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Abstract

Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are
associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies.
To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-
genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108
genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the
genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or
YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA
damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by
activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More
generally, 92%–94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding
deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus
implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future
experiments to define more precisely roles for these genes in cell cycle progression.
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Introduction

The budding yeast Saccharomyces cerevisiae undergoes a cell cycle

similar to other eukaryotic organisms except for the lack of nuclear

envelope dissolution during mitosis and the production of

daughter cells via budding, and thus budding yeast has become a

model system for studying eukaryotic cell cycle progression [1] due

to its rapid division, the availability of genetic tools, and homology

to higher eukaryotic cell cycle processes. Numerous genes and

proteins are involved in directing cells through the 4 major cell

cycle phases, the growth gap phase G1, the DNA synthesis (S)

phase, a second growth gap phase G2, and the mitotic (M) cell

division phase [2,3]. Extensive effort has been made to decipher

the mechanisms of cell cycle control. However, given the extreme

complexity of the cell cycle, with ,300–800 genes regulated in a

cell cycle-dependent manner [4–6], the complete set of cell cycle

regulators, effectors, and helper proteins has yet to be determined.

Classically, conditional temperature-sensitive mutants have been

very effective for studying yeast cell cycle division. Hartwell and

colleagues identified more than 50 cell division cycle (CDC) genes

required at specific stages in cell cycle division, by identifying

conditional temperature-sensitive mutants with specific arrest points

[7–10]. Gene dosage has been another powerful approach to study

gene function. Either increasing (overexpression) or decreasing gene

dosage (gene deletion or gene knockdown) can influence the activity

of genes and lead to detectable phenotypes. Most large-scale cell

cycle screens have focused on studying cell cycle progression by

employing loss-of-function approaches such as gene deletion, RNAi,

and promoter shutoff [11–13] and have successfully identified many

cell cycle genes. However, loss-of-function mutations can often be

masked, such as in the cases of genes acting as negative regulators or

genes compensated for by redundant functions [14–16]. In contrast,

overexpression of a gene product can potentially overcome such

effects and often leads to a more detectable effect on cellular function

[16]. Overexpression also offers the opportunity to identify and study

gain-of-function mutations.

In order to identify additional cell cycle genes, especially those

difficult to identify in loss-of-function studies, large-scale screens

focusing on the effects of overexpression-induced gain-of-function

of genes in cell-cycle progression are needed. Stevenson et al.

performed the first such large-scale overexpression screen for cell

cycle genes by expressing a moderated GAL promoter-driven

cDNA library and sheared genomic DNA pool in ARS-CEN

vectors [17]. Although 113 genes, including those causing only

slight effects on the cell cycle, were identified from this screen, this

screen was unsaturated due to the coverage of the cDNA library

and incomplete gene annotation. Therefore, completion of the S.

cerevisiae genome sequence and the systematic cloning of all genes
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into overexpression vectors now allow a more comprehensive

analysis of the set of genes.

Analysis of overexpression phenotypes using cell sorting to assay

the distribution of cells in different cell cycle stages has the advantage

of being more quantitative and discerning than simple growth

screens. However, flow cytometry has not been carried out

comprehensively to cover all genes in the genome. In the present

work, we performed a near-saturating screen for yeast genes having

overexpression-induced defects in cell cycle progression, taking

advantage of the availability of a yeast open reading frame (ORF)

clone collection covering 91% of the yeast complete ORF set,

including dubious ORFs [14]. After measuring the fraction of cells in

different phases of the cell cycle via high-throughput flow cytometry

for each of 5,556 individual ORFs and performing secondary

validation assays, we identified 108 genes whose overexpression leads

to significant changes in the timing of passage through the G1 or

G2/M stages of the cell cycle. 82 of these genes are newly implicated

in the cell cycle, with the majority likely to affect cell cycle

progression via gain-of-function mechanisms.

Materials and Methods

Yeast Strains
The yeast ORF collection was obtained from Open Biosystems,

in which each ORF was cloned into a 2m plasmid under control of

the GAL1 promoter in order to provide highly elevated expression

when supplemented with galactose [14]. Control strains were

constructed by transforming the empty precursor vector BG1766

to the ORF host strain Y258 (MATa pep4-3, his4-580, ura3-53, leu2-

3,112) and plating on synthetic complete medium lacking uracil.

