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Abstract

We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately
and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical
framework for detecting an individual’s presence within a mixture, then show, through simulations, the limits associated
with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific
individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than
0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors
within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA
sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele
frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these
findings are discussed.
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Introduction

Resolving whether an individual’s genomic DNA is present at

trace amounts within a complex mixture containing DNA from

numerous individuals is of interest to multiple fields. Within

forensics, determining whether a person contributed their DNA to

a mixture is typically a manual process that requires extensive

experience and careful training. Furthermore, different laborato-

ries can often come to different conclusions due to differences in

methodology or lab intervariability. In large part, forensically

identifying whether a person is contributing less than 10% of the

total genomic DNA to a mixture is not easily done, is difficult to

automate, and is highly confounded with the inclusion of more

individuals. Within the field of forensics, as well as the field of

human genetics, there is a base assumption that it is not possible to

identify individuals using pooled data (e.g. allele frequency) from

SNP data. In this paper we investigate the accuracy of such

assumptions.

Numerous methods examining DNA mixtures currently exist,

most of these addressing mixtures with smaller numbers of

individuals within forensics studies [1–3]. Using short tandem

repeats (STR) is a common method to generate DNA genotyping

profiles and allows for identification of the various alleles and their

relative quantity within the mixture [4–7]. Frequently, STRs on

the Y chromosome are useful when resolving the male

components of the mixture [8]. Nevertheless, these methods based

on STRs expectedly suffer from limited power when using severely

degraded DNA [8,9]. Mitochondrial DNA (mtDNA) based on

hypervariable region sequencing is useful when analyzing

degraded DNA due to its high copy number and improved

stability. Profiles for mtDNA can also be combined with STR

analysis for better identification [10]. Nonetheless, mtDNA has

weaknesses, including the uniparental mode of inheritance and

lower discrimination power that can be moderately mediated by

using the whole mitochondrial genome or known surrounding

single nucleotide polymorphisms (SNPs) [11,12]. Informative

SNPs have been used to help resolve problems with using mtDNA

[11,13,14] but have not been used wholly or separately as the

discriminatory factor, or on the same scale as we propose.

In this study, we assess the feasibility of using hundreds of

thousands of SNPs assayed on a high-density microarray as a

means to resolve trace contributions of DNA to a complex

mixture. High-density SNP genotyping arrays have predominately

been developed as tools for geneticists to identify common genetic

variants that predispose an individual to disease. In the context of

forensic mixtures, SNPs are traditionally analyzed by genotype
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(e.g. AA, AT, or TT) and thought to be non-ideal for resolving

mixtures. In fact, it is argued that their poor performance in the

analysis of mixed DNA samples is one of the primary reasons SNP

genotyping arrays have not become adopted by the forensics

community [8,15]. However, most SNP assays are inherently

quantitative at one or both alleles, requiring a genotype calling

algorithm to digitize the inherently analog information of a SNP

assay [16]. Within this paper, we specifically exploit raw allele

intensity measures for analysis of DNA with mixed samples.

We demonstrate an approach for rapidly and sensitively

determining whether a trace amount (,1%) of genomic DNA

from an individual is present within a complex DNA mixture. We

focus on solving the problem forensically, whereby the problem is

much more difficult due to the multiple sources of experimental

noise that would further mask identification. Our method can be

interpreted as a cumulative analysis of shifts in allele probe

intensities in the direction of the individual’s genotype. Similarly,

we can also interpret our method as measuring the difference of

two distances: the distance of the individual from a reference

population and the distance of an individual from the mixture.

Our method does not require knowledge of the number of

individuals in the mixture and we demonstrate robustness for

discriminating mixtures composed of over a thousand individuals.

We first give a theoretical justification for our method with

modifications for known factors including homogeneity of the

mixture and accuracy of our reference populations. We then

proceed to simulate the effects of three combinations of variables

when using SNP microarrays, including probe measurement noise,

fraction of the person of interest’s DNA in the mixture, and the

number of SNPs probed. Finally in a series of proof-of-principle

experiments using both Affymetrix and Illumina microarrays, we

demonstrate resolving whether an individual is within a series of

complex mixtures (2 to 200 individuals) when the individual

contributes trace levels (at and below 1%) of the total genomic

DNA. We finally discuss the implications of these results in the

context of forensics and population genetics.

Methods

Complex Mixture Constructions
A total of 8 complex mixtures were constructed (See Table 1).

All DNA samples were checked for concentration in triplicates

using the Quant-iT PicoGreen dsDNA Assay Kit by Invitrogen

(Carlsbad, CA). For accuracy, an eight point standard curve was

prepared using Human Genomic DNA from Roche Diagnostics

(Cat#: 11691112001, Indianapolis, IN). The median concentra-

tions were calculated for each individual DNA sample.

