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Abstract

Exonization of Alu elements is a major mechanism for birth of new exons in primate genomes. Prior analyses of expressed
sequence tags show that almost all Alu-derived exons are alternatively spliced, and the vast majority of these exons have
low transcript inclusion levels. In this work, we provide genomic and experimental evidence for diverse splicing patterns of
exonized Alu elements in human tissues. Using Exon array data of 330 Alu-derived exons in 11 human tissues and detailed
RT-PCR analyses of 38 exons, we show that some Alu-derived exons are constitutively spliced in a broad range of human
tissues, and some display strong tissue-specific switch in their transcript inclusion levels. Most of such exons are derived
from ancient Alu elements in the genome. In SEPN1, mutations of which are linked to a form of congenital muscular
dystrophy, the muscle-specific inclusion of an Alu-derived exon may be important for regulating SEPN1 activity in muscle.
Realtime qPCR analysis of this SEPN1 exon in macaque and chimpanzee tissues indicates human-specific increase in its
transcript inclusion level and muscle specificity after the divergence of humans and chimpanzees. Our results imply that
some Alu exonization events may have acquired adaptive benefits during the evolution of primate transcriptomes.
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Introduction

Alu is a class of primate-specific transposable elements that

belongs to the short interspersed nuclear elements (SINE) family

[1]. The rapid expansion of Alu during primate evolution has

produced over one million copies of Alu elements in the human

genome [2]. Until recently, Alu elements were considered as ‘‘junk

DNA’’, with no important functional or regulatory roles [1].

However, recent studies suggest a substantial influence by Alu

elements on evolution of the human genome and regulation of

gene expression [3].

Alu is a major source of new exons in primate genomes [4–6]. Alu

elements have several sites resembling consensus splice sites in both

sense and antisense orientations [7]. Therefore, the insertion of Alu

elements into intronic regions may introduce new exons into

existing, functioning genes. The evolutionary history of several such

‘‘exonization’’ events has been characterized in detail [8,9]. For

example, in p75TNFR, the insertion of an Alu element and a series

of subsequent nucleotide substitutions created a new alternative first

exon [8]. Sorek and colleagues investigated the splicing pattern of

61 Alu-containing exons using human mRNA and EST sequences

[4]. All Alu-containing exons were alternatively spliced. The vast

majority of these exons were included in the minor transcript

isoforms, based on ESTs pooled from all tissues [4]. This is

consistent with the hypothesis that the creation of a new minor-form

alternative exon reduces the initial deleterious effects of exonization

events [10]. However, due to the high noise in EST sequencing [11]

and the low EST coverage for these Alu-derived exons [4], it was

difficult to assess the splicing patterns of individual exons tissue by

tissue. Regardless, there have been anecdotal reports for Alu-

containing exons to have splicing patterns other than minor-form

alternative splicing. Based on the tissue origins of human EST

sequences, Mersch et al. predicted a few Alu-containing exons to be

tissue-specific [12]. In another study, an Alu-containing exon of

FAM55C was shown to be constitutively spliced in a neuroblastoma

cell line [13]. These data suggest that the splicing profiles of

exonized Alu elements may be more diverse than previously

expected. In this study, we combined a genome-scale Exon array

analysis with RT-PCR experiments to investigate the splicing

profiles of exonized Alu elements in human tissues.

Results

Splicing Signal and Evolutionary Rate of Alu-Derived
Exons

We collected a list of 330 Alu-derived exons, using annotations

from the UCSC Genome Browser database [14] and Affymetrix

human Exon 1.0 arrays (see details in Materials and Methods). We

first analyzed the splicing signals of these exons as well as their

evolutionary rates during primate evolution. For the purpose of

comparison, we also analyzed 13103 constitutively spliced exons

and 5389 exon-skipping cassette exons in the human genome,

which were collected after applying a set of stringent filtering
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criteria to exons in the Alternative Splicing Annotation Project 2

(ASAP2) database (see Materials and Methods).

Our analysis showed that Alu-derived exons had significantly

weaker splicing signals compared to constitutively spliced exons

and typical cassette exons. For each exon, we scored its 59 and 39

splice site using models of consensus splice sites in MAXENT [15].

The median 59 splice site score of Alu-derived exons was 7.35,

compared to 8.27 for cassette exons and 8.88 for constitutive

exons, a statistically significant difference (P = 3.0e-6 for Alu-

derived exon vs cassette exons; P,2.2e-16 for Alu-derived exons

vs constitutive exons; Wilcoxon rank sum test). We observed the

same trend for the 39 splice site. The median 39 splice site score of

Alu-derived exons was 6.79, significantly lower than the scores of

cassette exons (7.86) and constitutive exons (8.87). In addition,

Alu-derived exons had a lower density of exonic splicing

regulatory elements (ESRs). We used two sets of ESRs from the

studies of Goren et al [16] and Fairbrother et al [17]. For each

exon, we calculated the density of ESRs as the number of

nucleotides covered by ESRs divided by the total length of the

exon. The average ESR density of Goren et al was 0.484 on Alu-

derived exons, compared to 0.500 on cassette exons and 0.532 on

constitutive exons (P = 0.04 for Alu-derived exon vs cassette exons;

P = 6.5e-14 for Alu-derived exons vs constitutive exons). The same

trend was observed for ESRs of Fairbrother et al: the average

density was 0.144 on Alu-derived exons, which was significantly

lower than the density on cassette exons (0.268) and constitutive

exons (0.328).

We also found that Alu-derived exons had much higher

evolutionary rates during primate evolution, compared to

constitutive exons and cassette exons. Recently, the genome

sequences of several non-human primates have become available.

