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Abstract

Complex genetic networks consist of structural modules that determine the levels and timing of a cellular response. While the
functional properties of the regulatory architectures that make up these modules have been extensively studied, the
evolutionary history of regulatory architectures has remained largely unexplored. Here, we investigate the transition between
direct and indirect regulatory pathways governing inducible resistance to the antibiotic polymyxin B in enteric bacteria. We
identify a novel regulatory architecture—designated feedforward connector loop—that relies on a regulatory protein that
connects signal transduction systems post-translationally, allowing one system to respond to a signal activating another
system. The feedforward connector loop is characterized by rapid activation, slow deactivation, and elevated mRNA expression
levels in comparison with the direct regulation circuit. Our results suggest that, both functionally and evolutionarily, the
feedforward connector loop is the transitional stage between direct transcriptional control and indirect regulation.
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Introduction

Related organisms often express orthologous genes in response

to a particular cellular or environmental cue. However, the

regulatory mechanisms promoting expression of these genes can

be drastically different, ranging from direct transcriptional control

to multi-stage architectures involving feedback loops, feedforward

loops and regulatory cascades [1–5]. Extensive studies of the

functional properties of recurrent regulatory architectures–termed

network motifs–have revealed that they exhibit quantitative

differences in the levels and timing of gene expression [1].

Whereas the dynamical properties of distinct network motifs are

relatively well understood, there is still limited knowledge about

the general principles underlying the quantitative features and

evolutionary relationships of genetic regulatory architectures.

A prevalent form of bacterial signal transduction is the two-

component system and its more complex version, the phosphor-

elay [6–9]. The activity of two-component systems and phosphor-

elays can be modulated at the post-translational level by members

of the recently emerged class of proteins designated connectors

(reviewed in [10]), which modulate the output of a two-component

system in response to signals other than the ones directly sensed by

the system. In addition to facilitating signal integration, connectors

confer specific quantitative properties on the regulated systems,

which could result in survival advantages for the bacterium [2].

The best characterized connector-dependent pathway is

mediated by the PmrD protein (NCBI protein database accession

number AAL21205) in the bacterium Salmonella enterica serovar

Typhimurium, where it enables expression of genes controlled by

the PmrA/PmrB two-component regulatory system in response to

the low Mg2+ signal that activates the PhoP/PhoQ system [2,11–

13] (Figure 1A). PmrD is a PhoP-activated protein that binds to

the phosphorylated form of the DNA binding regulatory protein

PmrA (PmrA-P), thereby protecting it from dephosphorylation by

PmrA’s cognate sensor PmrB [11]. This results in binding of

PmrA-P to its target promoters and in changes in transcription of

the corresponding genes such as pbgP (also referred to as pmrH [14]

and arnB [15]), which mediates a chemical modification in the

lipopolysaccharide that confers resistance to the antibiotic

polymyxin B [16–18]. This architecture allows S. enterica to express

PmrA-activated genes and to display polymyxin B resistance in

response to the signals activating the PhoP/PhoQ system [19] as

well as in the presence of Fe3+, Al3+ or acid pH, which are specific

activating signals sensed by PmrB [20,21]. Expression of PmrA-

dependent genes is slightly reduced in a pmrD mutant when both

inducing signals, low Mg2+ and Fe3+, are present [2,11–13].

The related enteric species Yersinia pestis also promotes pbgP

expression and demonstrates polymyxin B resistance in response to

Fe3+ and/or low Mg2+, even though it lacks pmrD [22]. This is

because the Y. pestis pbgP promoter harbors binding sites for both

the PhoP and the PmrA proteins [22] (referred to as PhoP and

PmrA boxes, respectively) (Figure 1B). A comparison of the

Yersinia-like direct transcription regulation circuit, which was

reconstructed in an engineered S. enterica strain, to the connec-
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tor-mediated pathway of wild-type S. enterica demonstrated that the

latter pathway exhibits heightened induction ratios, which results

in increased levels of polymyxin B resistance [2]. The connector-

mediated pathway also displayed slower expression induction and

increased persistence of expression after a shift from inducing to

repressing conditions in comparison with the direct activation

pathway [2]. Persistence of expression may facilitate the

continuous synthesis of the PmrA-dependent cell envelope

modifying determinants in fluctuating environments [2].

In this paper, we identify a novel regulatory architecture that

combines structural and functional features of the direct regulation

circuit and the connector-mediated pathway. The novel architec-

ture, termed feedforward connector loop, possesses a direct

regulatory branch, like that in Y. pestis, and an indirect branch that

is analogous to the connector-mediated pathway of S. enterica. Even

though the simultaneous presence of direct and indirect branches of

regulation also characterizes one of the most abundant network

motifs (i.e., the feedforward loop) [1,3], the identified architecture

demonstrates substantial differences in dynamical behavior. Anal-

ysis of several enteric species suggests that the feedforward

connector loop is the evolutionary link between direct transcrip-

tional control and the connector-mediated regulatory circuit.