Mixtures A1, A2, B1, and B2: Equimolar Mixtures of
HapMap Individuals

Shown in Table 1, two main mixtures (mixtures A and B) were

composed in duplicates resulting in a total of 4 mixtures. Mixture

A was composed of 41 HapMap CEU individuals (14 trios minus

one individual) and mixture B was composed of 47 HapMap CEU

individuals (16 trios minus one individual).

Mixture C1: 90% NA12752 and 10% NA07048
Two CEU males were combined in a single mixture so that one

individual (NA12752) contributed 90% (675 ng) of the DNA in the

mixture, while the other individual (NA07048) contributed only

10% (75 ng) DNA into the mixture by concentration.

Table 1. Mixtures are composed partially of HapMap individuals empirically evaluated on the Illumina 550 K v3, Illumina 450S
Duo, and Affymetrix 5.0 microarrays.

Name Description Illumina Affymetrix

550 K 450S 5.0

Mixture A Equimolar pool. Equimolar mixture of 41 CEU individuals (14 Trios minus one individual) Yes No Yes

Mixture B Equimolar pool. Equimolar mixture of 47 CEU individuals (16 Trios minus one individual) Yes No Yes

Mixture C 2-person mixture. 90% one CEU individual, 10% a second CEU individual Yes No Yes

Mixture D 2-person mixture. 99% one CEU individual, 1% a second CEU individual Yes No Yes

Mixture E Complex mixture. Mixture with 184 individuals at ,0.2% each, and 41 individuals from Mixture A at ,1% each. Yes No No

Mixture F Complex mixture. Mixture with 184 individuals at ,0.2% each, and 47 individuals from Mixture B at ,1% each. Yes No Yes

Mixture G Complex mixture. Mixture with 184 individuals at ,0.2% each, and 41 individuals from Mixture B at ,0.1% each. No Yes No

Mixture H Complex mixture. Mixture with 184 individuals at ,0.5% each, and 47 individuals from Mixture B at ,0.1% each. No Yes No

doi:10.1371/journal.pgen.1000167.t001

Author Summary

In this report we describe a framework for accurately and
robustly resolving whether individuals are in a complex
genomic DNA mixture using high-density single nucleo-
tide polymorphism (SNP) genotyping microarrays. We
develop a theoretical framework for detecting an individ-
ual’s presence within a mixture, show its limits through
simulation, and finally demonstrate experimentally the
identification of the presence of genomic DNA of
individuals within a series of highly complex genomic
mixtures. Our approaches demonstrate straightforward
identification of trace amounts (,1%) of DNA from an
individual contributor within a complex mixture. We show
how probe-intensity analysis of high-density SNP data can
be used, even given the experimental noise of a
microarray. We discuss the implications of these findings
in two fields: forensics and genome-wide association
(GWA) genetic studies. Within forensics, resolving whether
an individual is contributing trace amounts of genomic
DNA to a complex mixture is a tremendous challenge.
Within GWA studies, there is a considerable push to make
experimental data publicly available so that the data can
be combined with other studies. Our findings show that
such an approach does not completely conceal identity,
since it is straightforward to assess the probability that a
person or relative participated in a GWA study.

Resolving Complex Mixtures
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Mixture C2: 90% NA10839 and 10% NA07048
Two CEU individuals, a female and a male, were combined in a

single mixture so that one individual (NA10839) contributed 90%

(675 ng) of the DNA in the mixture, while the other individual

(NA07048) contributed only 10% (75 ng) DNA into the mixture

by concentration.

Mixture D1: 99% NA12752 and 1% NA07048
Two CEU males were combined in a single mixture so that one

individual (NA12752) contributed 99% (742.5 ng) of the DNA in

the mixture, while the other individual (NA07048) contributed

only 1% (7.5 ng) DNA into the mixture by concentration.

Mixture D2: 99% NA10839 and 1% NA7048
Two CEU individuals, a female and a male, were combined in a

single mixture so that one individual (NA10839) contributed 99%

(742.5 ng) of the DNA in the mixture, while the other individual

(NA07048) contributed only 1% (7.5 ng) DNA into the mixture by

concentration.

Mixture E: 50% Mixture A1 and 50% Mixture of 184
Equimolar Caucasians

Two mixtures were combined into a single mixture so that each

of the original mixtures contributed the same amount of genomic

DNA by volume into the final mixture. CAU2 mixture contained

184 Caucasian control individuals obtained from the Coriell Cell

Repository. Mixture A1 was constructed as above and contained

41 CEU individuals.

Mixture F: 50% Mixture B2 and 50% Mixture of 184
Equimolar Caucasians

Two mixtures were combined into a single mixture so that each

mixture contributed the same amount of genomic DNA by volume

into the final mixture. CAU3 mixture contained 184 Caucasian

control individuals obtained from the Coriell Cell Repository.

Mixture B2 was constructed as above.