Therefore, we can study the sequence evolution of Alu-derived

exons in primates after the initial Alu insertion events. To

determine the evolutionary rate of different classes of exons, we

analyzed the pairwise alignments of the human genome to the

genomes of chimpanzee, orangutan, macaque and marmoset,

which were increasingly distant from humans [18]. For exons

present in both human and chimpanzee genomes, the overall

nucleotide substitution rate of Alu-derived exons was 1.34%,

compared to 0.73% for cassette exons and 0.52% for constitutive

exons (P#2.2e-16 in Alu vs cassette exons and Alu vs constitutive

exon comparisons, Wilcoxon rank sum test). Similarly, between

human and orangutan genomes, the overall nucleotide substitu-

tion rates of Alu-derived exons, cassette exons and constitutive

exons were 3.69%, 1.81%, and 1.31% respectively. The same

trend was also observed in pairwise comparisons of human-

macaque and human-marmoset genomes (see Table 1). We also

obtained similar results when we restricted our analysis to exons

smaller than 250 nt (data not shown). These comparative analyses

span the last ,50 million years of primate evolution [18].

Taken together, these data are consistent with the hypothesis

that the majority of primate-specific human exons derived from

Alu elements are evolutionary intermediates without established

functions [4,6]. The high evolutionary rate of Alu-derived exons

observed in primate genome alignments probably reflects the

combined effect of reduced negative selection pressure on non-

functional Alu exons as well as positive selection pressure on Alu

exons with adaptive benefits. However, distinguishing the effect of

positive selection from that of the reduced negative selection is a

difficult task in general [19,20]. Identifying the subset of Alu

exonization events that have undergone positive selection using

sequence-based approaches is particularly difficult for some

practical reasons. Most Alu-derived exons are short (median

length of the 330 exons is 121 nucleotides). They are too new to

have homologous sequences from distantly related species –

homologous sequences of these exons may only exist in non-

human primates. Thus, for most exons the number of nucleotide

differences between homologous sequences is small, which

significantly decreases the power of statistical tests. Although

SNP-based approaches have been applied to genome-wide scans

of positive selection on the human genome [21–26], the regions

identified by these studies are typically very large, making it a

major challenge to locate the causal allele for positive selection

[27]. In addition, SNP-based methods are sensitive to the temporal

phases of positive selection [28], influenced by the ascertainment

bias [29], and confounded by demographic factors [19,30–32].

For example, the Alu-derived exon of ADAR2 (ADARB1) is a

Table 1. The nucleotide substitution rates of three classes of
exons during primate evolution.

Human VS Exons Number of nucleotides

conserved substituted % substituted

Chimpanzee Alu-derived exons 59812 813 1.34

cassette exons 670739 4925 0.73

constitutive exons 1486944 7822 0.52

Orangutan Alu-derived exons 51102 1957 3.69

cassette exons 620988 11452 1.81

constitutive exons 1371194 18245 1.31

Macaque Alu-derived exons 37122 2801 7.02

cassette exons 619754 21563 3.36

constitutive exons 1428543 36227 2.47

Marmoset Alu-derived exons 23863 3146 11.65

cassette exons 509368 31128 5.76

constitutive exons 1132952 50968 4.31

doi:10.1371/journal.pgen.1000225.t001

Author Summary

New exons have been created and added to existing
functional genes during eukaryotic genome evolution. Alu
elements, a class of primate-specific retrotransposons, are
a major source of new exons in primates. However, recent
analyses of expressed sequence tags suggest that the vast
majority of Alu-derived exons are low-abundance splice
forms and represent non-functional evolutionary interme-
diates. In order to elucidate the evolutionary impact of Alu-
derived exons, we investigated the splicing of 330 Alu-
derived exons in 11 human tissues using data from high-
density exon arrays with multiple oligonucleotide probes
for every exon in the human genome. Our exon array
analysis and further RT-PCR experiments reveal surprisingly
diverse splicing patterns of these exons. Some Alu-derived
exons are constitutively spliced, and some are strongly
tissue-specific. In SEPN1, a gene implicated in a form of
congenital muscular dystrophy, our data suggest that the
muscle-specific inclusion of an Alu-derived exon results
from a human-specific splicing change after the diver-
gence of humans and chimpanzees. Our study provides
novel insight into the evolutionary significance of Alu
exonization events. A subset of Alu-derived exons,
especially those derived from more ancient Alu elements
in the genome, may have contributed to functional
novelties during primate evolution.

Splicing Patterns of Alu Exons
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well-known case of functional exonization. This exon inserts an in-

frame peptide segment into the catalytic domain of ADAR2,

altering its catalytic activity [33]. Using HapMap (I+II) SNP data

[21,34], we tested for the reduction of SNP heterozygosity, the

skewed allele frequency spectrum with Tajima’s D [35] and Fay

and Wu’s H [36], and the increased population differentiation (Fst)

[26,37] (see details of the analysis in Text S1). We did not observe

evidence of positive selection on this ADAR2 exon using these

metrics (see Figure S1A). Similarly, SNP-based tests did not

indicate evidence of positive selection for the alternative first exon

of p75TNFR (see Figure S1B), the result of another well-known

functional exonization event [8]. These data show the limitation of

using sequence-based approaches to identify functional Alu

exonization events.

A direct approach to assess the impact of individual Alu-derived

exons on mRNA and protein products is to examine the splicing

patterns of these exons in human tissues. Therefore, we proceeded

with a large-scale splicing analysis of Alu-derived exons, using

Affymetrix Exon array data of 330 exons in 11 human tissues and

RT-PCR experiments of 38 exons, described in detail below.

Affymetrix Exon Array Data on Alu-Derived Exons
To examine the splicing patterns of Alu-derived exons, we used

a public Affymetrix Exon 1.0 array data set on 11 human tissues

(breast, cerebellum, heart, kidney, liver, muscle, pancreas,

prostate, spleen, testes, thyroid) [38], with three replicates per

tissue. The Affymetrix human Exon 1.0 array is a high-density

exon-tiling microarray platform designed for genome-wide

analysis of pre-mRNA splicing, with over six million probes for

well-annotated and predicted exons in the human genome [39,40].