Results

K. pneumoniae Harbors a PhoP-Activated pmrD Ortholog
To explore the potential evolutionary scenario responsible for

the PmrD-mediated architecture, we analyzed the distribution of

the pmrD gene, and of PhoP and PmrA boxes in the pmrD and pbgP

promoters among enteric bacteria (Figure 2). We looked for a

bacterial lineage displaying evidence for both connector-mediated

(Figure 1A) and direct (Figure 1B) regulation of the pbgP operon. K.

pneumoniae appeared to fit these criteria because its genome harbors

a pmrD ortholog (Figure S1) that is preceded by a PhoP box

(Figure 3A), and because sequences resembling PhoP and PmrA

boxes were present upstream of the pbgP operon (Figure 2).

We tested the genomic prediction that the K. pneumoniae pmrD

gene is PhoP-activated by investigating pmrD transcription in wild-

type, phoP and pmrA strains grown under different conditions. The

pmrD gene was expressed during growth in low Mg2+ in a PhoP-

dependent manner but not in high Mg2+ (Figure 3B), like the S.

enterica [13] and E. coli [23] orthologs. In contrast to what happens in

S. enterica, pmrD transcription was not repressed by the PmrA protein

in K. pneumoniae (Figure S2), consistent with the absence of sequences

resembling a PmrA box in the pmrD promoter region (Figure 3A).

A Novel Regulatory Architecture Controls pbgP
Expression in K. pneumoniae

To define the regulatory circuit governing pbgP transcription in

K. pneumoniae, we investigated pbgP transcription in isogenic wild-

type, pmrA, phoP and pmrD strains grown under different conditions

promoting activation of the PhoP/PhoQ and PmrA/PmrB

systems. S1 mapping experiments revealed two transcription start

sites for the pbgP gene in wild-type K. pneumoniae: an ORF-proximal

site that was active upon growth in low Mg2+ or in low Mg2++Fe3+,

but not in high Mg2+; and an ORF-distal site that displayed higher

activity in low Mg2++Fe3+ than in low Mg2+ (Figure 4A). The

ORF-proximal promoter was PhoP-dependent but PmrA- and

PmrD-independent, whereas the ORF-distal promoter was

induced in low Mg2+ in a PhoP-, PmrD- and PmrA-dependent

fashion, and in the presence of Fe3+ in a PmrA-dependent but

PhoP- and PmrD-independent manner. DNase footprinting

experiments with the conserved PhoP and PmrA proteins from

S. enterica demonstrated specific binding to the K. pneumoniae pbgP

promoter at the predicted PhoP and PmrA boxes (Figure 4B and

Figure S3), indicating that the PhoP and PmrA proteins exert their

regulatory effects directly. This regulatory architecture, in which

PhoP activates pbgP expression directly by binding to the pbgP

promoter, and indirectly via PmrD-dependent activation of the

PmrA protein also binding to the pbgP promoter, was designated

feedforward connector loop (or FCL) (Figure 1C) because it

resembles the feedforward loop [3] network motif [1].

Mathematical Modeling of the Feedforward Connector
Loop

The feedforward loop (FFL) is one of the most abundant

network motifs in prokaryotic regulatory circuits [1,3,24]. In a

FFL, a transcriptional regulator X controls expression of gene z

both directly, by binding to its promoter region, and indirectly, by

promoting expression of gene y encoding a transcriptional

regulator Y that also binds to the promoter of gene z

(Figure 1D). FFLs exhibit special functional features [1,3,25],

including the ability to act as sign-sensitive delay elements: they

can increase the time it takes to activate gene expression while

keeping the deactivation time unaffected, or the other way around

[3,26,27]. For example, the coherent, activation-type FFL with an

OR-gate can promote deactivation delays when compared to a

circuit with direct regulation, though activation times for both

designs are similar [3,26].

Regulation by the FCL architecture identified in K. pneumoniae

(Figure 1C) is qualitatively equivalent to regulation by the latter type

of the FFL, because the FCL follows the OR type of logic

(Figure 4A). Yet, the FCL differs from the FFL in that, instead of a

two-stage transcriptional activation cascade, it relies on one

transcription factor (i.e., PhoP) to promote expression of a connector

protein (i.e., PmrD) that activates another transcription factor (i.e.,

PmrA) at the post-translational level (Figure 1C, D) [3,26].

To define the salient characteristics of the FCL architecture, we

analyzed activation and deactivation times, and contrasted these

properties to those of the direct regulation circuit, the connector-

mediated pathway, and the FFL. We utilized a variety of

parameter values with a mathematical modeling methodology

that was successfully used in the comparative analysis of the

connector-mediated and direct regulation pathways [2] (see

Author Summary

A regulatory protein can activate the expression of a target
gene either directly, i.e., by binding to the gene’s
promoter, or indirectly, i.e., by altering the expression of
regulators, which, in turn, bind to the target gene’s
promoter and induce or inhibit its transcription. Indirect
regulatory circuits can contain multiple components and
functional elements, such as feedforward and feedback
loops. The complex structure of indirect regulation raises
the question of its evolutionary origins. Here, we study the
dynamic and evolutionary properties of regulatory archi-
tectures that involve members of the recently emerged
class of bacterial proteins termed connectors. Such
proteins post-translationally modulate the activity of
two-component systems and phosphorelays, which con-
stitute the prevalent form of bacterial signal transduction.
We describe a novel connector-mediated regulatory circuit
that combines the structural and functional properties of
direct and indirect regulation. Our results indicate that this
architecture is the evolutionary link between direct and
connector-dependent regulatory designs.