Mixture G: 5% Mixture A2 and 95% Mixture of 184
Equimolar Caucasians

Two mixtures were combined into a single mixture with

Mixture A2 comprising of 5% of the mixture and the CAU3

comprising of 95% of the mixture. CAU3 mixture contained 184

Caucasian control individuals obtained from the Coriell Cell

Repository. Mixture A2 was constructed as above.

Mixture H: 5% Mixture B1 and 95% Mixture of 184
Equimolar Caucasians

Two mixtures were combined into a single mixture with

Mixture B1 comprising of 5% of the mixture and the CAU2

comprising of 95% of the mixture. CAU2 mixture contained 184

Caucasian control individuals obtained from the Coriell Cell

Repository. Mixture B1 was constructed as above.

Genotyping
Four cohorts were assayed on the Illumina (San Diego, CA)

HumanHap550 Genotyping BeadChip v3, one cohort was assayed

on the Illumina (San Diego) HumanHap450S Duo, and three

cohorts were assayed on the Affymetrix (Emeryville, CA) Genome-

Wide Human SNP 5.0 array, with each cohort being assayed on a

single chip. Probe intensity values were extracted for analysis from

the file folders generated by the BeadScan software for the

Illumina platform, and from Affymetrix GTYPE 4.008 software

for the Affymetrix data, as described in previous studies [6].

Theoretical Derivation of Test-Statistic
We recognize there are multiple approaches to derive a test-

statistic to evaluate the hypotheses that a person is within a

mixture, and these are discussed further in later sections. In this

primary approach we take a frequentist rather than a Bayesian

approach, recognizing that both are possible and each has unique

advantages.

An overview of our approach is described in Figure 1, and this

method can be summarized as the cumulative sum of allele shifts

over all available SNPs, where the shift’s sign is defined by whether

the individual of interest is closer to a reference sample or closer to

the given mixture. We first introduce our method in terms of

genotyping a given SNP for a single person, which addresses the

original design of SNP genotyping microarrays for the field of

human genetics. We then proceed to adapt our method for

mixtures and pooled data.

Current genotyping microarray technology can assay millions of

SNPs. Genotypes are expected to result from an assay and data is

categorical in nature, e.g. AA, AB, BB, or NoCall where A and B
symbolically represent the two alleles for a biallelic SNP. However,

as evident from copy number, calling algorithm, and pooling-

based GWA studies [6,17], raw preprocessed data from SNP

genotyping arrays is typically in the form of allele intensity

measurements that are proportional to the quantity of the ‘‘A’’ and

‘‘B’’ alleles hybridized to a specific probe (or termed features) on a

microarray [16]. Individual probe intensity measurements are

derived from the fluorescence measurement of a single bead (e.g.

Illumina) or 5 micron square on a flat surface (e.g. Affymetrix). On

a genotyping array, multiple probes are present per SNP at either

a fixed number of copies (Affymetrix) or a variable number of

copies (Illumina). For example, recent generation Affymetrix

arrays typically have 3 to 4 probes for the A allele and B allele

respectively, whereas Illumina arrays have a random number of

probes averaging approximately 18 probes per allele. With

500,000+ SNPs, there are millions of probes (or features) on a

SNP genotyping array. One should note that there are

considerably different sample preparation chemistries prior to

hybridization between SNP genotyping platforms and thus probes

behave differently on the respective platforms.

Before we discuss resolving mixtures, we summarize ‘genotype

calling’ in the context of data from a single individual at a single

SNP. SNP genotyping algorithms typically begin by transforming

normalized data into a ratio or polar coordinates. For simplicity,

we will utilize a ratio transformation Yi = Ai/(Ai+kiBi), where Ai is

the probe intensity for the A allele and B is the probe intensity for

the B allele for the jth SNP. Multiple papers have shown that Yj

transformation approximates allele frequency, where kj is the SNP

specific correction factor accounting for experimental bias and is

easily calculated from individual genotyping data [6,17]. Thus

with this transformation, Yi is an estimate of allele frequency

(termed pA) for each SNP. Since most individuals contain two

copies of the genome for autosomal SNPs, values for the A allele

frequency (pA) in a single individual may be 0%, 50%, or 100% for

the A allele at AA, AB, or BB, respectively. Equivocally Yi will be

approximately 0, 0.5, or 1, varying from these values due to

measurement noise. By example and assuming kj = 1, probe

intensity measurements of Aj = 450 and Bj = 550 yield Yj = 0.45 and

this SNP would be likely called AB. For a single individual, we thus

expect to see a trimodal distribution for Y across all SNPs since

only AA, AB, or BB genotype calls are expected. However, in a

mixture of multiple individuals, the assumptions of the genotype-

Resolving Complex Mixtures
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calling algorithm are invalid, since only AA, AB, BB, or NoCall
are given regardless of the number of pooled chromosomes.

However, this does not prevent us from extracting information

and meaning from the relative probe intensity data. In our

approach, we compare allele frequency estimates from our

mixture (termed M, where Mi = Ai/(Ai+kiBi)) to estimates of the

mean allele frequencies of a reference population. The selection of

the reference population is important and will be discussed later.