Most exons are targeted by a probeset of four perfect-match

probes.

We compiled a list of 330 Exon array probesets targeting the

330 Alu-derived exons (see details in Materials and Methods). In

each of the 330 probesets, we had at least three probes to infer the

splicing profile of the exon, after we filtered probes showing

abnormal intensities (Materials and Methods). Using a series of

statistical methods that we developed for Exon array analysis

[41,42], for each probeset targeting an Alu-derived exon, we

calculated the background-corrected intensities of its multiple

probes and the overall expression levels of the gene in 11 tissues.

These data were used to infer the splicing patterns of the exon.

Diverse Splicing Patterns of Alu-Derived Exons in 11
Human Tissues

A large fraction of the 330 Alu-derived exons had low probe

intensities in all surveyed tissues. Using a presence/absence call

algorithm we developed for Exon array analysis, which compares

the observed intensity of a probe to its predicted background

intensity, we summarized a probeset-level Z-score for each exon in

individual tissues as in [41]. A high Z-score suggests that the target

exon is expressed. 174 (53%) Alu exons had a Z-score of greater

than 6 in at least one tissue, including 119 (36%) exons whose Z-

score was greater than 10 in at least one tissue. We also applied the

same Z-score calculation to 37687 ‘‘background’’ probes on Exon

array. These probes do not match any known genomic and

transcript sequence in mammalian genomes [43], so we can use

their Z-score to estimate the false positive rate of the analysis. 5%

of the background probes had Z-score greater than 6 in at least

one tissue, including 3% whose Z-score was greater than 10 in at

least one tissue. Based on these false positive rate estimates, at the

Z-score cutoff of either 10 or 6, we estimated that 33%–48% of the

330 Alu-derived exons in our study were expressed in some of the

tissues. The remaining exons were not expressed at all or were

expressed at very low levels in these 11 adult tissues. Of course, this

is only a rough estimate, because the Z-score of individual

probesets could be affected by a variety of microarray artifacts

such as low probe-affinity or cross-hybridization [44,45]. Overall,

these data are consistent with the observation that most Alu-

derived exons had low transcript inclusion levels in EST databases

[4]. Such Alu-derived exons may represent non-functional

evolutionary intermediates that are rarely incorporated in the

transcripts [9]. It is also possible that some of these exons are

indeed expressed in other tissues or developmental states.

Despite the low transcript abundance of many Alu-derived

exons, a small fraction of exons showed highly correlated probe

intensities with the overall expression levels of their corresponding

genes across the surveyed tissues, suggesting stable exon inclusion.

We found 19 Alu-derived exons where three probes or more

correlated with gene expression levels, including the well-

characterized Alu-derived exon in ADAR2 (ADARB1) that inserts

an in-frame peptide segment to ADAR2’s catalytic domain [5].

Detailed descriptions of these 19 exons are provided in Table 2.

Among the 19 ‘‘correlated’’ exons, 12 were in the 59-UTR. One

exon was in 39-UTR and one exon was part of a non-coding

transcript. The remaining five exons were in coding regions,

including two that introduced premature termination codons. This

distribution is consistent with the hypothesis that most functional

Alu exonization events do not contribute to the proteome but may

play a role in regulating gene expression [46,47]. Similar to the

finding by a recent study of species-specific exons [48], we

observed an excess of Alu-derived internal exons in 59-UTR as

compared to 39-UTR. This may reflect stronger negative selection

pressure against exon creation in 39-UTR because such exons

could trigger mRNA nonsense-mediated decay. The 59-UTR Alu

exons may influence the transcriptional or translational regulation

of their host genes, as suggested by Goodyer and colleagues [49].

Several types of splicing patterns could explain the observed

correlation between probe intensities and estimated gene expres-

sion levels. These ‘‘correlated’’ exons could be constitutively

spliced, or alternatively spliced at similar levels across tissues, or

alternatively spliced but with certain variations in exon inclusion

levels from tissue to tissue. However, we could not distinguish

these situations based on Exon array data alone, since uncertain-

ties in microarray probe affinity [44] prevent estimations of the

absolute transcript abundance of individual exons.

To uncover the exact splicing patterns of the ‘‘correlated’’ exons

we analyzed all 19 exons by RT-PCR, using RNAs from all

available tissues surveyed by Exon array (purchased from

Clontech, Mountain View, CA) except breast tissue. For each

exon, we designed RT-PCR primers targeting its flanking

constitutive exons. The identities of all PCR products close to

the expected sizes of exon inclusion or skipping forms were further

confirmed by sequencing (Materials and Methods). We discovered

three major categories of splicing patterns in these 19 exons

(Table 2). Six exons (in FAM55C, NLRP1, ZNF611, ADAL,

RPP38, RSPH10B) were constitutively spliced. For example, the

four probes of an Alu-derived exon in NLRP1 had a minimal

correlation of 0.86 with the expression levels of NLRP1 in the

Exon array data (Figure 1A). Our RT-PCR analysis showed a

single isoform corresponding to the exon inclusion form in all

surveyed tissues (Figure 1B). In FAM55C, an Alu-derived exon

was shown previously to be included in the only isoform product in

a human neuroblastoma cell line [13]. We found all four probes of

this FAM55C exon had a minimal correlation of 0.78 with the

overall gene expression levels (Figure 1C). Our RT-PCR

experiments showed that this exon was constitutively spliced

(Figure 1D). In another three tested genes (SLFN11, NOX5,

Splicing Patterns of Alu Exons
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B3GALNT1), the Alu-derived exons were alternatively spliced,

but the transcript inclusion levels varied in individual tissues. For

example, the SLFN11 exon was included in the major transcript

product in most tissues but appeared as the minor form in

pancreas. We observed Alu exon inclusion isoforms of varying

lengths that resulted from alternative splice site usages of the Alu-

derived exon and its upstream alternative exon (Figure 1E). In

NOX5, a single exon-inclusion isoform was detected in most

tissues, but an additional exon-skipping isoform was detected in

liver, pancreas and testes (Figure 1F). In the remaining 10 tested

genes, the exons were alternatively spliced with varying levels of

transcript inclusion, but no exon showed evidence of tissue-

specificity in our semi-quantitative RT-PCR analyses (see Table 2

and Figure S2).