Regulatory Architecture Dynamics and Evolution
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Materials and Methods). In our computations, the PhoP-P level

(determined by the abundance of Mg2+ in the extracellular

environment) was the main input for the regulatory circuits. An

additional input was the level of PmrA-P, which reflects the

activity of the PmrA/PmrB system (stimulated by Fe3+); in the FFL

case, the second input was the level of activated (phosphorylated)

protein Y (Figure 1D). For this second input, we considered the

cases of mild and strong activation. The case of mild activation of

the second input for the transcriptional cascade was not considered

because when the second input is inactive, two-component systems

connected by a transcriptional cascade cannot be activated [28]

(Figure 5C, D: no green solid lines).

The FCL and the FFL displayed an equivalent ability to

promote small activation delays with respect to the direct

regulation circuit (Figure 5A). Whereas the FFL promoted large

deactivation delays only with a small probability, large deactiva-

tion delays in the FCL could be observed in a substantial fraction

of the cases (Figure 5B). The FCL acted as a true sign-sensitive

delay element for most of the simulated parameter values, but the

FFL did not (Figure 5 and Figures S4, S5, and S6). Therefore, the

FCL architecture generally provides much stronger sign-sensitive

delay elements than the FFL design.

Models for the connector-mediated pathway and a two-stage

transcriptional cascade (corresponding to the FCL and FFL with

the direct regulation branches removed, respectively) possessed a

high ability to promote both activation and deactivation delays

(Figure 5C, D; Figures S4, S5, and S6), in agreement with

experimental data [2,5,29]. Notably, deactivation delay distribu-

tions for the FCL and the connector-mediated pathway in the case

of strong activation of the second input are nearly identical

(Figure 5B, D; Figures S4B, D, S5, and S6B, D). This allows us to

conclude that, when the second input is strong (which leads to

elevated PmrA-P level and, therefore, heightened induction of the

connector-mediated branch of regulation), the deactivation delays

are determined almost entirely by the connector-mediated branch.

A mathematical comparison of model outputs suggested that the
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Figure 1. Regulatory architectures controlling expression of the polymyxin B resistance operon pbgP in different bacterial species.
Also shown is a schematic of the feedforward loop architecture. (A) The connector-mediated pathway activating the pbgP operon in S. enterica.
Transcription of pbgP is promoted during growth in low Mg2+ via the PhoP/PhoQ system, PmrD protein and the PmrA/PmrB system; in the presence
of Fe3+, it is promoted via the PmrA/PmrB system independently of PhoP/PhoQ and PmrD. The PmrA protein represses transcription of the pmrD
gene. (B) The direct activation pathway promoting pbgP transcription in Y. pestis. Transcription of the pbgP gene is promoted during growth in low
Mg2+ directly via the PhoP/PhoQ system, and in the presence of Fe3+ directly via the PmrA/PmrB system. The pmrD gene is absent from the Y. pestis
genome (Figure 2). (C) The feedforward connector loop activating pbgP in K. pneumoniae. Transcription of the pbgP gene is promoted during growth
in low Mg2+ via the PhoP/PhoQ system, the PmrD protein and the PmrA/PmrB system, as well as directly by the PhoP protein binding to the pbgP
promoter. In the presence of Fe3+, transcription is activated directly by the PmrA/PmrB system, independently of PmrD and PhoP/PhoQ. (D) The
feedforward loop. A transcriptional regulator X controls gene z both directly and indirectly, via an additional transcriptional regulator Y that activates
gene z.
doi:10.1371/journal.pgen.1000233.g001

Regulatory Architecture Dynamics and Evolution

PLoS Genetics | www.plosgenetics.org 3 October 2008 | Volume 4 | Issue 10 | e1000233



FFL and FCL give higher output levels than their counterparts

lacking direct activation branches (Equation 16 in Text S1). This

can be ascribed to the presence of an additional branch of pbgP

regulation which would increase the proportion of active pbgP

promoters, leading to a higher production rate for the pbgP

mRNA.

The FCL Dynamics Demonstrate Sign-Sensitive Delays in
Gene Expression

To test the modeling predictions regarding the timing and

output levels of pbgP expression in the different architectures

(Figure 5A, B, C, D; Equation 16 in Text S1), we measured the

pbgP mRNA levels in isogenic S. enterica serovar Typhimurium

strains harboring the connector-mediated pathway (Figure 1A), or

engineered to express pbgP utilizing the direct regulation circuit

(Figure 1B) or the FCL (Figure 1C). This allowed us to focus on the

quantitative features determined by the circuit architecture (as

opposed to its specific implementation in a particular species), and

to avoid comparison biases arising from the inherently distinct

biology of different bacterial species [1]. This is consistent with the

previously established genetic circuit comparison methodology [2].

Our computational analysis showed that the connector-

mediated pathway typically displays activation delays (when

compared to the direct regulation circuit) whereas the FCL does

not (Figure 5A, C), suggesting that pbgP expression would be

activated sooner in the strain with the FCL than in the one with

the connector-mediated pathway. Indeed, when cells were grown

under non-inducing conditions (i.e., 10 mM Mg2+) for 4 h and

then switched to inducing conditions (i.e., 20 mM Mg2+) at time 0,

the pbgP mRNA level rose much faster in the FCL than in the

connector-mediated pathway (Figure 5E). (Activation and deacti-

vation affected only the PhoP-dependent input of the circuits

through changes in the Mg2+ concentration, because there was no

direct PmrA activation input due to the absence of Fe3+ in the

medium.) This rapid activation was ascribed to the direct

regulation branch because the connector-mediated pathway,

which lacks a direct regulation branch (Figure 1A), displayed

delayed activation (Figure 5E) [2]. Furthermore, the direct

regulation circuit (in a similar way to the FCL) demonstrated

rapid activation (Figure 5E).

