple neighboring genes; carrier fraction corresponds to FLYWCH1, the lowest observed at this locus.

EJoint consideration of eDels (n=8) and eDups (n=4) at BZRAP1 further improves statistical support for this locus (p=2.3x10"°).

FNote extreme telomeric position of this locus which may undermine/interfere with reliable calling of structural variants. CNV counts and carrier fraction corresponds to
MADCAMT; fewer variants were observed at C190rf19 amongst ACC cases and carrier fraction was higher than that for MADCAM].

doi:10.1371/journal.pgen.1000536.t002

focused only on events encompassing RefSeq exons, differences
from Glessner and colleagues [17] are to be expected.

Despite the large cohorts interrogated at each phase of our
mnvestigations, only a minority of loci (established or novel) were
replicated between AGRE and ACC cases. For example, variants
at each of the following previously reported loci were observed
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multiple times in AGRE cases but not once amongst ACC
probands: PCDHI0 and DPPI10 (eDels), RAI and TSC2 (eDups),
and DIDOI (gDups). This suggests that even with current
numbers, the present experiments are underpowered to obtain
replication for a subset of recurrent variants. Because events seen
only in single cases collectively account for a substantial fraction of

June 2009 | Volume 5 | Issue 6 | 1000536



CNVs in Autism

A B

BZRAP1 BZRAP1
o () ()
201 202 201 202
- N
301 302 303 301 302 303
Family AU1171 Family AU0897

% NRXN1 " NRXN1

s \ 2 (@)
HT1® @)

N

2 1 3 203 202 201
[ * |
@
4 5 6 301 302 303 304 305
Family AU0411 Family AU1495
B mpGaz F ” % MDGA?2 5
O, Ot O
1 2 203 201 202
3 4 5 303 304 301 302
Family AU0781 Family AU0981

Figure 4. Exonic deletions, although enriched in cases versus controls, show imperfect segregation with disease in multiplex
families. Pedigrees for representative AGRE families harboring exonic deletions in BZRAP1 (A,B), kb), NRXN1 (C,D), and MDGA?2 (EF) are illustrated.
Red filled circles correspond to exonic deletions. Black stars (upper right) highlight individuals for which CNV calls were not obtained (not genotyped
or failing to meet criteria for quality control).

doi:10.1371/journal.pgen.1000536.9g004

observed variation even larger cohorts still will be required for a Greatest confidence should be placed in loci harboring variants in
thorough understanding of the genetic basis of complex disorders multiple unrelated cases but no controls and also recovered in both
like the ASDs. screening and replication cohorts. Amongst novel genes, best

In summary, we have performed a high resolution genome-wide support was obtained for BJRAPI and MDGA2, intriguing
analysis to characterize the genomic landscape of copy number candidate genes for which additional study is warranted.

variation in ASDs. Through comparison of structural variation in

1,771 ASD cases and 2,539 controls and prioritization of events Methods

encompassing exons we identified more than 150 loci harboring

rare variants in multiple probands but no control individuals. For Sample ascertainment

each class of structural variant interrogated, the recovery of known For initial screening we assembled three sample collections: 1)
loci serves to validate the methods employed and results obtained. 943 ASD families (4,444 unique subjects) from the Autism Genetic
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Resource Exchange (AGRE) collection; 2) 1,070 de-identified and
unrelated children of European ancestry from the Children’s
Hospital of Philadelphia (CHOP), with no evidence of neurolog-
ical disorders; 3) 542 unrelated neurologically normal adults and
seniors of European ancestry from the National Institute of
Neurological Disorders and Stroke (NINDS) control collection.
The AGRE families include 917 multiplex families, 24 simplex
families and 2 families without an ASD diagnosis. For all analyses,
AGRE cases annotated with “Autism” (n=1,463), “Broad
Spectrum” (n =149) or “Not Quite Autism” (n=71) were treated
equally and as affected. Samples from AGRE and NINDS were
genotyped using DNA extracted from Epstein-Barr Virus (EBV)-
transformed lymphoblastoid cell lines, while the CHOP controls
were genotyped using DNA extracted from whole blood. All
AGRE and control samples included in these analyses were
genotyped on the Illumina HumanHap550 version 3 arrays, and
281 samples genotyped on version 1 arrays were excluded from
the present analysis. Since the NINDS controls were genotyped at
a different location and time, they were used to assess the
frequency of specific CNVs in an independent cohort and to
address concerns of cell line artifacts. This study was approved by
the Institutional Review Board of Children’s Hospital of
Philadelphia. All subjects provided written informed consent for
the collection of samples and subsequent analysis.