For now, we assume that the reference population has a similar

ancestral make-up as that of the mixture. We refer to having

similar population substructure, ethnicity, or ancestral components

interchangeably, and define similar ancestral components for an

individual or mixture as having similar allele frequencies across all

SNPs. We let Yi,j be the allele frequency estimate for the individual

i and SNP j, where Yi,jM{0,0.5,1}, from a SNP genotyping array.

We then compare absolute values for two differences. The first

difference |Yi,j2Mj| measures how the allele frequency of the

mixture Mj at SNP j differs from the allele frequency of the

individual Yi,j for SNP j. The second difference |Yi,j2Popj|

measures how the reference population’s allele frequency Popj

differs from the allele frequency of the individual Yi,j for each SNP

j. The values for Popj can be determined from an array of

equimolar pooled samples or from databases containing genotype

data of various populations. Taking the difference between these

two differences, we obtain the distance measure used for individual

Yi:

D Yi,j

� �
~ Yi,j{Popj

�� ��{ Yi,j{Mj

�� �� ð1Þ

Under the null hypothesis that the individual is not in the

mixture, D(Yi,j) approaches zero since the mixture and reference

population are assumed to have similar allele frequencies due to

having similar ancestral components. Under the alternative

hypothesis, D(Yi,j).0 since we expect that the Mj is shifted away

from the reference population by Yi’s contribution to the mixture.

In the case of D(Yi,j),0, Yi is more ancestrally similar to the

reference population than to the mixture, and thus less likely to be

in the mixture. Consistent with the explanation of Figure 1, D(Yi,j)

is positive when Yi,j is closer to Mj and D(Yi,j) is negative when Yi,j is

closer to Popj. By sampling 500 K+ SNPs, one would generally

expect D(Yi,j) to follow a normal distribution due to the central

limit theorem. In our analysis, we take a one-sample t-test for this

individual, sampled across all SNPs, and thus obtain the test

statistic:

T Yið Þ~
E D Yið Þð Þ{m0

SD D Yið Þð Þ=
ffiffi
s
p ð2Þ

In equation (2) we assume m0 is the mean of D(Yk) over

individuals Yk not in the mixture, SD(D(Yi)) is the standard

deviation of D(Yi,j) for all SNPs j and individual Yi, and s is the

number of SNPs. We assume m0 is zero since a random individual

Yk should be equally distant from the mixture and the mixture’s

reference population and so T Yið Þ~ E D Yið Þð Þ
SD D Yið Þð Þ=

ffiffi
s
p . Under the null

hypothesis T(Yi) is zero and under the alternative hypothesis

T(Yi).0. In order to account for subtle differences in ancestry

between the individual, mixture, and reference populations among

other biases we normalize our allele frequency estimates to a

reference population.

Ancestry and Reference Populations
Different populations will have different mean SNP allele

frequencies based on ancestry, admixture, and population

bottlenecks. An obvious assumption of this type of analysis is that

the reference population must be either (a.) accurately matched in

terms of ancestral composition to the mixture and person of

interest or (b.) limited to analysis of SNPs with minimal (or known)

bias towards ancestry. It is first important to recognize that any

single SNP will have only a small effect on the overall test-statistic.

Moreover, it is realistic that ancestry of the reference population

could be determined by analysis of a small subset of SNPs,

followed by analysis of a person’s contribution to the mixture with

a separate set of SNPs (recognizing that nearly 500,000 SNPs are

assayed). In the absence of SNP-specific ancestral information

Figure 1. To give insight into the intuition behind our method, we present for a given SNP three different scenarios for the possible
allele frequency of the person of interest corresponding to the genotypes AA, AB, and BB. The allele frequencies of the reference
population, person of interest, and the mixture are described as Mi, Yi, and Popi respectively. We see that the distance measure is greater (and
positive) when the Yi of the person of interest is closer to the Mi of the mixture than to the Popi of the reference population. Similarly, the distance
measure is smaller (and negative) when the Yi of the person of interest is closer to the Popi of the reference population than to Mi of the mixture. Our
test statistic is then the z-score using this distance measure.
doi:10.1371/journal.pgen.1000167.g001
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towards allele frequency as was assumed in our study, we can also

use normalization methods that leverage the fact that we have

assayed hundreds of thousands of SNPs and consequentially have

largely sampled the distribution of the test-statistic. In essence, we

fit the test-statistic to a second reference population matched to the

individual of interest to account for ancestry differences that do not

effect the overall distribution of allele frequencies. Thus under the

assumption of similar test-statistic distributions, normalizing SNP

data from the mixture to a reference population reduces the effect

of systematic biases on allele frequency from the microarray or, to

an extent, towards ancestry at a cost of power.