For the case of deactivation, our computations predicted that

the FCL and the connector-mediated pathway typically generate a

delayed deactivation response compared to the direct regulation

circuit (Figure 5B, D). When cells were grown for 2 h in a medium

containing 20 mM Mg2+ and then switched to non-inducing

conditions at time 0, deactivation was notably slower in the FCL

than in the direct regulation circuit and was correlated with the

expression persistence displayed by the connector-mediated
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Figure 2. Phylogenetic relationship of the analyzed bacterial species harboring the polymyxin B resistance pbgP operon. The
phylogenetic tree was constructed as described in Materials and Methods. Numbers on the branches refer to branch lengths (which indicate the
numbers of amino acid substitutions along the corresponding branches), and numbers in the parentheses represent bootstrap support (which
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doi:10.1371/journal.pgen.1000233.g002
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pathway (Figure 5F). These results are in agreement with the

previously obtained experimental data on the connector-mediated

pathway dynamics [2]. Finally, the output levels promoted by the

FCL were generally higher than those for the connector-mediated

pathway (Figure 5E, F), consistent with our theoretical prediction

regarding the contribution of two positive regulation branches

(Equation 16 in Text S1).

Discussion

The level at which a gene is transcribed depends on the cis

features of the gene promoter, which govern its interactions with

RNA polymerase and regulatory proteins, as well as on the

architecture that determines the levels and activity of these

proteins. We have identified a novel regulatory architecture–

termed FCL–that mediates activation of the polymyxin B

resistance gene pbgP by the PhoP protein in K. pneumoniae. The

FCL is characterized by two branches of regulation: a direct

branch where the PhoP protein directly promotes pbgP transcrip-

tion by binding to the pbgP promoter, and an indirect branch in

which the PhoP-dependent PmrD protein activates the PmrA

protein, which, in turn, binds to the pbgP promoter. The FCL

structure was inferred from the following findings. First, expression

of the connector protein PmrD is activated in low Mg2+ in a PhoP-

dependent fashion. Second, the PhoP-mediated activation of pmrD

transcription appears to be direct because the pmrD promoter

harbors a PhoP box (Figure 3A). Third, growth in low Mg2+

activates two pbgP promoters: one that is PhoP-dependent, but

PmrA- and PmrD-independent, and another one that is PhoP-,

PmrA-, and PmrD-dependent (Figure 4A). And fourth, the PhoP

and PmrA proteins bind to the pbgP promoter region (Figure 4B

and Figure S3). The FCL may represent an intermediate stage

between direct control (Figure 1B) and the connector-mediated

pathway (Figure 1A).

From the point of view of regulatory logic, the FCL would appear

to be a redundant circuit because any one of the two activation

branches is sufficient to promote pbgP expression (Figure 4A). Such a

‘‘redundancy’’ also characterizes the FFL (Figure 1D), one of the

most abundant network motifs identified in bacteria [1,3,24].

However, the presence of an extra branch of regulation confers

special dynamic properties on these two designs. The FCL acts as a

sign-sensitive delay element, promoting large deactivation delays

but no (or very small) activation delays (Figure 5A, B, E, F). The

ability of the FCL to promote sign-sensitive delays can be explained

by its architecture (Figure 1C). Fast activation is due to the presence

of a direct activation branch (as in a direct regulation circuit

(Figure 1B)), which distinguishes the FCL from the connector-

mediated pathway exhibiting longer activation delays associated

with the necessity to synthesize the PmrD protein (Figure 5C, E) [2].

At the same time, the indirect branch of the FCL guarantees pbgP

expression persistence upon deactivation (Figures 5, S4, S5, and S6),

which, as with the connector-mediated pathway [2], is likely due to

the PmrD protein made before the cells were switched to non-

activating conditions. In addition, our results indicate that the FFL

promotes only relatively small deactivation delays, which is in

contrast to the large delays that are typical of the FCL (Figure 5B).

The presence of two branches of activation in the FCL results in

higher pbgP expression levels compared with the connector-

mediated pathway (Equation 16 in Text S1; Figure 5E, F).

Additional insights into the functionality of the FCL might be

provided by dynamics studies in the stochastic (single-cell) setting

[30] as demonstrated for the FFL [25].

The discovery of the novel PmrD-mediated architecture–the

FCL–suggests a plausible parsimonious scenario for the evolution

of Mg2+-dependent polymyxin B resistance in enteric bacteria.

First, the Klebsiella and Salmonella lineages diverged after their

common ancestor had split from the Yersinia lineage (Figure 2).

Second, PmrD homologs are present in all species derived from

this common ancestor, but in none of the remaining species

(Figure 2). And third, the pbgP promoter of Serratia marcescens, which

is a close relative of the immediate ancestor of Klebsiella, harbors

both PhoP and PmrA boxes (Figure 2). It is thus conceivable that

the pmrD gene was ‘‘invented’’ or horizontally acquired by the

common ancestor of Salmonella, Klebsiella, Shigella, and Escherichia

[31–33]. After diverging from the Klebsiella lineage, the ancestral

lineage of Salmonella, E. coli and Shigella would have lost the direct

branch of pbgP activation by the PhoP protein, as none of these

species harbor a PhoP box in the pbgP promoter.