The plasmid PGAL1-SKO1 was also transformed into ste2D,

ste4D, ste5D, ste20D, ste11D, fus3D, far1D, fus1D, kar4D, sst2D, dig2D
deletion strains [18] (ResGen/Invitrogen) and a Fus1-GFP strain

[19] ( Invitrogen), as well as their parent strain BY4741 (MATa

his3D leu2D met15D ura3 and then plated on synthetic complete

medium lacking uracil.

Induction of Expression
Yeast ORF strains were induced in parallel with the correspond-

ing empty vector (BG1766) control strain. Cells were initially grown

in 96-well plates (Corning 3595) with 170 ml SD-URA medium for

1–2 days at 30uC, and then 5 ml cells were inoculated into fresh 96-

well plates with 170 ml SC-URA, 2% raffinose medium. After

12 hours growth in raffinose medium, cells were re-inoculated to

fresh plates with 100 ml SC-URA, 2% raffinose medium at a final

O.D.600nm of 0.15 and grown for 1 hour. 70 ml SC-URA medium

with 5% galactose (final concentration 2%) was added, and cells were

grown for 8–10 hours at 30uC.

High-Throughput Flow Cytometry
Flow cytometry analyses were performed as in [20]. Briefly,

,26106 cells were harvested and fixed in 200 ml 70% ethanol,

treated with 1mg/ml RNAse A (Sigma) for 4 hours at 37uC, then

incubated with 1mg/ml Proteinase K (Sigma) for 1 hour at 50uC.

,86105 cells were then resuspended in 200 ml 50 mM sodium

citrate with Sytox green (Invitrogen) at a final concentration of

1.5 mM, performing the above liquid transfers using a Biomek FX

robot (Beckman Coulter). Samples were analyzed by flow

cytometry, using a Becton Dickinson FACSCalibur with BD

HTS auto sampler, controlled by Plate Manager and Cellquest

pro software (BD Biosciences). Well-to-well contamination was

minimized by flushing with ddH2O between each pair of samples.

In order to maximize measured events while minimizing data

collection time for 5,556 strains, we collected the shorter of either

20,000 events/strain or 30-seconds acquisition time/strain. Thus,

for the extremely slow growing strains, the number of events

collected in 30 seconds may drop below 20,000 events.

Analysis of Flow Cytometry Profiles
Analysis of DNA profiles was automated using ModFit 3.0

software (Verify Software house, Inc), fitting the histograms of 1C

and 2C cells with Gaussian distributions (Figure 1C) and

calculating the goodness-of-fit via the Reduced Chi Square

(RCS) method. For quality control, DNA profiles with RCS.5

and event number,5000 were discarded. Empirically, we

observed the resolution of the S phase cell distribution to not be

of sufficiently high quality to merit systematic analysis; we thus

focused instead on the well-resolved G1 and G2/M phase cells.

The percentage of cells under each DNA peak (1C peak or 2C

peak) was calculated by dividing the number of events under each

peak by the total number of events under all peaks, and the ratio

(1C/2C) of the percentage of cells under the 1C peak to that under

the 2C peak was calculated for each strain. The base 2 logarithm

of the 1C/2C ratio was calculated for each strain; the distribution

of Log2 (1C/2C) values (abbreviated LR below) was fit well by a

Gaussian distribution (R2 = 0.97) (Figure 2A), allowing each ORF

strain i to be assigned a Z-score, calculated as (LRi2,LR.)/sLR.

Additionally, we manually categorized strains as diploid and 3C:

208 strains appeared diploid (e.g., had 2C and 4C peaks, rather than

1C and 2C) based upon the flow cytometry data and 56 strains

showed notable 3C peaks and were assigned into the 3C category.

Follow-up validation of these trends showed that the DNA content of

these strains did not change upon galactose induction, suggesting

these to be artifacts of these strains rather than an inducible effect of

gene overexpression, and thus these strains were not studied further.

These strains are listed in Table S6.

Nuclear Staining and Bud Size Measurements
108 ORF strains showing reproducible cell cycle arrest were

grown and induced as described above. After induction, cells were

Author Summary

All cells require proper cell cycle regulation; failure leads to
numerous human diseases. Cell cycle mechanisms are
broadly conserved across eukaryotes, with many key
regulatory genes known. Nonetheless, our knowledge of
regulators is incomplete. Many classic studies have
analyzed yeast loss-of-function mutants to identify cell
cycle genes. Studies have also implicated genes based
upon their overexpression phenotypes, but the effects of
gene overexpression on the cell cycle have not been
quantified for all yeast genes. We individually quantified
the effect of overexpression on cell cycle progression for
nearly all (91%) of yeast genes, and we report the 108
genes causing the most significant and reproducible cell
cycle defects, most of which have not been previously
observed. We characterize three genes in more detail,
implicating one in chromosomal segregation and mitotic
spindle formation. A second affects mitotic stability and
the DNA damage checkpoint. Curiously, overexpression of
a third gene, SKO1, arrests the cell cycle by activating the
pheromone response pathway, with cells mistakenly
behaving as if mating pheromone is present. These results
establish a basis for future experiments elucidating precise
cell cycle roles for these genes. Similar assays in human
cells could help further clarify the many connections
between cell cycle control and cancers.