While not necessary in this study, the effect of ancestry on allele

frequency could be more directly managed by SNP selection

combined with extensive allele frequency data across multiple

ancestrally diverse populations. Ideally, one would use a subset of

SNPs to identify ancestry of the individual and then match them to

a reference population. Moreover, SNPs that are stable for allele

frequency across populations (low Fst) or at have a common

distribution of allele frequencies would be preferable. Identifying

such a set of SNPs and more appropriately considering ancestral

biases are reserved for future database studies whereby genotype

data of an ancestrally diverse set of individuals is available.

Software
Pre-compiled UNIX binaries are available for a software

implementation of our method and can be found at http://

public.tgen.org/dcraig/deciphia. Our software is able to run

analysis using raw data from either Affymetrix or Illumina or by

using genotype calls. The software is also able to normalize our test

statistic using the reference population and/or adjust the mean test

statistic using a specified individual. Additionally, the user can

restrict the SNPs considered to a subset of the total available SNPs.

For raw input data we are able to match the distribution of signal

intensities for each raw data file to that of the mixture input file

(see platform specific analysis). Finally, multiple test statistics and

distance calculations are implemented including our original test

statistic, Pearson correlation, Spearman rank correlation and

Wilcoxon sign test.

Platform Specific Analysis
With the Affymetrix platform we were able to use genotypes for

each individual and found similar results with the Illumina

platform. Additionally, we were able to use the raw CEL files from

the HapMap dataset [18] found at http://www.HapMap.org. To

overcome the differences in distribution of signal intensity between

CEL files, we matched the distribution of the signal intensities to

the distribution of the mixture’s CEL file. This was achieved by

ordering allele frequencies on a given chip (and allele frequencies

in the mixture). We then substituted the ith allele frequencies from

the mixture of interest for the ith allele frequencies for the given

chip. Without this adjustment, there was difficulty resolving any

individual in any mixture due to the fact that we did not account

for off-target cross-hybridization. This type of adjustment is the

preferred type of normalization method when raw data is available

for the mixture, person of interest, and reference population.

For the Illumina platform we used the genotypes from the

HapMap dataset [18] for both the person of interest and the

reference populations instead of raw intensity values as we had for

the Affymetrix platform. For the mixture we used raw intensity

values. This set of data mimics the case where raw data may not be

available but genotype calls are available. We use a simple method

to reduce errors between different microarrays, where we

normalize each microarray by dividing by the mean channel

intensity for each respective channel. This was performed on the

raw data for the mixture only. We note that this platform specific

adjustment is not needed when the raw data for a person’s

genotype is present on the same platform. In the Illumina specific

example, we utilized only the calls from the HapMap without

having platform specific genotype data. Theoretically, it should be

possible to use a library of Yi means for AA, AB, and BB to map

genotype calls to expected Yi values to each SNP for individually

genotyped samples, but this was not necessary for our analysis.

Simulation
Simulation was used to test the efficacy of using high-density

SNP genotyping data for resolving mixtures. The key variables of

the simulation are: the number of SNPs s, the fraction f of the total

DNA mixture contributed by our person of interest Yi, and the

variance or noise inherent to assay probes vp. In the simulations,

theoretical mixtures were composed by randomly sampling

individuals from the 58C Wellcome Trust Case-Control Consor-

tium (WTCCC) dataset [19]. After removing duplicates, relatives

and other data anomalies, a total of 1423 individuals remained for

sampling. The genotype calls for these individuals were provided

from the WTCCC and were previously genotyped on the

Affymetrix 500 K platform. Within each simulation, we randomly

chose N individuals to be equally represented in our mixture and

then computed the mean allele frequency (Yi) of our mixture for

each SNP. SNPs j with an observed Yij below 0.05 or above 0.95 in

the reference population were removed due to their potential for

having false positives and low inherent information content.

We then simulated a microarray that would contain a mean of

16 probes for simplicity, approximating the mean number of

probes found on the Illumina 550 K, Illumina 450S Duo and

Affymetrix 5.0 platforms (18.5, 14.5 and 4 respectively). For each

SNP j we added to the Yij of each probe a Gaussian noise based off

the previously measured probe variance. When fixed, we set probe

variance to 0.006 when simulating Affymetrix 5.0 arrays, and to

0.001 for both Illumina 550 K and Illumina 450S Duo arrays.

The allele frequency of the mixture was then calculated to be the

mean of these probe values. A mixture size of N is equivalent to

saying that an individual’s DNA represents f = 1/Nth of the total

DNA in the mixture. We tested equimolar mixtures ranging from

10 individuals to 1,000 individuals. Using this design, we tested

each individual for their presence where they contributed between

10% and 0.1% genomic DNA to the total mixture. To obtain

significance levels (p-values) for testing the null hypothesis, we

sampled from the normal distribution. We note that we do not

have enough samples to test the tail of our distribution and

therefore our p-values are not completely accurate (e.g. below

1026). Nonetheless, p-values are expected to be sufficiently

accurate to qualitatively assess the limits of our method.