The hypothesized transition from the FCL design utilized by K.

pneumoniae to the connector-mediated pathway operating in S. enterica

might have obeyed the need to avoid overproduction of PmrA-

activated gene products. Indeed, hyperactivation of the PmrA/PmrB

system can have detrimental effects, such as increased susceptibility to

the detergent deoxycholate [34] and to the antimicrobial peptide

protamine (E. A. Groisman, unpublished results). Apparently, this

need had a substantial influence on the connector-mediated pathway
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Figure 3. Expression of the K. pneumoniae pmrD gene is
promoted in low Mg2+ in a PhoP-dependent manner. (A) DNA
sequence of the promoter region of the K. pneumoniae pmrD gene. The
putative PhoP box [22] is in red and the putative 210 region is
underlined. The first four amino acid residues of the pbgP ORF are
indicated below the nucleotide sequence. (B) Fluorescence of a pmrD-
gfp transcriptional fusion was measured in wild-type (EG13127) and
isogenic phoP (EG15289) K. pneumoniae strains harboring the pAG-
pmrDKlebsiella plasmid following growth in N-minimal medium, pH 7.7,
containing 38 mM glycerol with either 10 mM (black bars) or 10 mM
(white bars) Mg2+ as described in Materials and Methods. Strains
harboring the control pAG-rpmS plasmid and the pAG vector
demonstrated constitutive fluorescence and no fluorescence in all
growth conditions, respectively (data not shown).
doi:10.1371/journal.pgen.1000233.g003
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as S. enterica evolved a negative feedback loop to repress PmrD

production [12], thereby preventing excessive expression of PmrA-

activated genes. The activation delays, which result from elimination

of the direct regulation branch, are in the case of S. enterica relatively

small [2]. Thus, the circuit’s responsiveness, while somewhat

decreased, appears to be sufficient for survival in the specific niche

occupied by this bacterium.

The evolution of connector-mediated pathways is driven by

changes both in the connector protein genes and in the

transcriptional regulatory interactions. Genes encoding connectors

can undergo rapid sequence and functional divergence, resulting

in novel regulatory architectures. For example, diversifying

selection on the PmrD protein has resulted in the majority of E.

coli natural isolates lacking the ability to express PmrA-activated

genes in response to the signals activating the PhoP/PhoQ system

[23]. Likewise, the divergence of the iraP promoter sequence

between S. enterica and E. coli results in the inability of the E. coli

connector IraP to inhibit the degradation of the alternative sigma-

factor RpoS in low Mg2+, whereas the S. enterica IraP performs this

function because it is produced under such conditions [35].

Bacterial genetic regulatory circuits are shaped by the properties

of the specific environments that bacterial species occupy [36]. It is

plausible that emergence of connector-mediated regulation, which

leads to persistence of expression of the polymyxin B resistance

operon pbgP under the conditions of low Mg2+ (Figure 5B, D, F),

contributed to the ability of K. pneumoniae and S. enterica to survive

in soil environments [37,38]. (Notably, Y. pestis, which lacks the

connector protein PmrD, is reported to survive in soil only for

short periods of time [39].) Indeed, polymyxin B is present in soil

as a result of natural activity of some bacteria [40]. Additionally,

the lipopolysaccharide (LPS) modifications brought about by the

pbgP operon products confer resistance to metal ions such as Fe3+

and Al3+, which are abundant in soil [41]. This could explain the

advantage of activating pbgP under high Fe3+ conditions sensed by

Figure 4. Dependence of pbgP transcription on the pmrA, pmrD, and phoP genes under different growth conditions. (A) S1 nuclease-
protection assay of RNAs extracted from bacteria grown at 37uC in N-minimal medium, pH 7.7, with 10 mM MgCl2 (L, 2), 10 mM MgCl2 (H, 2), or
10 mM MgCl2 and 100 mM FeSO4 (L, +). Lane AG corresponds to the Maxam-Gilbert DNA ladder of the target sequence. The sequences spanning the
two transcription start sites are shown, and the start sites are indicated with arrows. (B) DNA sequence of the promoter region of the K. pneumoniae
pbgP gene. The two transcription start sites are indicated in bold and with arrows. The sequence in blue resembles the PmrA-box consensus [22], the
sequence in red resembles the PhoP-box consensus [22]. The DNA sequence underlined with blue and red indicates the regions footprinted by the S.
enterica PmrA and PhoP proteins, respectively (the footprinting data are shown in Figure S3). The first four amino acid residues of the pbgP ORF are
indicated below the nucleotide sequence.
doi:10.1371/journal.pgen.1000233.g004
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Figure 5. Activation and deactivation dynamics of connector-mediated and direct regulatory circuits. Delay length distributions for the
feedforward connector loop (FCL) and feedforward loop (FFL) ((A)–(D)) and experimental measurements of activation and deactivation dynamics for
the connector-mediated pathway, FCL, and direct regulation circuit ((E)–(F)). In the simulations, the second input with strong and mild activation
corresponds to high and low ratios of phosphorylation/dephosphorylation rates for PmrA (or for protein Y of the FFL), respectively. In the activation
and deactivation experiments, the connector-mediated pathway was harbored by the wild-type S. enterica strain (14028s) whereas the FCL and direct
regulation circuit were harbored by the engineered S. enterica strains EG17353 and EG17354, respectively. mRNA levels were determined as described
in Materials and Methods. (A) Activation delay length distributions for the FCL and FFL. (B) Deactivation delay length distributions for the FCL and FFL.
(C) Activation delay length distributions for the FCL and FFL lacking direct activation branches. (D) Deactivation delay length distributions for the FCL
and FFL lacking direct activation branches. (E) Activation dynamics for pbgP gene expression in S. enterica. (F) Deactivation dynamics for pbgP gene
expression in S. enterica.
doi:10.1371/journal.pgen.1000233.g005
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the PmrA/PmrB system [20]. The benefit of pbgP induction by low

