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Abstract

A complete description of the transcriptome of an organism is crucial for a comprehensive understanding of how it
functions and how its transcriptional networks are controlled, and may provide insights into the organism’s evolution.
Despite the status of Saccharomyces cerevisiae as arguably the most well-studied model eukaryote, we still do not have a full
catalog or understanding of all its genes. In order to interrogate the transcriptome of S. cerevisiae for low abundance or
rapidly turned over transcripts, we deleted elements of the RNA degradation machinery with the goal of preferentially
increasing the relative abundance of such transcripts. We then used high-resolution tiling microarrays and ultra high–
throughput sequencing (UHTS) to identify, map, and validate unannotated transcripts that are more abundant in the RNA
degradation mutants relative to wild-type cells. We identified 365 currently unannotated transcripts, the majority
presumably representing low abundance or short-lived RNAs, of which 185 are previously unknown and unique to this
study. It is likely that many of these are cryptic unstable transcripts (CUTs), which are rapidly degraded and whose
function(s) within the cell are still unclear, while others may be novel functional transcripts. Of the 185 transcripts we
identified as novel to our study, greater than 80 percent come from regions of the genome that have lower conservation
scores amongst closely related yeast species than 85 percent of the verified ORFs in S. cerevisiae. Such regions of the
genome have typically been less well-studied, and by definition transcripts from these regions will distinguish S. cerevisiae
from these closely related species.
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Introduction

Twelve years ago, in a landmark study resulting from the

collaborative work of hundreds of scientists around the world, the

budding yeast Saccharomyces cerevisiae became the first eukaryote to

have its genome fully sequenced [1]. The initial analysis of the

genome utilized the following (necessarily) arbitrary rules for

defining whether an Open Reading Frame (ORF) was a protein-

coding gene (a ‘‘genic ORF’’) or not: 1) a genic ORF had to start

with ATG and have at least 100 sense codons, and 2) if two ORFs

of more than 100 sense codons overlapped one another by more

than 50% of their lengths, then the longer was picked as being a

genic ORF, while the shorter was discarded. In this way, it was

determined that the sequence of 12,068 kilobases contained 5,885

potential protein-coding genes. In addition, non-protein-coding

genes consisting of approximately 140 ribosomal RNA genes, 40

small nuclear RNA genes, and 275 transfer RNA genes were

identified using various criteria, resulting in a total of approxi-

mately 6,340 genes.

Early analyses of the predicted protein-coding genes showed

that about 35% had no known function or homolog [2], leading to

questions about the validity of the rules used to identify genic

ORFs. Various algorithmic methods have predicted fewer genes in

the yeast genome than the originally predicted number of 6,340,

based on a variety of criteria [3–7], while other methods have

found and verified new ones, especially non-coding genes [8,9].

Comparative genomics [10–12], and various experimental meth-

ods [13–17] have also resulted in significant changes to the

primary annotation of the yeast genome, introducing hundreds of

newly predicted genic ORFs, while marking many others as

‘dubious’. However, new genes added by one study are frequently

marked as ‘dubious’ by another, as recorded within the

Saccharomyces Genome Database (SGD) [18], indicating the

speculative nature of many of these annotations. Additionally, a

recent study [19] has shown that the use of comparative genomics

alone to determine whether or not a genomic region is likely to

harbor a genic ORF can result in false negatives, since many

transcribed elements may not be conserved across even closely
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related species. It has been suggested that such ORFs may be

important for the micro-evolutionary divergence between species.

Clearly, even in a genome as simple as, and containing as few

introns as that of S. cerevisiae, it is still not straightforward to identify

all of the genes simply based on the DNA sequence.

Hybridization of RNA to tiling microarrays (microarrays

containing overlapping, offset probes that tile across the entire

genome) has been used to generate genome-wide transcript

profiles and to detect previously unannotated transcripts. While

this technique has its own caveats, it overcomes the limitations of

many previous attempts to find undiscovered transcripts, by

providing direct experimental support with high-resolution data.

Tiling array studies have revealed more than 5,000 novel

transcripts in Arabidopsis [20] and rice [21], and more than

10,000 previously unknown transcripts in human cells [22–24]. In

yeast, tiling array experiments performed by David et al. [25],

using RNA isolated from a single experimental condition,

identified almost 800 novel (i.e., not annotated in SGD [18])

transcripts.

Recently, Miura et al. [26], also working with S. cerevisiae,

performed large-scale sequencing of vector-capped cDNA clones

[27,28] from two cDNA libraries to accurately map over 11,000

transcriptional start sites (TSSs). Of these predicted transcripts,

667 were novel (many of which were also identified by David et

al.), and contained ORFs corresponding to 100 amino acids or less

and thus would have been missed in the original annotation.

Furthermore, they discovered 45 new introns, 367 novel antisense

transcripts, and showed that most yeast genes have two or more

TSSs, demonstrating that the transcriptional potential of the yeast

genome is more complex than previously thought. In total, their

analysis detected only 3,599 of the more than 6,000 currently

annotated genic ORFs, suggesting either that many genes were

missing from their cDNA library, or that many of the annotated

genic ORFs are not correct.

Recent advances in sequencing technology [29–32] have

allowed an unprecedented look at the transcriptome, using a

method known as RNA-Seq [33]. This method can yield millions

of sequence reads from cDNA libraries, and has been used to

discover and validate transcribed regions of the genome in various

organisms [34–36]. Most recently, RNA-Seq has been used to

identify additional transcripts expressed in S. cerevisiae growing in

rich medium [37], and transcripts expressed in S. pombe growing

under several different conditions, including a meiotic time course

[38]. From tens of millions of sequence reads, 204 novel transcripts

were identified in S. cerevisiae, and 453 novel transcripts in S. pombe;

additionally, many transcript boundaries were refined, and novel

introns identified. The functions of these novel transcripts remain

unknown, with few expected to be protein-coding [38].

There exist various mechanisms by which RNA is processed,

surveyed, and turned over. In S. cerevisiae, there are two major

pathways that play a role in the decay of mRNAs in the cytoplasm,

both of which involve deadenylation (Figure 1). In the first pathway,

deadenylation is followed by the removal of the 59 m7G cap by

Dcp1p and Dcp2p, which is then followed by degradation in the 59

to 39 direction by Xrn1p [39–44]. In addition to Dcp1p and Dcp2p,

there exists a group of proteins that function as activators for

decapping, including Pat1p, the Lsm1-7p complex, and Dhh1p

[45–49]. In the second pathway, deadenylated mRNAs are

degraded in the 39 to 59 direction by the exosome and the Ski

complex (consisting of Ski2p, Ski3p, and Ski8p) [50,51]. In the

nucleus, mRNAs that are unspliced, improperly processed, and/or

otherwise unable to leave the nucleus are degraded in pathways

using the same machinery [52–55]. Rrp6p, a nuclear-only

component of the exosome which has 39 to 59 exonuclease activity

[56,57], plays a major role in the nuclear degradation of mRNAs as

well as CUTs ([58] and reviewed in [59,60]).

As described above, genome-wide screens for novel transcripts

have revealed the existence of many non-coding, intergenic, and/

or antisense RNAs. Such RNAs are poorly understood, sometimes

being referred to as ‘transcriptional noise’, whose expression may

be initiated from inadvertent binding of RNA polymerase

complexes to DNA sequences that bear resemblance to ‘real’

transcriptional promoters. In S. cerevisiae, some of these transcripts

are rapidly degraded and have been labeled as cryptic unstable

transcripts or CUTs (Figure 1; [58] and reviewed in [59,60]).

While the roles of these CUTs are unclear, the mechanism by

which these RNAs are degraded has been elucidated and it has

been shown that they are specifically targeted for degradation via

polyadenylation by the non-canonical polyadenylation protein

Trf4p, a component of the TRAMP complex [58,61,62]. Why

these RNAs are transcribed at all, and why a specific degradation

pathway exists for them in the budding yeast remains speculative.