Experimental Validation
To examine empirically the efficacy of our method we formed

various known mixtures of DNA from HapMap individuals and

genotyped the mixtures on three different platforms. Listed in

Table 1 and detailed in the methods are the compositions of the

different mixtures formed and the platforms they were assayed

across. The use of mixtures of HapMap individuals has several

advantages. First, we can be confident of the genotype calls

because in most cases more than one platform has been used to

identify the consensus genotype. Second, trios are available, which

allow for evaluation of identifying an individual using a relative’s

genotype data. Third, by using mixtures of multiple HapMap

individuals we can evaluate our ability to resolve each individual

within the mixture. Therefore we have constructed simple two-

person mixtures as well as complex mixtures containing contribu-
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tions from 40+ individuals. For each mixture, we used the

HapMap CEU individuals not present in the mixture as our

reference population for the mixture.

Results

Using the theoretical framework established in the methods, we

evaluated the feasibility of using high-density SNP genotyping data

to resolve complex mixtures. First, we constructed a series of

simulations to evaluate the theoretical limits of resolving an

individual within a mixture using the described analytical

framework and given characteristics of current generation SNP

genotyping microarrays. Second, we experimentally tested the

feasibility of detecting if an individual is contributing trace

amounts of DNA to highly complex mixtures. Within these

simulations and experimental tests, particular focus was given on

complex mixtures–those containing hundreds or thousands of

individuals. While these mixtures are more complex than those of

previous studies, they can be used to evaluate the theoretical

bounds of current technology and to justify the use of reduced

platforms for practical application. Conceptually, such approaches

may have utility in resolving a mixture of DNA from common

surfaces where many individuals have left DNA.

Simulation
We performed simulations to examine the trade-off between the

number of SNPs considered, the fraction of the DNA mixture

belonging to our person of interest, and the probe variance or

noise of the microarray.

Joint Adjustment of Mixture Fraction (f) and Number of

SNPs (s). We first examined the trade-off between the numbers

of SNPs considered versus the fraction of the DNA mixture

belonging to our person of interest. Clearly, we expect greater

ability to resolve individuals from a mixture when more SNPs are

used in the calculation, though the absolute limits of detection are

ultimately determined by the genetic variation of the population.

We assumed a variance (vp) for the estimated allele frequency of

each probe of 0.001, which follows closely our observed variance

(0.00158) of the Illumina 550 K platform across multiple arrays in

other genotyping studies. Figure 2a shows 10,000 simulations

ranging from s = 10 to s = 500,000 and f = 0.1 to f = 0.001, where

the Z-axis is the p-value. We see that with only 10,000 to 25,000

SNPs we were able to resolve mixtures where the person of interest

was less than 1% of the total mixture at a p-value of less than 1026.

To resolve mixtures where the person of interest is less than 1% of

the total mixture, conservatively 25,000 SNPs are required to

achieve a p-value of less than 1026. At the extreme, if we use all

the available SNPs, we can easily resolve mixtures where our

person of interest is less than 0.1% of the total mixture to achieve a

p-value of less than 1026.

Joint Adjustment of Probe Variance (vp) and Mixture

Fraction (f). In these simulations, we assume that we have

50,000 SNPs on each microarray (s = 50,000). While conceivably

we could use a much greater number of SNPs, the lower number

of SNPs would be more realistic in a setting where preference has

been given to SNPs whose allele frequencies minimally vary across

different populations. Figure 2b shows 10,000 simulations from

vp = 0.0001 to vp = 0.01 and f = 0.1 to f = 0.001. We see that within

a small amount of probe variance we are able resolve an individual

who comprises of one-thousandth of a mixture. If the probe

variance is below 0.001 we are able to easily resolve an individual

whose DNA comprises 10% to 0.1% of the mixture. Even with

increasing noise, we are still able to resolve mixtures where the

person of interest contributes less than 2.5% with a p-value of less

Figure 2. Simulation Results. Using 1423 Wellcome Trust 58C
individuals, we give log scaled p-values for simulations based on three
variables: the number of SNPs (s), the fraction of the individual in the
mixture (f), and the probe variance (vp). The graphs plot the
relationships between the three variables with a different variable
fixed in each graph. The log scaled p-values are represented by the
color of each point in the graph, as well as the z-axis on the right
graphs. These simulations suggest that we should be able to resolve
mixtures where a given individual is 0.1% of the mixture (f), probe
variance is at most 0.01 (vp) and the number of SNPs probed is 50,000
(s).
doi:10.1371/journal.pgen.1000167.g002
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than 1026. We also observe that the probe variance does not have

a large impact on the p-value, and in this case the fraction of the

mixture is the important factor when the number of SNPs is fixed.

Joint Adjustment of Number of SNPs (s) and Probe

Variance (vp). Finally we examined the trade-off between the

number of SNPs and the probe variance. We assume that our

person of interest contributes 1% to the mixture (f = 0.01).