We also conducted RT-PCR analyses of 11 ‘‘uncorrelated’’

exons (Table S1). The lack of correlation between probe intensities

of an exon and overall gene expression levels can be due to a

number of reasons. If the target Alu-derived exon has very low

transcript inclusion levels, or if the probes have poor binding

affinity to the target exon, the intensities of the microarray probes

could be largely saturated by microarray noise, resulting in poor

correlation with the overall gene expression levels. It is also

possible that the correlation pattern of a highly expressed Alu-

derived exon is obscured due to microarrray artifact (such as cross-

hybridization) in a subset of samples. Thus, by analyzing

‘‘uncorrelated’’ exons, especially those with high probeset-level

Z-scores in individual tissues, we may discover additional Alu-

derived exons with high transcript inclusion levels. Indeed, among

six RT-PCR tested ‘‘uncorrelated’’ exons whose probeset-level Z-

score was greater than 7 in at least three tissues, we found two

constitutive exons, three exons with medium to high transcript

inclusion levels, as well as one exon in the minor transcript isoform

(see Table S1 and Figure S3). By contrast, among five exons whose

probeset-level Z-score was smaller than 3 in all 11 tissues

(suggesting weak exon inclusion), four exons had very weak

exon-inclusion transcripts in all surveyed tissues. The exon in

FAM124B had medium transcript inclusion levels (see Figure S3).

Taken together, our RT-PCR analysis of 19 ‘‘correlated’’ exons

and 11 ‘‘uncorrelated’’ exons indicates that a subset of Alu-derived

exons have acquired strong splicing signals, so that they are

included in the transcript products at high levels. Moreover, while

prior EST-based analyses suggested all Alu-derived exons to be

alternatively spliced [4], we provide experimental evidence that

some Alu-derived exons are constitutively spliced in a broad range

of normal human tissues.

Discovery of Tissue-Specific Alu-Exons
Our analysis of the ‘‘correlated’’ Alu exons revealed that some

exons had varying transcript inclusion levels in different tissues. It

is possible that exons with strong tissue-specific splicing patterns do

not have highly correlated intensities with the overall gene

expression levels, and were missed by the above analysis.

Therefore, we combined computational analysis and manual

inspection of Exon array data to specifically search for tissue-

specific exons (see Materials and Methods). We selected three

exons (in ICA1, ZNF254, FAM79B/TPRG1) that appeared to

exhibit strong tissue-specific splicing patterns for RT-PCR. We

also selected five other Alu-derived exons with prior experimental

evidence for exon inclusion in at least one tissue or cell line

[9,12,50,51], regardless of whether reliable Exon array probes

existed for these exons (Table 3). Our RT-PCR experiments

detected four exons with tissue-specific splicing patterns (also see

Figure S4 for the other four exons with no tissue-specificity). In

ICA1, the Exon array data suggested testes-specific exon inclusion
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(Figure 2A). The RT-PCR analysis detected a strong band

corresponding to the exon inclusion form specifically in the testes

(Figure 2B). In ZNF254, the RT-PCR analysis indicated strong

exon inclusion in cerebellum, which was consistent with the Exon

array profile (Figure 2C–D). We also found that this exon was

almost completely skipped in pancreas, although this pattern was

not observed in the Exon array data. In PKP2, the exon inclusion

form was shown to be the minor isoform in HT29, a colon cancer

cell line [9]. Our RT-PCR result showed that this exon was

skipped in all other surveyed tissues but was included in the minor

transcript product in the pancreas (Figure 2E).

Some tissue-specific Alu-derived exons have interesting func-

tional implications. For example, SEPN1 encodes selenoprotein N,

1, which is expressed in skeletal muscle and has been suggested to

play a role in protection against oxidant damage [50]. Mutations

in SEPN1 were linked to a form of congenital muscular dystrophy

[50]. SEPN1 is expressed as two alternatively spliced isoforms.

The full-length isoform contains an Alu-derived exon, which is

predicted to be the minor isoform based on EST data. The Alu-

derived exon contains a second in-frame TGA selenocysteine

residue. However, the protein product corresponding to the exon

inclusion isoform was not detected by Western blot in the HeLa

cell [52]. Our RT-PCR result indicated a strong muscle-specific

increase in the inclusion level of this Alu-derived exon (Figure 2F).

It will be interesting to investigate whether this splicing pattern

represents a mechanism for modulating SEPN1 activity in muscle.

To further elucidate the evolution of this muscle-specific Alu

exon in SEPN1, we obtained matching macaque and chimpanzee

tissues and analyzed the splicing pattern of this exon in primate

tissues using semi-quantitative RT-PCR as well as realtime

quantitative PCR (see Materials and Methods). RT-PCR analysis

of this exon in macaque tissues showed no exon inclusion (see

Figure 3B), consistent with the fact that this Alu exon was absent

from the corresponding SEPN1 region in the rhesus macaque

genome. In chimpanzees, both exon inclusion and skipping forms

were produced, but the exon inclusion levels were significantly

lower compared to human tissues based on the RT-PCR gel

pictures (Figure 3B). The splicing difference of this SEPN1 exon

between humans and chimpanzees was further confirmed by

realtime qPCR using isoform-specific primers (Figure 3C–D).