The Autism Case-Control (ACC) cohort included 859 cases
from multiple sites within the United States, all of whom were of
European ancestry affected with ASD. Of those, 703 were male
and 156 were female; 828 met diagnostic criteria for autism, and
31 met criteria for other ASDs. Subjects ranged from 2-21 years of
age when the Autism Diagnostic Interview (ADI) was given. Of the
case subjects, 54% were from simplex families with the balance
coming from multiplex families. The control group used for
replication included 1051 children of self-reported Caucasian
ancestry who had no history of ASDs. These controls were
recruited by CHOP nursing and medical assistant staff under the
direction of CHOP clinicians within the CHOP Health Care
Network, including four primary care clinics and several group
practices and outpatient practices that included well child visits.

Detection and annotation of copy number variation

For each data set, we applied identical and stringent quality
control criteria to remove samples with low signal quality. CNV
calls were generated using PennCNV [20], an algorithm which
employs multiple sources of information, including total signal
intensity, allelic intensity ratios, SNP allele frequencies, distance
between neighboring SNPs, and family information to generate
calls. We excluded samples meeting any of the following criteria: a)
standard deviation for autosomal log R ratio values (LRR_SD)
higher than 0.28, b) median B Allele Frequency (BAF_median)
higher than 0.55 or lower than 0.45, c) fraction of markers with BAF
values between 0.2 and 0.25 or 0.75 and 0.8 (BAF_drift) exceeded
0.002. We also excluded from our analysis CNVs within /GLCT
(22q11.22), IGHGI (14932.33) and IGKC (2p11.2), and the T cell
receptor constant chain locus (14q11.2), as well as CNVs in
chromosomes showing evidence of heterosomic aberrations (chro-
mosome rearrangements in sub-populations of cells) in BeadStudio.

CNV calls were mapped onto genes by identifying overlap with
RefSeq exons, the coordinates of which we obtained from the
UCSC table browser. Deletion events overlapping with exons
retrieved in this way were listed as eDels. eDups were defined as
gains overlapping one or more coding exons and seen to be
internal to the beginning and end of the corresponding transcript.
Gains observed to encompass all exons for a given gene were
annotated as gDups. P values for relative CNV burden in cases
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and controls were calculated at each locus by Fisher’s exact test. P
values presented in Table S2, S4, S5 have not been subjected to
correction for multiple testing. To compare our CNV calls with
other publications that have used AGRE families [10,11,21,22],
we examined published calls on the same individuals with the
same AGRE identifiers. The CNV calls were retrieved from the
Supplementary Materials of each corresponding publication.

Quantitative PCR for CNV validation

TagMan primer/probe sets were designed to query random
CNVs using FileBuilder 3.0 on the repeat-masked human genome
(NCBI_36; March 2006 release; http://genome.ucsc.edu/). For
each assay, 10 ng of genomic DNA was assayed in quadruplicate
in 10-puL reactions containing 1x final concentration TagMan
Universal Master Mix (ABI part number 4304437), and 200 nM
of each primer and probe. Cycling was performed under default
conditions in 384-well optical PCR plates on an ABI 7900
machine. Copy number was defined as 22" where ACy is the
difference in threshold cycles for the sample in question
normalized against an endogenous reference (RNAseP) and
expressed relative to the average values obtained by three arbitrary
control DNAs. A list of TagMan probes against the 12 CNVs
tested is included in Table S3.

Supporting Information

Figure S1 Multi-dimensional scaling plot of AGRE affected
subjects, with red cross highlighting subjects carrying the eDels.
Subjects of European ancestry are clustered toward the right side
of the triangle.

Found at: doi:10.1371/journal.pgen.1000536.s001
DOC)

(0.11 MB

Figure 82 We performed 10,000 phenotype permutation trials
on replication data and determined for each the number of loci
harboring CNVs exclusively in controls. During each trial a new
set of control-specific loci was identified and the number of these
absent from cases determined. We observed results comparable to
those obtained experimentally (n=18) in 246 of 10,000 trials
(p=0.02).

Found at: doi:10.1371/journal.pgen.1000536.s002 (0.03 MB
DOC)

Table S1 Description of AGRE sample used in the analysis.
Found at: doi:10.1371/journal.pgen.1000536.s003 (0.03 MB
DOC)

Table 82 Summary of CNVs in AGRE cases, first-degree
relatives, and unrelated controls.

Found at: doi:10.1371/journal.pgen.1000536.s004 (0.04 MB
DOC)

Table 83 TaqMan primers and probes used in CNV validation.
Found at: doi:10.1371/journal.pgen.1000536.s005 (0.04 MB
DOC)

Table $4 Exonic del/dups (Singletons and recurrent).
Found at: doi:10.1371/journal.pgen.1000536.s006 (0.14 MB
XLS)

Table S5 Exonic del/dups (Recurrent in unrelated families).
Found at: doi:10.1371/journal.pgen.1000536.s007 (0.45 MB
XLS)
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