Figure 2c shows 10,000 simulations from s = 10 to s = 500,000

and vp = 0.0001 to vp = 0.01. The probe variance has little effect on

the significance of the test. Consequently, it would be sufficient to

use 50,000 SNPs, even with very high levels of noise to resolve

mixtures of sizes up to 100. We note that within simulations the

number of probes is fixed to be 16, and thus the noise does not

affect the allele frequency estimate, as would be the case with

arrays using 4 probes.

Equimolar Mixtures versus Two-Person Mixtures. We

performed the same three simulation designs for mixtures that

only included two individuals. Instead of N = 1/f individuals

contributing equally to the mixture, we create mixtures where

individual one would make up (N21)/N of the mixture and

individual two would make up 1/N of the mixture. When the three

simulations were performed we observed an increase in

significance (smaller p-values). This gives further utility to the

method when there are a small number of total contributors with

the person of interest making up only a small fraction of the

mixture.

Conclusions from Simulations. Our simulations

demonstrate that 10,000 to 50,000 SNPs can resolve mixtures

where the genomic DNA of the person of interest composes 10%

to 0.1% of the DNA within the total mixture. Noise plays an

important but secondary role since microarray technologies such

as the Illumina 550 K and Illumina 450S Duo platforms have a

sufficiently large number of replicate probes compared to

population sampling variance. Another consideration is that the

choice of SNPs was not made with any specific intent and

therefore we could potentially reduce the number of SNPs

significantly if we choose the most informative SNPs, for

example by choosing a set of SNPs that do not vary across

differing populations.

Experimental Validation
To examine empirically the efficacy of our method we formed

various known mixtures of DNA from HapMap individuals and

genotyped the mixtures on three different platforms.

Resolving an Individual within Mixtures of 40+
Individuals. Figure 3 shows the test-statistic for each individual

within each mixture. Both individuals in the mixture and not in the

mixture were tested for presence within the mixture. On each

graph, the left y-axis represents the 2log p-value, the right y-axis

represents the normalized test-statistic S(Yi,j), and the bottom axis

represents each individual. We performed each experiment more

than once and thus we have multiples of 86 individuals indexed on

the bottom axis. For mixtures A, B, E, F, G and H, those in the

mixture are colored green and those not in the mixture are colored

red. All individuals in the mixtures composed of more than 40

individuals were identified with zero false positives.

Resolving Members within 2 Person Mixtures (f = 1% and

f = 10%). For mixtures C and D, those individuals who are not

in the mixtures are colored red, those individuals who are related

to a person in the mixture are colored orange, and those people in

the mixture are colored green. We were able to correctly identify

individuals within the mixture with zero false-positives except, as

expected, for relatives of individuals in the mixture, which appear

at a midpoint between those in and those not in the mixture.

Resolving an Individual from a Mixture using a Relative’s

Genotypes. It is interesting to observe that we have no false-

positives in the Mixture A, B, E, F, G or H but we do have false-

positives when considering Mixture C and D. This is not

unexpected since the HapMap CEU population is composed of

trios and we are in fact resolving that the mother or father of the

individual (a son or daughter) is in the mixture; the yellow and

orange marked individuals being observed as significant in

Figures 3a and 3c. Thus, we can easily resolve an individual

(son or daughter) even when using their mother’s or father’s

genotypes.

Resolving an Individual from a Mixture with 50,000

SNPs. In Figure 3a, we see that all the mixtures are able to be

resolved with no false-negatives when we use all 504,605 SNPs

present on the Illumina 550 K platform. We performed the same

analysis considering only 50,000 SNPs (see Figure 3b) and found

that the samples had the same degree of separation. Thus, even if

only a small fraction of the intended genotypes are generated (such

as in a degraded sample), identification of an individual in a

complex mixture is possible.

Resolving an Individual when Contributing Less than

1%. In Figure 3d, we consider mixtures G and H where the

fraction of DNA of each individual is between 0.15% and 0.25%

of the total mixture. We see that using all the SNPs available we

are able to resolve all the mixtures with no false-negatives on the

Illumina 450S Duo platform. We can therefore resolve an

individual even when the fraction of their DNA in the mixture

is less than 1%.

Discussion

Within this study, we develop a theoretical framework for

resolving mixtures using high-density SNP array data, use

simulation to test the limitations of these approaches, and

experimentally demonstrate rapid and robust determination of

whether individuals are within an assayed mixture. Our results

show a remarkable ability to identify trace amounts of an

individual’s DNA within highly complex mixtures. These results

further suggest novel forensic applications where the existence of

DNA from numerous other individuals currently hampers the

ability to identify the presence of any single individual.