To identify additional novel transcripts in the yeast S. cerevisiae,

we have employed both tiling microarrays and RNA-Seq, with the

explicit goal of identifying those transcripts that are either short-

lived and/or occur in low abundance. Such transcripts may

include previously unrecognized protein-coding transcripts and

non-coding transcripts, as well as cryptic unstable transcripts and

‘transcriptional noise’. To allow better detection of these types of

transcripts, we have analyzed RNA isolated from three strains

containing various combinations of deletions of six genes that play

a role in RNA processing (RRP6, XRN1, PAT1, LSM1, SKI2 and

SKI8), with the hypothesis that the most unstable and/or least

abundant transcripts would show the greatest relative change in

abundance in such mutants. The mutant-derived RNA was

compared to RNA from wild-type cells, using Affymetrix strand-

specific tiling microarrays. Novel strand-specific transcripts were

identified by segmentation of the relative expression measures

from the tiling arrays and subsequently validated using Illumina’s

Solexa sequencing platform. Using a combined tiling array and

RNA-Seq approach, we have identified a total of 365 transcripts

that are currently unannotated in SGD. Comparison of our data

to various recently published transcriptome studies [25,26,37,63]

reveals that of these unannotated transcripts, 185 are novel and

unique to our study.

Author Summary

The budding yeast Saccharomyces cerevisiae, because of
the relative ease of its genetic manipulation and its ease of
handling in the laboratory, has long served as a model on
which studies in higher organisms have been based. To
more fully understand how eukaryotic cells express their
genomes, we sought to identify RNA species that are
transcribed at very low levels or that are rapidly degraded.
We created mutants deficient in the ability to degrade
RNA, with the expectation that this would increase the
relative abundance of such RNAs, and then used high-
resolution microarrays and sequencing technologies to
locate and identify from where these RNAs are transcribed.
Using this approach, we have identified 365 transcripts
that do not appear in the most current list of annotated S.
cerevisiae RNA transcripts; of these, 185 are unique to our
study. Many of these novel transcripts derive from regions
of the genome that are poorly conserved between S.
cerevisiae and other closely related yeast species, suggest-
ing that these RNAs may play an important role in the
divergent microevolution of S. cerevisiae.

Novel Low Abundance and Transient RNAs in Yeast
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Results

Rationale
Our primary goal was the discovery of novel transcripts based

on comparing RNA from mutants deficient in RNA degradation

pathways to RNA from a wild-type strain. We wanted to provide,

in a high-throughput fashion, distinct and complementary lines of

evidence for the existence of each putative transcript. We thus

selected two technologies as being appropriate for this aim: tiling

arrays and high-throughput sequencing. We used the tiling arrays

to discover novel transcribed segments, with their strand of origin

information. This approach has been used successfully in previous

studies [25] and there are well-established computational and

statistical methods for analyzing tiling array data. Tiling arrays, as

opposed to high-throughput sequencing, provide an even spacing

of measurements across the entire genome, making them more

amenable to off-the-shelf segmentation algorithms. In addition, an

entire population of molecules is hybridized to the microarray,

whereas a sequencing based approach is inherently a sampling

strategy, limited by the depth to which one can afford to sequence,

and by the complexity of the sample being sequenced. However,

high-throughput sequencing provides an independent experimen-

tal platform well-suited for transcript validation as each read

provides distinct evidence for the presence of a transcribed

segment.

Discovery of Novel Transcripts Using Tiling Microarrays
Tiling microarray analysis of mRNA from yeast grown under a

diverse set of several different conditions suggested that the

greatest fraction of known transcripts are detectable in the

presence of high salt (0.8 M NaCl) (our unpublished results); we

thus chose high salt as the growth condition used in the

experiments described herein. All our deletion strains (the ‘mutant’

strains) and the wild-type strain (see Table 1 for strain details) were

shocked with high salt for 30 minutes; total RNA was isolated

from each strain, from which a poly A+ RNA sample was also

purified, resulting in two different RNA preparations per strain.

These RNAs were then labeled and hybridized to both forward

and reverse strand Affymetrix yeast genome tiling microarrays (see

Materials and Methods).

Only perfect match (PM) probes mapping uniquely to the

genome were used in the analysis; mismatch probes were

discarded. In order to correct for probe-specific effects and to

detect only those transcripts that were differentially expressed

between a mutant and the wild-type, we used as expression

measures the log ratio of mutant PM intensities to wild-type PM

intensities. We segmented the log ratios using a piecewise constant

change point model as implemented in the ‘segment’ function in

the R package ‘tilingArray’ [64] from Bioconductor [65].

Following Huber et al., we utilized the Bayesian information

criterion (BIC) penalized likelihood to select the number of

transcribed segments. Poly A+ RNA and total RNA microarray

data were segmented separately. Based on a visual assessment of

the resulting segmentation it appeared that BIC overestimated the

number of segments (also noted by Huber et al.).

Oversegmentation makes downstream validation of the seg-

ments more challenging, as putative segments are judged in pieces

as opposed to their entirety. Thus, we post-processed the

segmented data to: (1) join adjacent segments with similar

expression measures, (2) drop segments that are not differentially

expressed, using a threshold of ,0.5 on the log2 scale, (3) remove

segments overlapping known annotation on the same strand, (4)

remove segments containing fewer than 5 probes, and (5) remove

segments opposite known annotation if they had a log2 fold change

less than 2, or there was detectable transcription on the opposite

strand (see Materials and Methods for a detailed discussion). For

the sake of consistency, we will now refer to our post-processed

segments as clusters, as they may refer to one or more original

segments. After segmentation and post-processing of the tiling

microarray data, we identified 892 candidate clusters in the poly

A+ RNA data (826 of which were intergenic) and 338 from the

total RNA data (324 of which were intergenic). Our criteria in

analyzing the microarray data were somewhat liberal, with the

aim of being as inclusive as possible; however, we coupled this with

more stringent criteria for subsequent validation by sequencing,

with the expectation that many of these clusters identified from the

Figure 1. A summary of the degradation pathways for mRNAs and cryptic unstable transcripts (CUTs). Enzymes in boxes were deleted
in this study in order to stabilize RNA transcripts.
doi:10.1371/journal.pgen.1000299.g001

Novel Low Abundance and Transient RNAs in Yeast
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tiling microarrays would not be subsequently validated. All

subsequent analyses were done at the cluster level.

Validation of Novel Transcripts Using Ultra2High
Throughput Sequencing

Following identification of these clusters from the tiling array

data, we sought to validate them using sequencing. The same

RNAs harvested for the tiling microarray experiments were used

to generate cDNA libraries for ultra high-throughput sequencing

on a Solexa 1G Genome Analyzer. Libraries were generated from

double polyA purified RNAs (see Materials and Methods) from

both the wild-type and the mutant strains, and were run on four

lanes each of a Solexa flow cell. Reads that passed Solexa’s

software filters were aligned to the genome using ELAND,

allowing up to two mismatches per read. For subsequent analyses,

we retained only reads mapping to a unique location, and in total,

we generated more than 50 million uniquely mappable reads

across all four strains. The wild-type library generated a total of

14,103,067 uniquely mapped reads from four lanes, the

Drrp6Dlsm1Dpat1 mutant library generated 14,745,813 reads, the

Dski2Dski8Drrp6 mutant library 14,973,577 reads, and the

Dxrn1Drrp6Dlsm1Dpat1 mutant library 10,714,094 reads. Following

an assessment of the inter-lane variation we combined data across

lanes for each strain (see Materials and Methods and Figure S2).

In order to determine whether the sequence reads generated

from the cDNA libraries contained sufficient coverage and depth

of the transcriptome, we determined the coverage at each base

within the following classes: Verified ORFs, Uncharacterized

ORFs, Dubious ORFs, Introns, and Background regions.

Background regions were defined as regions that were intergenic

on both strands, with the following additional regions removed:

novel regions identified in David et al., Davis and Ares, Miura et

al., and Nagalakshmi et al. [25,26,37,63], as well as putative novel

regions identified in this study using the tiling array. For each of

these categories we determined the percentage of total bases

sequenced to a depth of 3 or greater (see Figure 2 and Figures S3

and S4). For comparison, we have included the publicly available

data from Nagalakshmi et al [37].

Figure 2 demonstrates that with an increase in sequencing effort

there would be a diminishing return in terms of percentage of

bases sequenced to a certain depth. Figure 2 also illustrates that an

increase in sequencing effort results in an increase in the

percentage of bases sequenced from both background and intronic

regions (see discussion). This is the case in our data as well as those

of Nagalakshmi et al. This implies that any method for declaring a

gene as ‘‘detected’’ must evaluate the data in the context of the

reads observed in these regions.