These data depict the evolutionary history during the creation of

an Alu-derived primate-specific exon and the establishment of its

tissue-specific splicing pattern. Our results suggest that the strong

transcript inclusion and muscle-specificity of the human SEPN1

exon was acquired after the divergence of humans and

chimpanzees.

Figure 1. Examples of ‘‘Correlated’’ Exons analyzed by Exon Array analysis, semi-quantitative RT-PCR and sequencing. A. Exon array
analysis of NLRP1. B. RT-PCR analysis of Alu-derived exon in NLRP1. C. Exon array analysis of FAM55C. D. RT-PCR analysis of Alu-derived exon in
FAM55C. E. RT-PCR analysis of Alu-derived exon in SLFN11. F. RT-PCR analysis of Alu-derived exon in NOX5. In Exon Array analysis, the bold line
represents the overall gene expression levels across all 11 tissues, each with 3 replicates; each of the fine lines represents the background corrected
intensities of a probe targeting the Alu-derived exon. The Pearson correlation coefficient of the individual probe’s intensities with the estimated gene
expression levels in 11 tissues is shown at the top right corner of each graph. In each gel figure, solid arrows show sequencing analysis confirmed Alu
exon inclusion forms. Hollow arrows show sequencing analysis confirmed Alu exon skipping forms.
doi:10.1371/journal.pgen.1000225.g001
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Characteristics of Alu-Derived Exons with Substantial
Transcript Inclusion Levels

In this study, we conducted RT-PCR analysis of 38 Alu-derived

exons in 10 human tissues. 26 of the 38 exons had at least medium

inclusion levels in certain tissues. These exons are in genes from a

wide range of functional categories (see the complete list in Table

S2). Analyses of these 26 exons revealed several interesting

characteristics. 23 of the 26 exons were derived from the antisense

strand of Alu elements, among which 14 were from the right arm

of the antisense Alu (see Figure S5), consistent with a recent report

that the right arm of Alu antisense strand is a hotspot for

exonization [53]. Moreover, of these 26 exons, 23 were from AluJ

class and 3 were from the AluS class. By contrast, in the total set of

Alu-derived exons in our study, 211 were from AluJ and 111 were

from AluS, a 4-fold shift in the ratio of AluJ to AluS (7.7 in the

‘‘substantially included’’ set versus 1.9 in the total set; P = 0.01,

one-tailed Fisher exact test). In the human genome, AluJ is

outnumbered by AluS at a ratio of 1 to 2.3 [14] (Figure 4). The

similar trend was also found in the 19 ‘‘correlated’’ exons; 16 were

from the AluJ class and 3 were from the AluS class. Taken

together, these data are consistent with the fact that AluJ is the

oldest Alu subclass in the human genome [54], so that exons

derived from AluJ elements had more evolutionary time to

accumulate nucleotide changes that strengthened exon inclusion in

the transcript products.

We did not observe a significant difference in the splice site

score and ESR density of the 26 substantially included Alu exons

compared to other Alu-derived exons (data not shown). This could

be due to the lack of statistical power. Alternatively, it may reflect

the current lack of knowledge of the complete set of cis-elements

that regulate splicing [55,56]. Future experimental studies (such as

mini-gene experiments) are needed to dissect the exact regulatory

elements important for strong transcript inclusion and/or tissue-

specific splicing of individual Alu-derived exons.

Discussion

Our study reveals diverse splicing patterns of exonized Alu

elements in the human transcriptome. Most new exons originated

from Alu elements probably represent non-functional splice forms

that are included in the transcripts at low frequencies [4,6].

However, a small subset of exonization events, in particular those

associated with more ancient Alu elements, could evolve strong

splicing regulatory signals to become constitutive or tissue-specific,

possibly driven by positive selection. The analysis of high-density

exon tiling array data across a broad range of tissues provides an

efficient approach to identify such exons. Considering the

incomplete coverage of Exon 1.0 arrays on human transcribed

regions, and the high noise in the observed intensities of probes

targeting individual exons [57,58], we expect that many

constitutive or tissue-specific Alu-derived exons are missed by this

Figure 2. Examples of tissue-specific Alu-derived exons analyzed by Exon Array analysis, semi-quantitative RT-PCR and
sequencing. A. Exon array analysis of ICA1 indicates a testes specific inclusion of Alu-derived exon. B. RT-PCR analysis of Alu-derived exon in ICA1. C.
Exon array analysis of ZNF254 indicates a cerebellum specific inclusion of Alu-derived exon. D. RT-PCR analysis of Alu-derived exon in ZNF254. E. RT-
PCR analysis of Alu-derived exon in PKP2. F. RT-PCR analysis of Alu-derived exon in SEPN1. In Exon Array analysis, the bold line represents the overall
gene expression levels across all 11 tissues, each with 3 replicates; each of the fine lines represents the background corrected intensities of a probe
targeting the Alu-derived exon. In each gel figure, solid arrows show sequencing analysis confirmed Alu exon inclusion forms. Hollow arrows show
sequencing analysis confirmed Alu exon skipping forms. Dashed arrows show sequencing analysis confirmed non-specific PCR products.
doi:10.1371/journal.pgen.1000225.g002
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study. Also, while we focus on primate-specific exons derived from

Alu repeats, a recent study by Alekseyenko and colleagues

identified nearly 3000 human-specific exons created by de novo

substitution in intronic regions during primate evolution [59].

With improved exon microarray platforms and analysis algorithms

in the future, more species-specific exons with regulatory roles are

likely to be discovered.