Mg2+ (sensed by the PhoP/PhoQ system) may come from the fact

that Mg2+ normally neutralizes the negative charges in the LPS

[42]; thus, when the levels of Mg2+ are low, the LPS is chemically

modified by PmrA-activated gene products that neutralize these

negative charges [2]. It is likely that the rapid activation and

delayed deactivation of pbgP, as well as the heightened pbgP

expression level promoted by the FCL architecture (Figure 5E, F),

contribute to the lifestyle of K. pneumoniae, including its ability to

survive in soil for extended times [37].

Environmental selection of genetic regulatory circuits can be

analyzed within the framework of cost–benefit theory [43,44]. For

example, it has been shown that the FFL with AND logic has a

selective advantage over the direct regulation circuit (with an

AND-gate) in environments where the duration distribution for an

input pulse is sufficiently broad (both long and short pulses are

probable) [43]. Because the FCL is expected to act as a strong

sign-sensitive delay element (stronger than the FFL) (Figure 5A, B),

it is conceivable that the FCL is the preferred design in

environments where delayed activation and rapid deactivation

result in a selective disadvantage.

Materials and Methods

The bacterial strains, plasmids, growth conditions and con-

struction of deletion mutants are described in Text S1. The list of

strains and plasmids used in this study is given in Table S1.

RNA Isolation
To isolate the RNA used in the S1 nuclease assay (Figure 4A),

overnight cultures of K. pneumoniae grown in N-minimal medium

containing 10 mM Mg2+ were washed and diluted 1:50 into 50 ml

of N-minimal medium containing either 10 mM MgCl2, 10 mM

MgCl2 or 10 mM MgCl2 and 100 mM FeSO4. Total RNA was

extracted from early-logarithmic phase cultures (OD600, 0.250)

with the MasterPure RNA purification kit (Epicentre Technolo-

gies) according to the manufacturer’s recommended protocol.

S1 Nuclease Assay
Double stranded DNA probes to the pbgP promoter regions of

K. pneumoniae were generated by PCR using the primers 3249 (59-

TTCGTGACAGGAACGCATCT9-39) and 3250 (59-

GGGCGCGAAAAAGGCAAAAA-39). S1 nuclease reactions

were performed as described previously [12]. Hybridization

products were analyzed by electrophoresis on a 6% polyacryl-

amide, 7.5 M urea gel and compared with Maxam-Gilbert A+G

DNA ladders generated from the appropriate DNA probe. Assays

were performed in triplicate.

DNase I Footprinting
DNase I footprinting was performed as described previously

[12]. The K. pneumoniae pbgP promoter region probe was generated

as described in Materials and Methods. The S. enterica PhoP and

PmrA proteins were purified as described previously [45]. Samples

were analyzed by electrophoresis on a 6% polyacrylamide, 7.5 M

urea gel and compared with a Maxam-Gilbert A+G DNA ladder

generated from the same DNA probe.

GFP Expression Assay
K. pneumoniae strains harboring the pAG, pAG-rpsM, pAG-

pmrDKlebsiella plasmids were grown in N-minimal media, pH 7.7 or

5.8, containing 38 mM glycerol with either 10 mM MgCl2,

10 mM MgCl2 or 10 mM MgCl2 and 100 mM FeSO4 and

supplemented with 10 mg/ml tetracycline. GFP expression was

analyzed following 4 hours of growth at 37uC using a Becton

Dickinson fluorescent-activated cell sorter. Assays were performed

in triplicate. Error bars (Figure 3B) indicate standard deviation.

Computational Sequence Analysis
Identification of protein orthologs and putative transcription

factor binding sites is described in Text S1. For phylogenetic

reconstruction, the amino acid sequences encoded by three

housekeeping genes (gapA, groEL and gyrA) were concatenated to

infer the molecular phylogeny for the eight enteric species [46]

(Figure 2). Sequences were aligned using ClustalX and subjected

to maximum parsimony and nonparametric bootstrap resampling

analysis as implemented in PAUP* (version 4.0b10). The tree was

rooted with Pseudomonas aeruginosa as the outgroup.