Figure 3 shows ROC-like curves depicting the tradeoff between

detecting ORFs and detecting background regions, as we vary the

detection cutoff. These plots demonstrate that the choice of a

detection cutoff imposes a sample specific tradeoff between

detecting annotated ORFs and background regions. For subse-

quent analyses, we chose a cutoff corresponding to calling 20% of

background regions detected. Using this cutoff, we detected on

average 75% of the Verified ORFs across all four experiments.

A GO analysis [66] of the Verified ORFs that were not detected

above background indicated a significant enrichment for ORFs

whose gene products are involved in the cell cycle and sporulation.

The lack of sporulation gene expression is not surprising, as the

cells would not be expected to be undergoing sporulation under

these conditions; as for cell cycle gene expression, presumably the

salt shock shuts off the cell cycle, and those transcripts are no

longer detected at these thresholds by the time we collected the

cells (30 minutes after exposure to salt).

In addition, we also analyzed our sequence reads to look at the

dynamic range of detected transcripts. By considering Verified

ORFs (.50 unique bp) that were detectable above background in

the sequence data, the most abundantly expressed transcript in

every mutant, and the wild-type, in terms of number of mapped

reads per unique base was that of HSP12 (YFL014W), which is

known to be induced under conditions of osmotic stress. Its

average number of reads per unique nucleotide was ,400 in every

case. The least abundant transcript was different in each mutant,

but with an average number of reads per base of less than 1. Thus,

transcript abundances of the Verified ORFs (as measured by

sequencing) span at least 3 orders of magnitude (see Table S3 for

read counts and RPKMs [33] for all annotated ORFs).

As another measurement of the validity of the sequenced

libraries, we determined how many known introns we were able to

detect by looking for reads that spanned exon-exon junctions. To

detect these intron spanning reads, we identified those reads that

mapped to the set of spliced genic ORFs but did not map to the

unspliced genome. The wild-type and mutant libraries each

generated sequence reads that map to exon-exon junctions, which,

when combined, confirm splice junctions in 244 (86%) of the 284

known spliced ORFs reported in the current SGD annotation. In

Table 1. Genes deleted and strains used.

Gene Function

LSM1 mRNA decapping factor

PAT1 mRNA decapping factor

RRP6 exonuclease component of the nuclear exosome

SKI2 involved in 39-.59 exosome mediated mRNA degradation

SKI8 involved in 39-.59 exosome mediated mRNA degradation

XRN1 59-.39 cytoplasmic exonuclease

Strain ID Deletion Genotype MAT Geneticin

GSY1231 WT leu2-D1, ura3-52, his3-D200, trp1-D63 a Sensitive

GSY1283 Drrp6, Dlsm1, Dpat1 leu2-D1, ura3-52, his3-D200, trp1-D63 a Resistant

GSY1284 Dski2, Dski8, Drrp6 leu2-D1, ura3-52, his3-D200, trp1-D63 a Resistant

GSY1289 Dxrn1, Drrp6, Dlsm1, Dpat1 leu2-D1, ura3-52, his3-D200, trp1-D63 a Resistant

doi:10.1371/journal.pgen.1000299.t001
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the most extreme case (RPL28) we saw 1399 reads that mapped to

the exon-exon junction in the data from the Drrp6Dlsm1Dpat1

mutant. Of those forty genes whose exon-exon junctions we failed

to detect, two were in mitochondrial genes, and 16 were in

Dubious or Uncharacterized ORFs. Of the remaining 22, six of

the genes are expressed in meiosis, and fourteen have an initial

exon of only a few residues. These were less likely to have been

detected by our strategy, as we looked for reads that matched the

ORF sequence and not the genome, which would have had to

start at a few specific residues to be detected. Subsequent analysis,

by inclusion of 59 UTR sequence to capture such exon boundary

spanning reads, was able to identify these remaining introns. Thus,

only two Verified ORFs, YER014C-A/BUD25 and YPL075W/

GCR1, which were not meiosis specific, failed to have reads

detected that spanned their exon junctions. BUD25 is opposite two

other Verified ORFs in the genome, while Nagalakshmi et al [37]

also noted that they were unable to identify exon-exon boundary

spanning reads for GCR1. Indeed, we were able to identify reads

that spanned the 59 exon-intron junction, and the 39 intron-exon

junction, suggesting that the intron is misannotated.

We then examined an integrated dataset consisting of our tiling

array and sequencing data as well as data from other published

high-resolution studies. Various statistics of the potentially novel

transcripts were computed to determine our proposed changes to

the set of transcripts produced from the yeast genome. Firstly, we

required that a cluster had to contain at least 50% uniquely

mappable bases. For every potential novel transcript identified by

our microarray data in a particular mutant, we employed the

following criteria to Solexa data originating from the same mutant

to validate the transcript: (A) the transcript detectable above

background level, (B) the transcript differentially expressed

between the mutant and the wild-type, and (C) the transcript

differentially expressed when compared to its surrounding regions

(see Materials and Methods for detailed explanation of precise

criteria and cutoffs used for determination of validity).

In addition, we analyzed our data for the presence of reads

containing a putative poly A+ tail, which would allow us to infer

both the strand of origin as well as a precise 39 boundary, however,

very few such reads were present in our dataset most likely due to

our use of random priming as opposed to oligo dT priming.

Following validation of individual clusters, we determined

which clusters were common across the different mutants and as

well as our poly A+ and total RNA hybridizations. 240 of our

validated clusters were found in data from only one microarray, 79

were found in 2, 26 in 3, and 20 were found in 4 or more of the six

microarrays, resulting in 365 validated transcripts (see Table S1),

identified by virtue of differential transcript abundance between

one or more mutants and the wild-type strain. Of these, 204 were

found exclusively in the poly A+ RNA, 86 were found exclusively

in the total RNA fraction, and 75 were detected in both. Several of

these overlap with novel transcripts identified in recent studies: 67

with David et al. [25], 116 with Miura et al. [26], 46 with

Figure 2. Coverage as determined by Solexa Sequencing. Each line corresponds to a class of genomic region, and for each class, we show the
percentage of genomic bases annotated in the class that have been sequenced at a depth of 3 or more, as a function of sequencing depth. Each plot
depicts this relationship for one of the 4 datasets considered in this study, as well as the data from Nagalakshmi et al. Verified ORFs, Uncharacterized
ORFs, Dubious ORFs, Introns are as defined in SGD, and Background regions are defined in Materials and Methods.
doi:10.1371/journal.pgen.1000299.g002
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Nagalakshmi et al. [37], and 43 with Davis et al [63]. Beyond

these, our 365 validated transcripts includes 185 additional

previously undescribed transcripts, which we were able to discover

by down-regulating RNA degradation. The majority of these

novel transcripts (140 of 185) were found and validated in a single

mutant only, with only 45 of them being identified and validated

on two or more mutants (Figure 4).

Characterization of Validated Transcripts
For each of the potential novel transcripts, their immediate

surrounding regions were plotted (e.g. see Figures 5 through 10

and Figures S5 and S6) along with a track of the current

annotation from SGD [18], and data from David et al. [25],

Miura et al. [26], and Nagalakshmi et al. [37]. Additional tracks

representing nucleosome positioning [67] and the degree of

conservation between Saccharomyces cerevisiae and other closely

related yeast species [68] were also plotted. In addition, the

transcript’s chromosome and its strand of origin are shown at the

bottom of each plot. Six examples of transcripts unannotated in

SGD and identified in this study can be seen in Figures 5 through

10, all of which are located in regions currently described as

intergenic. Plots for all 365 currently unannotated transcripts

identified in this study can be found in Figures S5 and S6.

Of the 185 transcripts novel to this study, more than 80% have

an average conservation score lower than 85% of the Verified

ORFs (see Figure 11, as well as Figures 5 through 9 for five such

examples; see also Figure S7). This implies that the vast majority of

these transcripts could not have been found using comparative

genomics.