Our data provide novel insight into the evolutionary impact of

newly created exons in eukaryotic genomes. During evolution, new

exons are frequently added to existing functioning genes via a

variety of mechanisms, such as exonization of transposable

elements, exon duplication, and de novo exonization from intronic

regions [6]. Modrek and Lee found that the birth of new exons was

strongly coupled with widespread occurrence of alternative splicing

in eukaryotic genes [60]. Through pairwise comparisons of human

and rodent genomes, they showed that nearly 75% of human

alternatively spliced exons with low transcript inclusion levels were

absent from the corresponding genomic sequence of the rodent

orthologs. By contrast, the number was less than 5% for constitutive

exons [60]. This pattern was corroborated by subsequent analyses of

exon creation events in vertebrates using multiple genome

alignments [48,59]. Based on these observations, Modrek and Lee

proposed an evolutionary model that alternative splicing can

facilitate the evolution of new exons – the creation of a new exon

in the minor transcript isoform keeps the original gene product

Figure 3. Evolution of SEPN1 Alu-exon splicing in primates. A. The splicing pattern of SEPN1 Alu-derived exon. B. RT-PCR analysis of the
SEPN1 Alu-derived exon in human, chimpanzee and macaque tissues. The RT-PCR primer was designed from the upstream and downstream
constitutive exon on the human gene and matched perfectly to chimpanzee and macaque transcripts. C. Realtime qPCR primers that specifically
amplify exon inclusion and skipping forms. The reverse PCR primer for the skipping form was designed from the junction of upstream and
downstream constitutive exons. These PCR primers perfectly matched both human and chimpanzee transcripts. D. The ratio of exon inclusion/
skipping in human tissues and tissues of two chimpanzees estimated by realtime qPCR. The SEPN1 exon showed strong exon inclusion in human
muscle but not in chimpanzee muscle. C, cerebellum; K, kidney; L, liver; M, muscle.
doi:10.1371/journal.pgen.1000225.g003

Figure 4. Most Alu exons with substantial transcript inclusion
levels are derived from ancient Alu elements in the human
genome. Plotted here are distributions of AluJ Class and AluS Class in
the human genome, in Alu-derived internal exons, and in Alu-derived
exons with substantial transcript inclusion levels based on our RT-PCR
results. AluJ class is indicated by white column; AluS class is indicated
by hatched column.
doi:10.1371/journal.pgen.1000225.g004

Splicing Patterns of Alu Exons

PLoS Genetics | www.plosgenetics.org 9 October 2008 | Volume 4 | Issue 10 | e1000225



intact, which reduces the negative selection pressure against the new

exon, allowing it to evolve towards an adaptive function [10,60]. On

the other hand, this evolutionary model also predicts that the vast

majority of new exons found by comparative genomics analyses are

non-functional evolutionary intermediates. In fact, most previous

genomic studies have focused on the low transcript inclusion levels

of new exons [4,6,48,59,60]. It is unclear to what extent new exons

could have produced functional and regulatory novelties. In this

study, based on a large-scale splicing analysis of human tissues, we

show that a number of primate-specific exons derived from Alu

retrotransposons have a major impact on their genes’ mRNA/

protein products in a ubiquitous or tissue-specific manner. In

SEPN1, the strong transcript inclusion and muscle-specificity of the

Alu derived exon represents a human-specific splicing change after

the divergence of humans and chimpanzees. These data suggest that

some new exons may contribute to species-specific differences

between humans and non-human primates.

Our study has discovered a large list of Alu-derived exons with

substantial transcript inclusion levels. This exon list can be

valuable for a variety of further investigations. These exons

provide candidates for detailed mechanistic analyses and can be

used to characterize the splicing regulatory mechanisms of Alu-

derived exons. If suitable tissue samples from closely or distantly

related primate species are available, it will be possible to precisely

reconstruct the evolutionary events preceding the emergence of

constitutive or tissue-specific Alu-derived exons. Further experi-

mental studies will be needed to elucidate the functional

significance of individual exonization events (e.g. the muscle-

specific inclusion of the Alu-derived exon in SEPN1).

Materials and Methods

Compilation of Affymetrix Exon Array Data on Alu-
Derived Exons

We downloaded a public Affymetrix Exon 1.0 array data set on

11 human tissues (breast, cerebellum, heart, kidney, liver, muscle,

pancreas, prostate, spleen, testes, thyroid) [38], with three repli-

cates per tissue (http://www.affymetrix.com/support/technical/

sample_data/exon_array_data.affx).

We compiled a list of Exon array probesets targeting exonized

Alu elements. The locations of Alu elements in the human genome

were downloaded from RepeatMasker annotation of the UCSC

Genome Browser database [14]. The locations of internal exons

(i.e. exons flanked by both 59 and 39 exons) in human genes were

taken from the UCSC KnownGenes database [14]. This database

combines transcript annotations from multiple sequence databases

[14]. To eliminate long exonic regions likely resulting from intron

retention events, we removed probesets whose probe selection

regions were over 250 bp as in [61]. We then defined an exon as

Alu-derived if the Alu element covered at least 25 bp of the exon

and over 50% of the total length of the Exon array probe selection

region. We collected 526 Exon array probesets targeting such Alu-

derived exons. Since microarray probes targeting Alu repeats may

cross-hybridize to off-target transcripts, we used a conservative

approach to identify and remove individual probes showing

abnormal intensities (see ‘‘Analysis of Exon array data’’ below).

After probe filtering, we collected a final list of 330 Exon array

probesets, with at least three reliable probes in each probeset to

infer the splicing profiles of Alu-derived exons.

Collections of Constitutive Exons and Exon Skipping
Cassette Exons in the Human Genome

We collected 13103 constitutively spliced exons and 5389 exon-

skipping cassette exons in the human genome, after applying

stringent filtering criteria to exons in the Alternative Splicing

Annotation Project 2 (ASAP2) database [62]. ASAP2 determined

the splicing patterns of human exons based on the analysis of

mRNA/EST sequences [62]. Constitutive exons were defined as

those without any evidence of exon skipping in mRNA/EST data.