Quantitative Analysis of Transcription
To test pmrD transcription (Figure S2), RNA was isolated from K.

pneumoniae strains EG13127, EG13129 and EG15289, and the

quantification of pmrD mRNA levels were performed as described

[47] with the following modifications: aliquot of cells was taken at

1 hour post-induction, and the PCR analysis was performed using

Fast SYBR Green Master Mix and a 7500 Fast Real-Time PCR

System (Applied Biosystems, Foster City, CA). The following primers

were used in the real-time PCR analysis (59 to 39): 7873 (TCT-

GCCGCGTCGTGC, pmrD forward), 7874 (CAATCTCTGC-

GATCATCTCCAG, pmrD reverse), 8813 (TTGACGTTACCCGCA-

GAAGAA, rrs, forward), 8816 (GCGCTTTACGCCCAGTAATT,

rrs, reverse). Data were normalized with the values corresponding to

16S RNA, and represent five independent experiments with the

highest and lowest outliers omitted. Error bars (Figure S2) correspond

to standard deviation.

The activation and deactivation experiments (Figure 5E,F) with the

S. enterica strains 14028s, EG17353 and EG17354, including pbgP

mRNA isolation and quantification using real-time-PCR, were

performed as described [2] with the following modifications: the

reverse transcription reaction was run with ,6.5 ng total RNA, and

the PCR analysis was performed using a 7500 Fast Real-Time PCR

System (Applied Biosystems, Foster City, CA). Activation time-course

measurements done over larger time intervals have produced results

similar to those shown in Figure 5E. In the PCR reaction, the

following primers were used (59 to 39): 6522 (TGATGTCG-

GACTTTTTGCCTT, pbgP, forward), 6523 (GCTCTT-

CCGCGCCCAT, pbgP, reverse), 3023 (CCAGCAGCCGCGG-

TAAT, rrs, forward), 3024 (TTTACGCCCAGTAATTCCGATT,

rrs, reverse). Data were normalized with the values corresponding to

16S RNA. Measurements were done in duplicate; error bars

(Figure 5E, F) correspond to standard deviation.

Mathematical Modeling
The mathematical models of the FFL, FCL and direct

regulation circuit are systems of ordinary differential equations

(ODEs) that describe concentration dynamics for the main

chemical components of the three regulatory circuits. The FCL

model comprises five ODEs for the PmrD, PmrA, PmrA-P, the

PmrD/PmrA-P complex, and pbgP mRNA concentrations (Equa-

tions 1–5 in Text S1). The FFL and direct regulation models

consist of three equations each; the equations describe changes in

the concentrations of PmrA, PmrA-P, and pbgP mRNA (Equations

6–11 in Text S1). In all models, the concentration of PhoP-P is an

external variable representing the main input; the chemical

reactions are modeled by using mass action kinetics, and

transcriptional control is described with sigmoidal functions

[2,48]. The activation dynamics of PhoP-P was modeled using

piecewise Hermite interpolating polynomials fitted to the exper-
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imental data for PhoP-P activation dynamics [47]; deactivation

dynamics was modeled with an exponential decay function (see

Text S1). The balance of phosphorylation and dephosphorylation

rates for PmrA (and for protein Y of the FFL, Figure 1D)

represented the second input of the circuits; we consider the

situations when this input is strongly activated (high phosphory-

lation rate) or mildly activated (low phosphorylation rate). For all

computational experiments, the initial concentrations (at time 0)

were the steady-state concentrations corresponding to the PhoP-P

level at time 0.

All computations were performed in MATLAB R2007a

(MathWorks, Natick, MA). In delay distribution computations,

the delays were defined as the differences between the activation

and deactivation times for the FCL (or FFL) and those for the

direct regulation circuit. Activation time was defined as the time

required to reach an activation level equal to inactive level+(activa-

tedlevel2inactive level)/10; deactivation time was defined in an

analogous way. Activation and deactivation delays correspond to

situations when the PhoP-P input of the circuits was activated and

deactivated, respectively.

The delay distributions for the FCL (Figure 5A, B, C, D) were

simulated as follows: parameter values for the models in the

simulations were sampled independently from uniform distribu-

tions over intervals provided in Table S2. While the real-life

parameter value distributions for the genetic regulatory systems

are unknown, in our choice of uniform distributions we followed

the established methodology of statistical analysis for biochemical

pathways [49]. A pair of randomly generated parameter sets, one

for the FCL and the other one for the direct regulation circuit, was

accepted or rejected depending on whether the model outputs for

these models satisfied certain filtering criteria (Text S1). The

purpose of filtering was to retain only the parameter sets that

rendered functional regulatory circuits [3]. The pairs of parameter

sets were generated randomly until the number of accepted pairs

was equal to 1000. These parameter sets were used to calculate

model trajectories necessary for the estimation of activation and

deactivation delays of the FCL with respect to the direct regulation

circuit. The delay distributions for the FFL (Figure 5A, B, C, D)

were simulated in an analogous fashion. To test the robustness of

the simulation results, we applied alternative sampling strategies

(used to produce Figures S4–S6), which, along with the details of

our simulation procedures, are described in Text S1.

Supporting Information

Figure S1 Alignment of the amino acid sequences for the PmrD

proteins from E. coli K-12, S. enterica serovar Typhimurium strain

LT2, and K. pneumoniae strain KC2668. The sequences were

aligned using Clustal W 1.83.