Figures 5 through 8 show four novel transcripts unique to this

study that are all located in regions of the genome that show poor

conservation across different Saccharomyces species, as indicated by

the conservation track at the bottom of each plot. Both our tiling

microarray data and our UHTS data clearly show that the

transcripts in Figures 5 through 8 are only seen in the one or more of

the mutant strains and not in the wild-type, which was the criterion

that enabled us to identify them. Prior transcript discovery studies,

however, were only able to identify transcripts that are present in the

wild-type, and in Figures 5 through 8, there are no data from David

et al., Miura et al., or Nagalakshmi et al. to suggest that they could

detect these novel transcripts. In some cases the nucleosome track is

suggestive of transcriptional potential, due to there being low

occupancy immediately upstream of the potential transcript. In

Figures 5 through 8 there is a nucleosome dip immediately

upstream of the identified segment, which is frequently observed in

connection with transcribed regions [67].

Figures 9 and 10 illustrate two examples of intergenic transcripts

found in this study that have been found in at least one other study

(we considered a transcript to be one found by another study if

there was a 25% overlap between the transcripts on the same

strand); one of these falls in a conserved region (Figure 10), while

Figure 3. ROC-like curves depicting the relationship between the percentage of detected Verified ORFs and percentage of detected
Intronic/Background regions, as the detection threshold varies.
doi:10.1371/journal.pgen.1000299.g003

Figure 4. Venn diagram showing the distribution of novel
segments between the different mutants within which they
were discovered.
doi:10.1371/journal.pgen.1000299.g004

Novel Low Abundance and Transient RNAs in Yeast
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the other does not (Figure 9). Additionally, in both examples, it is

clear in our UHTS data that these transcripts were present in the

wild-type strain, though at lower levels than within our mutants,

indicating that they could readily be detected in the other studies,

as they indeed have been. Figure 9 shows a transcript on the Crick

strand that is upstream of a verified ORF and is seen in all three of

the other studies (though Nagalakshmi et al. do not call it). There

is a large region of low nucleosome occupancy just upstream of it,

suggesting that the region is indeed transcribed, and the transcript

itself overlaps with the nucleosome dip of the downstream ORF,

suggesting that this new transcript may play a role in the

transcriptional regulation of the ORF downstream of it. Figure 10

shows a relatively long transcript (1,721 bp) on the Watson strand

that is also seen in David et al. and Nagalakshmi et al. It is highly

conserved and the presence of a nucleosome dip upstream suggests

that this region is transcribed.

We analyzed all of our novel transcripts for potential open

reading frames, to determine if any were likely to be protein-

coding. In each case, the longest open reading frame was

translated and blasted against the non-redundant protein dataset

(nr) from GenBank. The shortest novel transcript identified was 47

nucleotides long (intergenic), while the longest was 1,869

nucleotides in length (also intergenic), though the longest ORF

that it contains only has the potential to encode a peptide 80

amino acids in length. The longest ORF that we discovered within

all of our novel transcripts was within an ,438 bp transcript on

the Watson strand of chromosome 7 (coordinates 23,339–23,777),

with the potential to encode an 87 amino acid polypeptide.

However, this potential peptide showed no significant similarity

when BLASTed against the GenBank non-redundant protein

dataset. The remaining longest ORFs within each novel transcript

were all shorter, with no significant similarities to any known

proteins. It is not clear whether this means they do not encode

proteins, or whether they encode novel, short proteins, which are

currently uncharacterized due to their low conservation. We also

analyzed each of our novel transcripts for any matches to known

RNA structures present in the RFAM database [69,70], but none

of the sequences showed matches to any RFAM entries.

Validation of Transcripts Identified in Other Studies
Using our detected above background statistic, we sought to

determine the percentage of recently published novel transcripts

Figure 5. An unannotated transcript found in this study. There are the following information tracks from top to bottom: SGD annotation on
the Watson and Crick strands, our tiling microarray data from the Crick and Watson strands (poly A+ RNA above total RNA), our UHTS data for the
mutant and wild-type strains, tiling microarray data from David et al. for the Crick and Watson strands, UHTS data from Nagalakshmi et al.,
nucleosome position, data from Miura et al., and degree of conservation. The name and chromosome of origin of each transcript are indicated below.
For the UHTS data, each point plotted corresponds to the 59 end of sequence reads, and the position of the plotted point above the axis indicates (on
a log scale) how many reads mapped to that position. Horizontal lines in a track indicate novel segments found in the corresponding study (black for
forward strand and blue for reverse strand).
doi:10.1371/journal.pgen.1000299.g005
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present in our sequencing data. It should be noted that non-

detection based on our data does not imply non-existence of these

transcripts due to the differing experimental conditions as well as

the distinct assays. Using our wild-type data, we detected 18.1% of

the 487 Nagalakshmi et al. transcripts, 43.7% of the 784 David et

al. transcripts, and 16.3% of the 667 Miura et al. transcripts. Using

our Drrp6Dlsm1Dpat1 data, we detected 65.3% of the 176 Davis

and Ares transcripts (see Table S2 and Table S2 for a discussion of

which transcripts were used from each study).

Discussion

In this study, we have clearly demonstrated that there is still much

we do not know about the transcriptome of S. cerevisiae, despite its

deserved reputation as the most well-characterized eukaryote.

Unbiased genome-wide studies of the budding yeast transcriptome

[25,26,37] have yielded a remarkable amount of information,

regarding new transcripts, new introns, the presence and location

of antisense transcripts, and corrections to the current annotation. As

described here, we have utilized tiling microarrays in conjunction

with ‘‘next-generation’’ technologies to sequence cDNA libraries,

with which we generated more than 50 million uniquely mappable

reads from a wild-type and four mutant strains. Using these data, we

have identified and validated 365 transcripts, the majority of which

are more abundant in one or more of the RNA turnover mutants

than in the wild-type strain (with a minority being less abundant), all

of which are currently unannotated in SGD. The functions of these

new RNAs remain unknown, though it is possible that many of the

newly discovered transcripts correspond to CUTs, which normally

would have been targeted for degradation by the TRAMP complex,

but have been stabilized in the mutant background. Others may

correspond to novel functional transcripts. These novel transcripts do

not contain long ORFs capable of encoding proteins with

recognizable similarity to known proteins; it is not clear whether

this means they do not encode proteins or whether they code for

hitherto unknown proteins with no known homologs. They also do

not contain any recognizable RNA structures found in the RFAM

database.

While our work described here has much in common with the

work described in David et al. and Nagalakshmi et al., our use of

RNA turnover mutants resulted in the finding of an additional 185

novel transcripts that may have otherwise remained undiscovered.

Miura et al.’s use of vector-capped cDNA clone libraries is

powerful in that it has a single nucleotide resolution, as opposed to

our tiling microarray resolution of 4 nucleotides, allowing these

authors to map transcriptional start sites to the exact nucleotide, in

a high throughput manner. The use of overlapping, but non-

identical, techniques among all these studies (including this one)

has resulted in an ever more detailed knowledge of the yeast

transcriptome.

In our approach, we utilized a high-throughput discovery and

validation pipeline. Clearly, much work needs to be done to

Figure 6. An unannotated transcript found in this study. See the legend for Figure 5 for details.
doi:10.1371/journal.pgen.1000299.g006
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characterize and understand the transcripts discovered here as well

as those discovered in previous studies, however a first step in

characterizing the transcripts is localization and then validation. In

our computational analysis we employed a strategy of being

lenient in identification of putative novel transcripts (differentially

expressed at 0.5 on the log2 scale). This was followed by a strict

validation step (at our thresholds, on average 75% of annotated

Verified ORFs were detected in our 3 mutant experiments as

described by the ROC-like curves in Figure 3). Many (,55%) of

the clusters found in the microarray analysis were not validated by

these stringent thresholds. These tended to be shorter, be less

differentially expressed and included many clusters that were less

abundant in the mutants as compared to wild-type. By using

distinct assays with rigorous criteria for transcript validation, we

have elucidated more of the regions of the yeast genome that are

transcribed.

In our attempt to find low abundance and transient transcripts

by restricting our search to transcripts that were present in

differential relative abundance in our RNA processing mutants, we

may have missed transcripts that are present in the mutant and the

wild-type at the same abundance. This was a caveat we had to

consider in the pursuit of transcripts that we believed would

otherwise be difficult to detect, and the discovery of 185 novel

transcripts despite the work of other comprehensive genome-wide

transcriptome studies shows that our strategy was a fruitful one. By

utilizing the strand-specific tiling array were able to localize

transcripts to their strand of origin, something that was not

possible (without introducing a 39 bias to the data by priming the

labeling reaction with oligo-dT) with the current protocols for

RNA-Seq using the Solexa 1G Genome Analyzer. It is likely that

modified protocols will soon address this shortcoming, and indeed

such protocols for the ABI SOLiD sequencing system have been

recently published [71].