To ensure that no skipping form was missed due to incomplete

transcript sampling in EST databases, each constitutive exon

included in our study was required to have at least 50 exon

inclusion ESTs. We obtained 13103 high-confidence constitutive

exons using this criterion. For exon skipping cassette exons, we

collected 5389 ASAP2 exons with at least 3 inclusion ESTs and at

least 3 skipping ESTs.

Analysis of Exon Splicing Signals
For each exon, we scored its 59 and 39 splice sites using

consensus splice site models in MAXENT [15]. For 59 splice site,

we analyzed 3 nucleotides in exons and 6 nucleotides in introns.

For 39 splice sites, we analyzed 3 nucleotides in exons and 20

nucleotides in introns. We also calculated the density of exonic

splicing regulatory elements (ESRs). Two sets of elements were

used separately: (i) 285 exonic splicing regulatory elements from

Goren et al [16]; (ii) 238 exonic splicing enhancers from

Fairbrother et al [63]. For each exon, the ESR density was

calculated as the number of nucleotides covered by ESRs, divided

by the total length of the exon.

Analysis of Nucleotide Substitution Rate during Primate
Evolution

To determine the nucleotide substitution rate of exons in

primates, we downloaded and analyzed the UCSC pairwise

genome alignments of the human genome (hg18) to the genomes

of chimpanzee (panTro2), orangutan (ponAbe2), rhesus macaque

(rheMac2) and marmoset (calJac1) [64]. In each pairwise

alignment, we defined an exon to be conserved in a non-human

primate if there was at least one homologous region that covered

at least 80% of the human exon with at least 80% sequence

identity. We included a conserved exon in the nucleotide

substitution rate analysis if there was a single (unambiguous)

homologous region in the genome alignment. For such exons, we

calculated the nucleotide substitution rate between the human

genome and the genome of a non-human primate as the number

of conserved nucleotide within the aligned region, divided by the

total length of the aligned region. The alignment analysis was

performed using Pygr [65], a python bioinformatics library that

provided efficient access to alignment intervals in the UCSC

genome alignments.

Analysis of Exon Array Data
Briefly, we first predicted the background intensities of

individual Exon array probes, using a sequence-specific linear

model [41,66] trained from ‘‘genomic’’ and ‘‘anti-genomic’’

background probes on the Exon 1.0 array [43]. For every probe,

the predicted background intensity was an estimate for the amount

of non-specific hybridization to the probe. This background

intensity was subtracted from the observed probe intensity before

downstream analyses [41]. Second, for each gene we used a

correlation-based iterative probe selection algorithm to construct

robust estimates of overall gene expression levels, independent of

splicing patterns of individual exons [42]. Third, since oligonu-

cleotide probes for Alu-derived exons may be more likely to cross-

hybridize than typical Exon array probes, we used two

independent methods to identify and remove individual probes

with abnormal probe intensities. We searched all 25mer

Splicing Patterns of Alu Exons
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oligonucleotide probes against all RefSeq-supported exon regions,

allowing up to 3 bp mismatches. Once a potential off-target gene

was found for a probe, we calculated the Pearson correlation

coefficient between the probe’s intensities and the off-target gene’s

estimated expression levels across the 11 tissues [45]. We defined a

probe to be cross-hybridizing if there was an off-target gene within

3 bp mismatches, and if the computed Pearson correlation

coefficient was above 0.55. Such probes were removed from

further analyses. We also detected probes whose intensities were

higher than 95% of all other probes for RefSeq-supported exons of

the same gene in at least 3 of the 11 tissues. Such probes were

regarded as outlier probes and were also removed. After probe

filtering, we collected a final list of 330 Exon array probesets, with

at least three reliable probes in each probeset to infer the splicing

profiles of Alu-derived exons.

For each Alu-derived exon, using a presence/absence call

algorithm that compares the observed intensity of a probe to its

predicted background intensity, we summarized a probeset-level

Z-score for exon expression in individual tissues as in [41]. We also

calculated the Pearson correlation co-efficient of individual probes’

intensities with the overall gene expression levels in 11 tissues

(estimated from all exons of a gene, see [41,42]). We defined a

probe to be ‘‘correlated’’ with gene expression levels if the Pearson

correlation co-efficient was above 0.6. We defined an exon to be

‘‘correlated’’ if it had at least three probes correlated with gene

expression levels.

We used a two-step approach to identify strong tissue-specific

exons, by combining computational analysis and manual inspec-

tion of Exon array data. For each probe of an exon in a tissue, we

calculated a ‘‘splicing index’’, defined as the background-corrected

probe intensity divided by the estimated gene expression level [40].

We used a Z-score method used by Graveley and colleagues [67]

to test whether the splicing index of a particular tissue was an

outlier compared to other tissues . A highly positive Z-score

suggests tissue-specific exon inclusion. After this initial computa-

tional screening, we manually inspected the Exon array data of

potential tissue-specific exons.

RT-PCR and Sequencing Analysis of Alu-Derived Exons in
Ten Human Tissues

Total RNA samples from 10 human tissues were purchased

from Clontech (Mountain View, CA). Single-pass cDNA was

synthesized using High-Capacity cDNA Reverse Transcription

Kit (Applied Biosystems, Foster City, CA) according to manufac-

turer’s instructions. For each tested Alu-derived exon, we designed

a pair of forward and reverse PCR primers at flanking constitutive

exons using PRIMER3 [68]. Primer sequences and positions are

described in Table S3. Two mg of total RNA were used for each

20 ul cDNA synthesis reaction. For each candidate Alu exoniza-

tion event, 1 ml of cDNA were used for the amplification in a 25 ml

PCR reaction. PCR reactions were run for 40 cycles in a Bio-Rad

thermocycler with an annealing temperature of 62uC. The

reaction products were resolved on 2% TAE/agarose gels. All of

the candidate DNA fragments corresponding to exon inclusion

and exon skipping forms were cloned for sequencing using Zero

Blunt TOPO PCR Cloning Kit (Invitrogen, Carlsbad, CA).