Found at: doi:10.1371/journal.pgen.1000233.s001 (0.01 MB PDF)

Figure S2 Transcription from the pmrD promoter in K.

pneumoniae is PhoP-dependent but PmrA-independent. mRNA

levels of pmrD were measured by real-time PCR analysis using

isolated RNA from wild-type (EG13127) and isogenic phoP

(EG15289) and pmrA (EG13129) K. pneumoniae strains following

growth in N-minimal medium, pH 7.7, containing 38 mM

glycerol with 50 mM Mg2+ and 100 mM Fe3+ (see main text,

Materials and Methods). The mRNA levels are normalized to 16S

RNA.

Found at: doi:10.1371/journal.pgen.1000233.s002 (0.01 MB PDF)

Figure S3 DNase I footprinting analysis of the K. pneumoniae pbgP

promoter performed for the non-coding strands. (A) Footprinting

analysis of the pbgP promoter with increasing amounts of the PhoP

protein (0, 25, 75, 125 pmol). (B) DNase footprinting analysis of

the pbgP promoter with increasing amounts of the PmrA protein

(0, 10, 20, 40 pmol). Solid vertical lines correspond to regions of

the pbgP promoter protected by the PhoP and PmrA proteins. The

start and end positions of the protected regions are given relative

to the transcription start site immediately downstream of the

protected region (see Figure 4B). The affinity of the PhoP and

PmrA proteins for the 210 to 244 and 219 to 244 regions is less

than that corresponding to the 246 to 291 and 222 to 291

regions, respectively. This could be due to the presence of PhoP

and PmrA half-boxes in at the ORF-proximal sites as opposed to

complete boxes at the ORF-distal sites.

Found at: doi:10.1371/journal.pgen.1000233.s003 (0.33 MB PDF)

Figure S4 Delay length distributions for the feedforward

connector loop (FCL) and feedforward loop (FFL). Activation

and deactivation delays correspond to the situations when the

PhoP-P input of the circuits was activated and deactivated,

respectively. The delays are defined as differences between the

activation and deactivation times for the FCL (or FFL) and those

for the direct regulation circuit (Figure 1B). The distributions were

estimated from simulations with mathematical models as described

in Materials and Methods. In the simulations, the parameter

values for the models were sampled using the small-noise strategy

with noise level 0 (see Text S1). The second input with strong and

mild activation corresponds to high and low phosphorylation/

dephosphorylation rate ratio for PmrA (or for protein Y of the

FFL), respectively. (A) Activation delay length distributions for the

FCL and FFL. (B) Deactivation delay length distributions for the

FCL and FFL. (C) Activation delay length distributions for the

FCL and FFL lacking direct activation branches. (D) Deactivation

delay length distributions for the FCL and FFL lacking direct

activation branches.

Found at: doi:10.1371/journal.pgen.1000233.s004 (0.01 MB PDF)

Figure S5 Delay length distributions for the feedforward

connector loop (FCL) and feedforward loop (FFL). Activation

and deactivation delays correspond to the situations when the

PhoP-P input of the circuits was activated and deactivated,

respectively. The delays are defined as differences between the

activation and deactivation times for the FCL (or FFL) and those

for the direct regulation circuit (Figure 1B). The distributions were

estimated from simulations with mathematical models as described

in Materials and Methods. In the simulations, the parameter

values for the models were sampled using the small-noise strategy

with noise level 0.3 (see Text S1). The second input with strong

and mild activation corresponds to high and low phosphorylation/

dephosphorylation rate ratio for PmrA (or for protein Y of the

FFL), respectively. (A) Activation delay length distributions for the

FCL and FFL. (B) Deactivation delay length distributions for the

FCL and FFL. (C) Activation delay length distributions for the

FCL and FFL lacking direct activation branches. (D) Deactivation

delay length distributions for the FCL and FFL lacking direct

activation branches.

Found at: doi:10.1371/journal.pgen.1000233.s005 (0.01 MB PDF)

Figure S6 Delay length distributions for the feedforward

connector loop (FCL) and feedforward loop (FFL). Activation

and deactivation delays correspond to the situations when the

PhoP-P input of the circuits was activated and deactivated,

respectively. The delays are defined as differences between the

activation and deactivation times for the FCL (or FFL) and those

for the direct regulation circuit (Figure 1B). The distributions were

estimated from simulations with mathematical models as described

in Materials and Methods. In the simulations, the parameter

values for the models were sampled using the small-noise strategy
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with noise level 0.95 (see Text S1). The second input with strong

and mild activation corresponds to high and low phosphorylation/

dephosphorylation rate ratio for PmrA (or for protein Y of the

FFL), respectively. (A) Activation delay length distributions for the

FCL and FFL. (B) Deactivation delay length distributions for the

FCL and FFL. (C) Activation delay length distributions for the

FCL and FFL lacking direct activation branches. (D) Deactivation

delay length distributions for the FCL and FFL lacking direct

activation branches.

Found at: doi:10.1371/journal.pgen.1000233.s006 (0.01 MB PDF)

Table S1 List of strains and plasmids used in this study.

Found at: doi:10.1371/journal.pgen.1000233.s007 (0.14 MB PDF)

Table S2 Intervals used for model parameter sampling. The

superscripts for the parameters are omitted, because the same

intervals are used to sample the corresponding parameters for the

FCL, FFL, and the direct regulation circuit.

Found at: doi:10.1371/journal.pgen.1000233.s008 (0.06 MB PDF)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1000233.s009 (0.08 MB PDF)
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