We can now ask the important and obvious question: has the

yeast transcriptome been completely described, and what does

completion mean? It is possible that if we sequence deeply enough,

we may observe that every nucleotide within the genome is

transcribed at some level (see Figure 2), though clearly this is not a

strict enough criterion to allow us to identify a transcribed

segment. The genome-wide studies that have set out to discover

new transcripts in yeast in an unbiased fashion have so far used a

limited set of experimental conditions. Thus, it seems likely that

deep sequencing of RNA from dozens of possible conditions

(which must be carefully chosen to span as much of the

‘‘expression space’’ as possible) will yield yet more new transcripts,

or show new variations in existing ones. It will be of particular

interest to profile all of these novel transcripts under a variety of

conditions to see how they are regulated and co-regulated, as well

as to determine whether they encode proteins or functional RNAs,

and whether their absence results in a detectable phenotype.

Since many of the recently discovered transcripts (including

those in this study) have been found in regions of the genome

Figure 7. An unannotated transcript found in this study. See the legend for Figure 5 for details.
doi:10.1371/journal.pgen.1000299.g007
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where there is little or no sequence conservation (though the

conservation scores from Siepel et al. [68] do not indicate whether

these regions are evolving neutrally, or under positive selection), it

will be informative to profile different and diverse strains of S.

cerevisiae to determine if these transcripts are ubiquitous within the

species, and to determine whether the syntenic (but non-

conserved) regions within closely related species within the

Saccharomyces sensu stricto are also transcribed. With such data, we

can hope to discover and hopefully appreciate not only how each

of these species are related to one another, but also how their

transcriptional potential and networks have diverged.

Since the landmark publication of the S. cerevisiae genome

sequence 12 years ago, more than 25,000 research publications on

yeast have appeared, yet we are still adding to our knowledge of

the transcriptome of S. cerevisiae. While arguably the most well-

understood eukaryote, we still do not have a complete under-

standing of such a fundamental concept as ‘‘what and where are

all of its genes.’’ New technologies such as high resolution tiling

microarrays and ultra high-throughput sequencing are opening up

new avenues of research, and it is clear that the quantity of data

that these technologies allow us to generate will only increase. This

study (and others like it) underscores how much work remains to

be done in understanding and cataloging the transcriptomes of

even the most well-studied model organisms.

Materials and Methods

Strains
All deletions were created in a diploid Saccharomyces cerevisiae

strain which was created by crossing strains FY23 and FY86 [72],

which are isogenic to the sequenced strain S288C and carry the

auxotrophic markers: his3-D200, leu2-D1, trp1-D63, and ura3-52.

All deletions were created using the Geneticin antibiotic resistance

marker, utilizing the system described in [73]. Specifically, primers

specific to regions to be deleted by homologous recombination

were designed to utilize the plasmid pFA6-kanMX6 as a PCR

template in order to replace the regions of interest with the gene

encoding for resistance against the antibiotic Geneticin.

PCR was performed (see Table 2 for primers), generating

approximately 1.5 kb DNA fragments in agreement with the size of

the Geneticin resistance gene, which were then transformed using

standard lithium acetate transformation techniques into the diploid

cells grown in YPD at 30uC at mid-log phase. Cells were selected on

YPD agar plates with 300 mg/ml working concentration of

Geneticin. Deletions were confirmed by PCR (see Table 2 for

primers) and the diploids were sporulated and their tetrads dissected

to generate haploid segregants carrying the deletions of interest.

Different deletions strains were mated to generate diploids,

which were then sporulated and tetrads were dissected. Because

Figure 8. An unannotated transcript found in this study. See the legend for Figure 5 for details.
doi:10.1371/journal.pgen.1000299.g008
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only the Geneticin marker was used to generate these deletions,

PCR analysis was used to confirm all newly generated double

mutant strains. The process was repeated to generate the triple

and quadruple mutants (see Table 1 for resulting strains used in

this study). Some deletion combinations could not be generated,

suggesting they are synthetically lethal, and thus were not used in

this study. For instance, Dxrn1 and Dski8 are synthetically lethal, as

any attempt to combine strains with these deletions was

unsuccessful. Haploid strains exhibiting phenotypes suggesting

the accumulation of suppressor mutations were not used for

further study. Originally the decapping factor DHH1 and the Ski

complex component SKI3 were selected to be included, but strains

carrying either Ddhh1 or Dski3 showed a propensity to accumulate

suppressor mutations when combined with other deletions from

this study and thus were dropped from the analysis. The

Affymetrix tiling array data as well as the sequencing data

confirmed that there was no expression signal corresponding to the

genetic loci of the deleted genes.

NaCl Exposure
Our unpublished studies suggested that among two dozen or so

different conditions that we have assayed, exposure to high salt

(0.8 M NaCl) results in the expression of the greatest fraction of

known and novel transcripts, and thus was chosen as the

experimental condition to use to find previously unannotated

and low abundance transcripts. Cells were grown at 30uC in YPD

to approximately 16107 cells/ml as determined by a Beckman

Coulter Z2 Particle Count and Size Analyzer. 1.6 M NaCl (in

YPD) was added in an equal volume of YPD prewarmed to 30uC
(final concentration 0.8 M). Cells were harvested after 30 minutes

by filtration, frozen in liquid nitrogen, and kept at 280uC until

RNA extraction and purification.

RNA Extraction and Purification
RNA was extracted from the cells using a slightly modified

version of the traditional hot phenol protocol [74] followed by

ethanol precipitation and washing. Briefly, 5 ml of lysis buffer

(10 mM EDTA pH 8.0, 0.5% SDS, 10 mM Tris-HCl pH 7.5)

and 5 ml of acid phenol were added to frozen cells and incubated

at 60uC for 1 hour with occasional vortexing, then placed on ice.

The aqueous phase was extracted after centrifuging and additional

phenol extraction steps were performed as needed, followed by a

chloroform extraction. Total RNA was precipitated from the final

aqueous solution with 10% volume 3 M sodium acetate pH 5.2,

and ethanol, and resuspended in nuclease-free water.

RNA Preparation for Use on Affymetrix Tiling Microarrays
All microarray analyses were carried out using Affymetrix

GeneChip S. cerevisiae Tiling 1.0R Array (Reverse) (part number:

900645) for Watson strand expression or GeneChip S. cerevisiae

Tiling 1.0F Array (Forward) (part number: 520286) for Crick

strand expression.

Figure 9. An unannotated transcript found in this study, also found in other studies. See the legend for Figure 5 for details.
doi:10.1371/journal.pgen.1000299.g009
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The arrays each contain more than 2.5 million perfect match

probes, which are offset from one another by 4 bases across the

genome (21 bp overlap). Thus, each residue in the genome is

interrogated on average by 6 oligonucleotide probes.

Total RNA samples were prepared following the protocol

exactly as described in David et al. [25].

PolyA RNA samples were prepared as follows. 500 mg of total

RNA were PolyA purified using Qiagen Oligotex suspension to

produce approximately 10 mg of PolyA RNA as determined by

OD260/280. 2 mg of the PolyA purified RNA were then used in the

generation of cDNA as per Affymetrix First Strand and Second

Strand Synthesis protocols utilizing a T7-Oligo(dT) as the primer

for the First Strand, followed by in vitro transcription to generate

biotin labeled cRNA, as outlined by Affymetrix protocols. The

cRNA was fragmented as described by Affymetrix, and then sent

for hybridization and scanning by the PAN facility at Stanford

(http://cmgm.stanford.edu/pan/) according to standard Affyme-

trix protocols.

Discovery of Novel Transcripts Using Tiling Microarrays
Our goal was to identify short-lived transcripts based on

measured intensities of probes tiling the genome. It is well known

that probe affinities significantly bias the relationship between

measured intensity and actual transcript abundance. In David et

al. this was addressed by effectively forming log ratios between

wild-type and genomic DNA hybridization. In order to highlight

the changes between mutants and wild-type transcription and to

reduce the effect of probe affinities we formed log ratios between

mutant and wild-type intensities. This approach has the same

effect on probe affinities as the approach used by David et al., see

Figures S1 and S2.