Real-Time qPCR Quantification of SEPN1 Exon Inclusion
Level in Primate Tissues

Total RNA samples from rhesus macaque tissues (brain, skeletal

muscle, pancreas) were purchased from Biochain Inc (Hayward,

CA). Frozen tissue samples (cerebellum, skeletal muscle, liver,

kidney) of two chimpanzees were generously provided by

Southwest National Primate Research Center (San Antonio,

TX). RNA was prepared using TRIzol (Invitrogen) according to

the manufacturer’s instructions. Single-pass cDNA was synthesized

using the High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems, Foster City, CA). The quantitative real-time

polymerase chain reaction (qRT-PCR) was performed using

Power SYBR Green PCR Master Mix (Applied Biosystems,

Foster City, CA). The following primers were used in qRT-PCR:

SEPN1 Exon 3 skipping form: forward: 59-GGGACA-

GATGGCCTTTTTCT-39; reverse: 59-AGTTGACCCTGT-

TAGCTTCTCAG-39 ; SEPN1 Exon 3 inclusion form: forward

59- GGAGTTCAAACCCATTGCTG -39; reverse: 59- AATT-

GAGCCAGGGAAGTTGA -39. These qPCR primers match

perfectly to their transcript targets in human and chimpanzee.

Using a mathematical method described by Pfaffl [69], we

calculated and presented the SEPN1 exon 3 inclusion level as a

ratio to the exon 3 skipping level in each sample.

Supporting Information

Figure S1 Negative natural log of P-values of population genetic

measures around 2 Mbp regions of the Alu-exons of ADARB1 (A)

and p75TNFR (B). Red vertical line indicates the position of the

exon. Each point on the y-axis for these plots represents the

negative natural log of P-value of the corresponding measures over

the distribution of the same measures obtained from 1000

randomly selected constitutive exons (see Supplemental Methods

for details). The four panels represent SNP heterozygosity (Het),

Tajima’s D, Fay and Wu’s H, and FST. The first three are

displayed for CEU and YRI populations. The green lines

represent the CEU and the black lines represent YRI HapMap

populations. The FST plot shows comparison between CEU and

YRI populations. Note that ln(P) = 4 is equivalent to the P-value of

0.0183, thus none of the statistics around this exon is a significant

outliner compared to genome-wide averages.

Found at: doi:10.1371/journal.pgen.1000225.s001 (0.03 MB PDF)

Figure S2 Additional ‘‘correlated’’ exons analyzed by Exon

Array analysis, semi-quantitative RT-PCR and sequencing. A.

Exon array analysis B. RT-PCR analysis of Alu-derived exons.

Solid arrows show sequencing analysis confirmed Alu exon

inclusion forms. Hollow arrows show sequencing analysis

confirmed Alu exon skipping forms. Dashed arrows show

sequencing analysis confirmed non-specific PCR products.

Found at: doi:10.1371/journal.pgen.1000225.s002 (0.52 MB PDF)

Figure S3 ‘‘Uncorrelated’’ exons analyzed by semi-quantitative

RT-PCR and sequencing. RT-PCR analysis of Alu-derived exon

in A. z-score,3 in 11 tissues (suggesting weak exon inclusion in all

tissues) B. z-score.7 in at least 3 tissues (suggesting strong or

medium exon inclusion in some tissues). Solid arrows show

sequencing analysis confirmed Alu exon inclusion forms. Hollow

arrows show sequencing analysis confirmed Alu exon skipping

forms. Dashed arrows show sequencing analysis confirmed non-

specific PCR products.

Found at: doi:10.1371/journal.pgen.1000225.s003 (0.29 MB PDF)

Figure S4 Four exons with no conclusive evidence for tissue-

specificity by semi-quantitative RT-PCR. RT-PCR analysis of

Alu-derived exon in A. RPE. B. SUGT1. C. FAM79B/TPRG1.

D. BCL2L13. Solid arrows show sequencing analysis confirmed

Alu exon inclusion forms. Hollow arrows show sequencing analysis

confirmed Alu exon skipping forms. Dashed arrows show

sequencing analysis confirmed non-specific PCR products.

Found at: doi:10.1371/journal.pgen.1000225.s004 (0.13 MB PDF)

Splicing Patterns of Alu Exons

PLoS Genetics | www.plosgenetics.org 11 October 2008 | Volume 4 | Issue 10 | e1000225



Figure S5 Schematic diagram of the location and orientation of

the Alu-derived exons with respect to the Alu elements. Filled

black box represents Alu-derived exon. Empty box represents the

full-length Alu element as annotated by UCSC Genome Browser.

The orientation of ‘ALU’ in the empty box represents the

orientation of the exon with respect to the Alu element (sense or

antisense).

Found at: doi:10.1371/journal.pgen.1000225.s005 (0.01 MB PDF)

Table S1 RT-PCR analysis of Alu-derived exons whose Exon

array probe intensities are uncorrelated with overall gene

expression levels.

Found at: doi:10.1371/journal.pgen.1000225.s006 (0.02 MB PDF)

Table S2 Substantially included Alu-derived exons detected by

RT-PCR analysis.

Found at: doi:10.1371/journal.pgen.1000225.s007 (0.02 MB PDF)

Table S3 RT-PCR primers and PCR product sizes of all tested

Alu-derived exons.

Found at: doi:10.1371/journal.pgen.1000225.s008 (0.06 MB PDF)

Text S1 Supplemental methods. (Exon-centered genomic scan

for positive selection in ADARB1 and p75TNFR).

Found at: doi:10.1371/journal.pgen.1000225.s009 (0.10 MB PDF)
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