Whereas few conclusions can be drawn by a SNP measurement

that is slightly biased (less than 1%) towards an individual’s

genotype, considerable confidence is gained by statistical analysis

of the cumulative aggregate of all measurements across millions of

SNPs. While in hindsight this conclusion seems obvious, it

represents a fundamental paradigm shift in thinking about the

utility of SNPs at resolving mixtures. The approach described here

uses the ratio of intensity measures from common biallelic SNPs.

As a result, one expects more robust scaling in DNA quantity or

quality at any given SNP. We assume neither a known number of

individuals present in the mixture nor the presence of equal

amounts of DNA from each individual within the mixture.

Described in simplistic terms, we determine whether a person is in

a mixture by comparing a statistically describable distance

measure between the individual and the mixture versus the

individual and the reference population.

The analytical framework presented within this study builds

upon pioneering approaches for assessing and quantifiably

calculating whether a person is within a mixture. These methods

have frequently employed match probability estimation after

inferring genotypes using STRs, where the probability of two

unrelated individuals sharing a combination of markers is

calculated [8]. Exclusion probabilities give a calculation based
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on the probability of excluding a random individual [20].

Nevertheless, many of these methods rely on assuming the

number of individuals in the mixture [1] (which is not necessary

in our analysis) and have been applied only to STR markers.

One can also consider using other statistical approaches. For

example, likelihood ratios are also commonly used when testing

which hypothesis is favored by DNA evidence [21]. Adapting to

the overall framework presented in this study, one might compute

the likelihood ratio of two hypotheses: the individual contributes to

the mixture and the individual does not contribute to the mixture.

The proper prior odds ratio can then be given based on the

current situation or context, and then would be combined with the

Figure 3. Experimental validation using a series of mixtures (see Methods A–F) assayed on the Affymetrix GeneChip 5.0, Illumina
BeadArray 550 and the Illumina 450S Duo Human BeadChip. The x-axis shows each individual in the CEU HapMap population, the left y-axis
shows the p-value (log scaled), and the right y-axis shows the value of the test statistic. For mixtures A, B, E and F those in the mixture are colored
green and those not in the mixture are colored red. For mixtures C and D those individuals who are not in the mixtures are colored red, those
individuals who are related to the 1% or 10% individuals in the mixtures are colored orange, those individuals who are related to the 90% or 99% are
colored yellow, and those people in the mixture are colored green. In all mixtures, the identification of the presence of a person’s genomic DNA was
possible.
doi:10.1371/journal.pgen.1000167.g003
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likelihood ratio to give a posterior odds ratio. In this approach,

using SNP microarrays for allele frequencies or allele counts could

be used to calculate the probability of the observed mixture’s allele

frequency or individual of interest’s genotype. This Bayesian

approach could build from the methods presented here and,

depending on the scenario, has attractive strengths including

creation of explicit hypotheses (e.g. that a person and/or related

individuals are within the mixture) and inclusion of specific priors

(e.g. informativeness towards ancestry SNPs). Overall, it is clear

there are multiple analytical methods for resolving complex

mixtures and depending on the objective, other methods may be

more suitable. Regardless of method, it is clear that the perception

that SNPs cannot be easily used to resolve mixtures is no longer

valid.

Given the results of this study, it is possible to speculate on

future research assessing the viability of using commonly handled

surfaces as a forensics source. In the context of degraded samples,

further research will be needed to choose which SNPs (of millions

assayed SNPs) provide sufficient amplifiable DNA or show less

allelic bias at low concentrations. Further, the theoretical

principles described here will apply to mitochondrial variants.

Regardless of the artifacts encountered, the large number of

assayed SNPs may allow for partitioning sets of SNPs for different

analyses, such that a small subset of SNPs becomes reserved for

detecting specific artifacts, such as biases in allele amplification or

ancestry. Additional areas of future research include conversion

tables using haplotype or imputation frameworks to convert

between SNPs and microsatellite markers.

Finally, it is important to consider these findings in light of

GWA studies. Indeed, the push to develop high-density SNP

genotyping arrays is largely driven by the desire to identify

common variants predisposing to a disease. For many GWA

studies, the overall cost of genotyping thousands of individuals is

substantial. However since genotype data is transferable and can

be combined with data from other studies, there is a considerable

effort to make experimental data publicly available. As part of this

effort, many studies provide pooled allele frequency data in the

form of summary statistics (e.g. allele frequencies or genotype

counts), in part to mask individual-level genotype data. Though

counter-intuitive, our findings show a clear path for identifying

whether specific individuals are within a study based on summary-

level statistics. Such approaches may have specific utility for

identifying redundant individuals when new individual-level

genotype data is combined with previous studies sharing only

summary statistics.

Considering privacy issues with genetic data, it is now clear that

further research is needed to determine how to best share data

while fully masking identity of individual participants. However,

since sharing only summary data does not completely mask

identity, greater emphasis is needed for providing mechanisms to

confidentially share and combine individual genotype data across

studies, allowing for more robust meta-analysis such as for gene-

environment and gene-gene interactions.
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