Mapping and Pre-Processing
The probes on the tiling array were mapped to the yeast

genome, as downloaded from the Saccharomyces Genome Database

on May 19th 2008, using MUMmer [75]. Only perfect match (PM)

probes mapping to a unique region were retained for further

analysis. For each mutant RNA hybridization, log ratios of mutant

PM intensities to wild-type PM intensities were calculated.

Segmentation
The resulting data were segmented using the ‘segment’ function

in the R package ‘tilingArray’ [64] from Bioconductor release 2.1,

which performs a simple change-point analysis. The log ratios of

mutant compared to wild-type for total RNA and poly A+ purified

mRNA extractions for each mutant and chromosome strand were

segmented separately. An open question in any segmentation

analysis is the selection of the number of segments. We followed

Figure 10. An unannotated transcript found in this study, also found in other studies. This one is in a region of high conservation. See the
legend for Figure 5 for details.
doi:10.1371/journal.pgen.1000299.g010
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Huber et al. (2006) in using the Bayesian information criterion

(BIC) penalized log-likelihood, noting that this tends to overesti-

mate the number of segments (see below).

Post-Processing of Segments
Following the segmentation we were left with a set of segments

for each of the three mutants and two RNA sample types (total

RNA or poly A purified RNA). Our analyses indicated that

transcripts are often split into a number of segments due to various

artifacts of the array data (outliers, incomplete probe-affinity

correction, cross-hybridization). At this stage, we wished to both

join appropriate segments into adjacent co-expressed segments

(clusters) as well as filter out a priori uninteresting clusters. The

pipeline for constructing clusters from segments and producing a

set of putative clusters to be validated using the sequencing data

worked as follows:

1. Label each segment as upregulated (med(seg) 2 med(microar-

ray) $.5), downregulated (med(seg) 2 med(microarray) #2.5),

or baseline ( 2.5,med(seg) 2 med(microarray) ,.5). Here

med(.) is the median of log2(mutant/wild-type) for either the

segment or the entire microarray.

2. Drop any baseline segment containing 5 probes or less. This

step attempts to avoid the creation of separate segments due to

non-responsive probes.

3. Join adjacent segments if they have the same regulation label

(i.e., up, down, or baseline), unless the following criteria hold:

the absolute difference in medians between the two segments

exceeds 1 and the lengths of the two segments are greater than

30 probes and span more than 150 bp. Uneven spacing in the

tiling array probes occurs due to repeat regions often leaving an

area of the chromosome tiled at a lower density. In order to

keep the cutoffs consistent through these areas we employ the

strategy of enforcing a minimum length at the base and probe

level. These joined segments were then referred to as clusters.

4. Drop all baseline clusters as well as any cluster with fewer than

5 probes or a length less than 40 bp.

5. Remove any cluster that overlaps any known transcribed

annotation on the same strand. We extend each annotated

element by 100 bp on both the 59 and 39 end to account for

UTRs.

6. For any cluster that overlaps annotation on the opposite strand

we further required a log2 fold change of at least 2 as well as a

log2 fold change of less than 1 on the strand opposite the cluster.

This process resulted in a set of putative clusters that were

subsequently considered for validation by Solexa sequencing.

Kits and Reagents Used in the Ultra High–Throughput
Sequencing (UHTS) RNAseq Library Construction for the
Solexa Platform

In order to generate libraries for the Solexa platform, various

reagents and kits were required. At the time that these experiments

Figure 11. Box plots illustrating the conservation scores [68] of the various types of transcripts across closely related yeast species.
The boxplot depicts the distribution of the conservation scores, with the box surrounding the 25% and 75% quantiles. The center of the notch
corresponds to the median. If two notches do not overlap, it is evidence for the medians being different. Novel refers to novel transcripts found in
this study, background regions are defined in materials and methods, while other classes are the same as defined in the Figure 2.
doi:10.1371/journal.pgen.1000299.g011
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were performed, Illumina did not have an RNA-Seq specific kit,

and thus parts of various kits were utilized. Note that not all of the

reagents from the kits provided by Illumina were used, as these kits

were adapted for use in the protocol below and not necessarily

used as described in the instructions that came with the kit. They

are as follows:

For protocols desiring PolyA purified RNAs:

Illumina Digital Gene Expression-Tag Profiling for NlaIII

Sample Prep Kit (part number 1002390)

Illumina Genomic DNA Sample Prep Kit (part number

1000181)

Invitrogen SuperScript III Reverse Transcriptase (part

number 18080-044)

Invitrogen Random (N6) Primers (part number 48190-011)

Qiagen MinElute Reaction Cleanup Kit (part number

28204)

Qiagen QIAquick PCR Purification Kit (part number

28104)

Zymo Research Zymoclean Gel DNA Recovery Kit (part

number D4001)

Amersham Biosciences MicroSpin G-50 Columns (part

number 27-5330-01)

Millipore Microcon Ultracel YM-30 Centrifugal Filter

Devices (part number 42410)

Also required was a magnetic stand that can accommodate

1.5 ml microcentrifuge tubes. The protocol as described below was

done using DNase/RNase certified free siliconized 1.5 ml

microcentrifuge tubes.

UHTS PolyA RNA Preparation
Strains used for our UHTS experiments are GSY147 and

GSY1289 (see Table 1). GSY147 was derived from DBY10146 (a

gift from David Botstein) (which itself was derived from an FY

background [72]) which was backcrossed by Katja Schwartz to

FY2 and FY3 [72] to generate a wild-type S288C strain that had

no auxotrophies or mutations.

Double PolyA mRNA Preparation
Two consecutive purifications using oligo dT conjugated

magnetic beads were performed as follows. 100 mg of Total

RNA were diluted in a final volume of 100 ml water and heated at

65uC for two minutes and then placed on ice. 200 ml of beads were

equilibrated by two consecutive 100 ml washes in binding buffer

(mixed gently by hand), using a magnetic stand to separate the

beads from the buffer. The beads were then resuspended in 100 ml

of binding buffer. The RNA was added to the beads, and the tube

was mixed gently by hand for 5 minutes at room temperature and

then placed on the magnetic stand to separate the beads from the

supernatant. The supernatant was discarded, and the beads

underwent two consecutive washes with 200 ml washing buffer.

Table 2. Primers used for creation and confirmation of deletion mutations.

Primers used to create deletions:

RRP6 Forward 59GAGGGCATCGGAAAATTTTTCAGTAATGAATATTAATGTTCATCTGAAGACGGATCCCCGGGTTAATTAA39

RRP6 Reverse 59ATAACTCCATGACACAGATATTCGATTAGATGAATTTAGAGGTCTTAAATGAATTCGAGCTCGTTTAAAC39

XRN1 Forward 59CAATAAGCAATTGACTAATCCTAGGACGATTCGTGTACTATAAGGAGAAACGGATCCCCGGGTTAATTAA39

XRN1 Reverse 59TTCTTAACAAGATCAACGATTAAATACAAATACCCCTCTTTATATAGGTCGAATTCGAGCTCGTTTAAAC39

SKI2 Forward 59AATTTAAAAGTCAACGCAGAAACTATAATACATTGCCACATAGTTCTTTCCGGATCCCCGGGTTAATTAA39

SKI2 Reverse 59TAAAAACTATGTATACGTGTGTGTGTGTGTGTGCAATAAGAGTTCGAAAAGAATTCGAGCTCGTTTAAAC39

SKI8 Forward 59ATAAAGTAAAGAAGGAAAAATTAGGCGATATTAAAACAAATCTAAAATAACGGATCCCCGGGTTAATTAA39

SKI8 Reverse 59TATTAAATATTACTGAAATTTTATGAACCAAAAAGAATAATGGATGATGTGAATTCGAGCTCGTTTAAAC39

PAT1 Forward 59GAAAGAAACAAGGTGAATGAAAAGAAACATGTACACCTTGAAGGAAGCAACGGATCCCCGGGTTAATTAA39

PAT1 Reverse 59CATATACAATAAATGATCTACAAAGGGTAGGAAATAAAAAATAAGGGAGAGAATTCGAGCTCGTTTAAAC39

LSM1 Forward 59AACAGGATTGCCAACGCTGCAGTAGAGTTATACCAACATTTGCTCCGCTTCGGATCCCCGGGTTAATTAA39

LSM1 Reverse 59TTGATTAAGTGTACGGATAGGTAAAACTGAATGTGGAAATTTTTGAGAGTGAATTCGAGCTCGTTTAAAC39

Primers used to confirm deletions:

RRP6 Forward 59ATGCAAAATAAGTTCACGTG39

RRP6 Reverse 59GGAGATGAAGGGAAACACAG39

XRN1 Forward 59AAGGATACTGTCTTCTTCCG39

XRN1 Reverse 59GCTTTGTGTAAAAAATACCC39

SKI2 Forward 59TCAGAACGCCCATCGGATGG39

SKI2 Reverse 59TACAATAGTCCGCCCGTTGC39

SKI8 Forward 59AATTGATACAAATCTTTAGG39

SKI8 Reverse 59AGTGAAATTCATACATTGGC39

PAT1 Forward 59TACTATTGTTATCACTTCCC39

PAT1 Reverse 59TATGGTGGTATTATTGATGC39

LSM1 Forward 59TCAGCACCTGTATTTCAATC39

LSM1 Reverse 59CTGCGCAAATACGTTACTTC39

doi:10.1371/journal.pgen.1000299.t002
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The beads were resuspended in 10 mM Tris-HCl pH 7.5, and the

tube was heated at 80uC for two minutes and then immediately

placed on the magnetic stand where the supernatant was

transferred to a new tube. The beads were saved and prepared

for the second round of PolyA purification by washing them once

with 200 ml washing buffer. The entire process was then repeated

once for a second round of purification, beginning with the

dilution of the RNA and the denaturing of the RNA secondary

structure.

UHTS RNA Fragmentation
PolyA purified treated RNA samples were then fragmented to

ensure an unbiased binding of the random hexamers during

cDNA synthesis. 56Fragmentation Buffer (200 mM Tris Acetate

pH 8.2, 500 mM Potassium Acetate, 150 mM Magnesium

Acetate) was made, of which 5 ml was added to the RNA sample,

and the total reaction was brought up to 25 ml. The sample was

heated at 94uC for 2.5 minutes and immediately placed on ice.

The sample was then run through a G-50 spin column that has

been equilibrated with 36400 ml of nuclease free water to remove

ions from the fragmentation. The sample was concentrated to

10.5 ml with a Micron filter.

UHTS cDNA Synthesis
First Strand Synthesis:

10.5 ml of fragmented RNAs were transferred to a PCR tube

and 1 ml of random hexamer (3 mg/ml) was added. The tube was

heated to 65uC for 5 minutes and then placed on ice. The

following reagents from the Illumina kit were then added: 4 ml

561st strand buffer, 2 ml 100 mM DTT, 1 ml 10 mM dNTP, and

0.5 ml RNaseOUT (40 U/ml). The tube was mixed and left at

room temperature for 2 minutes. 1 ml SuperScript III (200 U/ml)

was added, and the sample was placed in a thermocycler with the

following program: 25uC for 10 minutes, 42uC for 50 minutes,

70uC for 15 minutes, 4uC hold.

Second Strand Synthesis:

The first strand synthesis reaction was transferred to a 1.5 ml

siliconized microcentrifuge tube and placed on ice. 61 ml nuclease

free water was added to the sample, along with the following reagents

from the Illumina kit: 10 ml 2nd strand buffer, 3 ml 10 mM dNTPs,

1 ml RNase H (2 U/ml), and 5 ml DNA Pol I (10 U/ml). The sample

was vortexed and placed in an Eppendorf Thermomixer R (set at

16uC and programmed to spin at 1400 rpm for 15 seconds and stand

for 2 minutes) overnight (minimum 2.5 hours).

The newly synthesized cDNA was purified with a QIAquick

PCR spin column as per Qiagen protocols and eluted in 30 ml EB

solution.

UHTS cDNA Repair
The following reagents from the Illumina kit were added to the

30 ml sample as follows: 45 ml nuclease free water, 10 ml T4 DNA

ligase buffer with 10 mM ATP, 4 ml 10 mM dNTPs, 5 ml T4

DNA polymerase (3 U/ml), 1 ml Klenow DNA polymerase (5 U/

ml), 5 ml T4 PNK (10 U/ml). The sample was vortexed and

incubated at 20uC for 30 minutes. Afterwards, the sample was

purified with a QIAquick PCR spin column as per Qiagen

protocols and eluted in 32 ml EB solution.

UHTS cDNA Preparation for Adaptor Ligation by the
Addition of an A Base

The following reagents from the Illumina kit were added to the

32 ml sample as follows: 5 ml Klenow buffer, 10 ml 1 mM dATP,

and 1 ml Klenow 39 to 59 exonuclease (5 U/ml). The sample was

vortexed and incubated at 37uC for 30 minutes. Afterwards, the

sample was purified with a MinElute spin column as per Qiagen

protocols and eluted in 10 ml EB solution.

UHTS Adaptor Ligation
The following reagents from the Illumina kit were added to the

10 ml sample as follows: 25 ml DNA ligase buffer, 2 ml adaptor

oligo mix, and 5 ml DNA ligase (1 U/ml). The sample was

vortexed and incubated at 25uC for 15 minutes. Afterwards, the

sample was purified with a MinElute spin column as per Qiagen

protocols and eluted in 10 ml EB solution.

UHTS cDNA Size Selection and Gel Purification
The 10 ml sample was loaded onto a 1% TAE agarose gel at

least one lane away from a 100 bp ladder. The sample was run

sufficiently far enough and a gel slice corresponding to

approximately 200 bp+/250 bp was excised out of the gel with

a scalpel (note that no cDNA may be visible on the gel). The

cDNA was purified using a Zymo Research Zymoclean Gel DNA

Recovery Kit and eluted in 10 ml nuclease free water.

UHTS cDNA Amplification and Sequencing
The 10 ml sample was transferred to a PCR tube. The following

reagents from the Illumina kit were added to the 10 ml sample as

follows: 27 ml nuclease free water, 10 ml 56cloned Phu buffer, 1 ml

oligo 1.1, 1 ml oligo 2.1, 0.5 ml 25 mM dNTPs, 0.5 ml Phu

polymerase. The sample was then run on a thermocycler using

the following program: 98uC hold for 30 seconds, 98uC for

10 seconds, 65uC for 30 seconds, 72uC for 30 seconds, 72uC hold

for 5 minutes, 4uC hold, for 50 cycles. The sample was purified with

a QIAquick PCR spin column as per Qiagen protocols and eluted in

30 ml EB solution. The sample was then run through a G-50 spin

column that had been equilibrated with 36400 ml of nuclease free

water to remove any remaining unincorporated nucleotides that

would interfere with the concentration determination of the library.

The DNA was concentrated through the use of a Speed Vac until

the final volume of the library was 10 ml. The cDNA was quantified

using a Nanodrop. A concentration range between 10–100 ng/ml

final concentration of an RNAseq library is required for good

quality sequencing. The sample was then sent for sequencing in the

Genetics Department Solexa machine at Stanford.

Mapping of Solexa Reads to the Yeast Genome
Sequence reads that passed Solexa’s quality filters were aligned

to both the yeast genome and the spliced yeast ORF set (allowing

up to 2 mismatches), downloaded from the Saccharomyces Genome

Database (SGD) [76] on May 19th, 2008, using ELAND, which is

part of the Solexa analysis pipeline [77] (we used version 0.3.0).

Only reads mapping uniquely to the genome were retained.

Comparison and Combining of Sequence Data across
Flow Cell Lanes

We examined the goodness of fit for a simple Poisson model

described below, using the chi-square goodness of fit statistic (see

[78]). QQ-plots of the observed statistic for each known gene against

the theoretical distribution are shown in Figure S2 and show a

remarkably good fit. Based on this model, we aggregated data for

each strain across the multiple lanes on the Solexa flow cell.

Validation of Putative Novel Transcripts Using Solexa
Sequencing

In order to validate each putative transcript identified by tiling

array data analysis, we investigated the following three criteria:
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A. the transcript is expressed above a suitably defined back-

ground level;

B. the transcript is differentially expressed in the mutant as

compared to the wild-type;

C. the transcript is differentially expressed as compared to the

surrounding region;

An important consideration in all subsequent analyses was that

certain areas of the genome are unmappable due to repeated

sequences. We defined a base as non-unique if the 25mer starting

at that position occurs elsewhere in the genome. We excluded all

such bases from consideration in subsequent analyses.

A. Above background expression. First, we determined

whether the transcript was above background level. Background

regions were defined in the following fashion:

1. All regions that are intergenic on both strands were obtained.

2. Any region which overlaps the segments reported by

Nagalakshmi et al., David et al., Miura et al., or Davis and

Ares was removed (See Table S2 for tables of genes used from

other studies). The clusters discovered in our tiling array

experiment were also removed.

3. All regions were sheared by 100 bp on both sides to remove

any possible UTRs from surrounding annotation.

4. Any region less than 50 bp in length was discarded.

This resulted in 1,525 background regions comprising 708,315

unique bases. For each background region, we computed the

average number of reads per base. We then compared each putative

transcript to this distribution to determine to what degree a

transcript exceeded what was observed in background regions. In

order to declare a transcript as above background we computed the

.8 quantile from the background region distribution and declared a

transcript as present if the average number of reads per base

exceeded this .8 quantile. The .8 threshold corresponds to detecting

on average 75% of Verified ORFS. This was done separately for

each mutant to provide a sample-specific background distribution

and therefore a sample-specific threshold for detection.

In order to construct statistics for differential expression, we

considered the following model. Let Xi,j denote the number of

reads with left end in a region of interest (ROI) indexed by

j = 1,…,J, and lane indexed by i = 1,…,I. Let Kj denote the length

of ROI j and let a(i) denote the type of sample assayed in lane i,

i.e., a(i)M{wt, mt}, where the short-hand notation wt and mt refers to

the wild-type and mutant yeast strains, respectively. As a first-pass

modeling attempt, suppose the counts Xi,j have a Poisson

distribution with mean la(i),jbi, where la(i),j is the parameter of

interest representing the expression level of ROI j in samples of

type a(i)M{wt, mt} and bi is a lane effect. The maximum likelihood

estimator (MLE) of the parameter la,j,, subject to the identifiability

constraints Sjla,j = 1 for each a, is

l̂la,j~
Xza,j

Xza,z
~

PI
i~1 I a ið Þ~aÞXi,j

� �
PI

i~1 I a ið Þ~að Þ
PJ

j~1 Xi,j

,

where I(.) is the indicator function, equal to one if the condition in

parentheses is true and zero otherwise. Thus, intuitively, the MLE

of the parameter la,j is the proportion of the total read counts for

type a samples that fall in ROI j.

B. Differential expression between mutant and wild-type

strains. For a given ROI j, a natural measure of differential

expression between mutant and wild-type strains is the log-ratio

log(lmt,j/lwt,j). Using the delta method, it can be argued that the

estimator log l̂lmt,j

.
l̂lwt,j

� �
has an approximate Gaussian

distribution with mean log(lmt,j/lwt,j) and estimated variance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�

Xzwt,jz1
�

Xzmt,j

q
:

Thus, one can identify differentially expressed ROI between the

mutant and wild-type strains based on the following test statistics:

Tj~
log l̂lmt,j

.
l̂lwt,j

� �
{0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarVar log l̂lwt,j

� �h i
zdVarVar log l̂lmt,j

� �h ir

~

log
Xzmt,j=Xzmt,z

Xzmt,j=Xzmt,z

� �
{0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Xzwt,j

z 1
Xzmt,j

q ,

with approximate standard Gaussian distribution under the null

hypothesis of no differential expression, i.e., lmt,j = lwt,j.

C. Differential expression between ROI. Another

question of interest is the comparison of expression levels

between two ROI j and j9 for a given strain aM{wt, mt}. In this

case, a natural measure of differential expression is the log-ratio

log((la,j/Kj)/(la,j9/Kj9)), which adjusts for differences in ROI length.

Another application of the delta method suggests the following test

statistic for determining whether ROI j and j9 are differentially

expressed within strain a,

Tj,j’;a~
log l̂la,j

.
Kj

� �.
l̂la,j’

.
Kj’

� �� �
{0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarVar log l̂la,j

� �h i
zdVarVar log l̂la,j’

� �h ir

~

log
Xza,j=Kj

Xza,j’=Kj’

� �
{0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Xza,j

z 1
Xza,j’

q ,

with approximate standard Gaussian distribution under the null

hypothesis of no differential expression, i.e., la,j/Kj =la, j9/Kj9.

Validation of Putative Unannotated from Other Studies’
Transcripts Using UHTS

We applied the detected above background statistic described

above with a cutoff of .8. Results are available in Table S2.

Data Availability
All raw data have been deposited in the GEO database with

accession number GSE11802.

Supporting Information

Figure S1 Microarray data for A. Pre-Normalization and B.

Post-Normalization stretches of Chromosome 4. The plots indicate

that by forming the log ratio between the mutant and wild-type

samples, we highlight differences between the two samples. At

approximately base 248,000, we can see an unannotated

upregulation in the mutant versus the wild-type. This region

stands out much more prominently in the Post-Normalization

plots, which was the intention of using the wild-type data.
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Found at: doi:10.1371/journal.pgen.1000299.s001 (0.50 MB PDF)

Figure S2 Here we plot a goodness of fit statistic computed

under the model described in the text. We compute an expected

number of counts for each gene and compare this to the observed

number of counts. This gives us a chi-squared statistic for each

gene. If the gene counts are distributed as Y_j,i , Poisson(\-

lambda_j\beta_i), then the test statistic will have a null distribution

of Chisquare with lanes-1 degree of freedom. The plots

demonstrate a very strong correspondence between our model

and the observations.

Found at: doi:10.1371/journal.pgen.1000299.s002 (1.48 MB PDF)

Figure S3 Coverage plots as described in Figure 2 in the main

text. These coverage plots were produced at a depth of 5.

Found at: doi:10.1371/journal.pgen.1000299.s003 (0.05 MB PDF)

Figure S4 Coverage plots as described in Figure 2 in the main

text. hese coverage plots were produced at a depth of 10.

Found at: doi:10.1371/journal.pgen.1000299.s004 (0.05 MB PDF)

Figure S5 Unannotated non-intergenic transcripts found in this

study. Each page shows one transcript, with the following

information tracks from top to bottom: SGD annotation on the

Watson and Crick strands), our tiling microarray data from the

Crick and Watson strands (poly A+ RNA above total RNA), our

UHTS data for the mutant and wild-type strains, tiling microarray

data from David et al. for the Crick and Watson strands, UHTS

data from Nagalakshmi et al., nucleosome position, data from

Miura et al., and degree of conservation. The name and

chromosome of origin of each transcript are indicated below each

panel. For the UHTS data, each point plotted corresponds to the

59 end of sequence reads, and the y position of the plotted point

above the axis indicates (on a log scale) how many reads mapped

to that position. Horizontal lines in a track indicate novel segments

found in the corresponding study (black for forward strand and

blue for reverse strand).

Found at: doi:10.1371/journal.pgen.1000299.s005 (6.83 MB PDF)

Figure S6 As in Figure S5, but for intergenic transcripts.

Found at: doi:10.1371/journal.pgen.1000299.s006 (13.33 MB

PDF)

Figure S7 Density plot of conservation scores for different

categories of segment.

Found at: doi:10.1371/journal.pgen.1000299.s007 (0.04 MB PDF)

Table S1 Table of validated transcripts. Here there are 566

rows, each corresponding to an individual cluster. The column

metaName groups the clusters together into transcripts, so that

there are 365 unique different metaNames.

Found at: doi:10.1371/journal.pgen.1000299.s008 (0.13 MB

TXT)

Table S2 This table shows which previously reported unanno-

tated transcripts were above background level in this study (use the

column background20, with TRUE meaning that the transcript

was detected).

Found at: doi:10.1371/journal.pgen.1000299.s009 (3.90 MB

TXT)

Table S3 Table of RPKMs for our different datasets for SGD

annotated features.

Found at: doi:10.1371/journal.pgen.1000299.s010 (0.66 MB

TXT)

Text S1 Supplementary File Descriptions.

Found at: doi:10.1371/journal.pgen.1000299.s011 (0.09 MB

DOC)
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