Gene Overexpression-Induced Cell Cycle Defects
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fixed in 70% ethanol and treated with 1mg/ml RNAse A (Sigma),

and then stained with 1 mM Sytox green (Invitrogen). Cells were

examined via phase contrast microscopy and fluorescence micros-

copy using a Nikon Eclipse 800 fluorescence microscope. From

differential interference contrast (DIC) images, we used ImageJ

software (National Institute of Mental Health) to measure the length

of the bud and mother cell for an average of 100 cells for each of the

108 strains. Bud size was assigned by dividing the bud length by the

length of mother cell. Cells with a ratio of 0 were classified as ‘no

bud’; cells were categorized into ‘small bud’ when the ratio was

between 0 and 0.4, and ‘large bud’ when the ratio was higher than

0.4 [7]. We further examined the large-budded cells and counted

three types of nuclear morphology: an undivided nucleus in one cell

body (class I), an undivided nucleus in the bud neck (class II), and

divided nuclei in two cell bodies (class III) [21–23]. An average of 50

cells was counted for each of 87 G2/M strains.

Growth Assays
The 77 of 82 genes not previously implicated in cell cycle defects

(and 3 positive controls, TUB2, PAC2, and CST9) were assayed for

growth defects in three conditions: SC-URA, 2% galactose; SC-

URA, 2% galactose plus 15 mg/ml nocodazole, and SC-URA, 2%

galactose plus 50 mM hydroxyurea [15,24]. 4 dubious ORFs

(YLL066W-B, YBR131C-A, YLR123C, YJL077W-A) were not

Figure 1. Overview of the cell cycle screen. (A) Flowchart summarizing the large-scale screen. 5,556 yeast ORF overexpression strains and 140
replicates of the empty vector (BG1766) control strain (Y258) were induced in 96-well plates with SC-URA, 2% galactose medium, and analyzed via
high-throughput flow cytometry. All flow cytometry histograms were analyzed by ModFit LT software to calculate the proportions of cells with one
copy (1C) or two copies (2C) of their chromosomal DNA. Cell cycle defects were diagnosed from skews in the proportions of 1C to 2C cells. The ORF
strains that showed cell cycle defects in the initial large-scale screen were validated twice manually by flow cytometry. (B) Flow cytometry histograms
of control strains and representative ORF strains are shown. The x-axis indicates fluorescence intensity, corresponding to DNA content per cell; the
numbers of cells with each given intensity are plotted along the y-axis. (C) Each DNA histogram was fitted with two Gaussian distributions, shown in
red, and the percentages of cells in G1 and G2/M phases were calculated as the areas under the 1C and 2C peaks, respectively.
doi:10.1371/journal.pgen.1000120.g001

Gene Overexpression-Induced Cell Cycle Defects
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included in the growth assays, as well as one gene (PPZ1) in the

G2/M category. Cells were grown overnight in SD-URA medium,

and then washed with SC-URA, 2% raffinose medium and grown

in SC-URA, 2% raffinose medium for one hour at 30uC before

being spotted onto agar plates. Six 10-fold serial dilutions were

made for each strain, with the O.D.600nm of the first series at 0.2.

10 ml of each series was spotted onto SC-URA, 2% galactose

plates and SC-URA 2% galactose plates containing the appropri-

ate drugs, and grown at 30uC. Plates were photographed after 2–3

days growth in SC-URA, 2% galactose plates, or 5–8 days in the

plates supplemented with drugs.

Mitotic Instability Assay
The plasmids PGAL1-YPR015C and pRS412::ADE2 [cir+] were

transformed into the strain Cry1 (MATa ade2-1, ura3-1, leu2-3, 112,

trp1, his3-11), plating transformants on synthetic complete medium

lacking uracil and adenine. A single colony was picked and diluted in

ddH2O. ,104 cells were inoculated into SC-URA, 2% galactose

medium and grown for 10 generations at 30uC, before plating ,200

cells on a YPD plate. After growing 2–3 days at 30uC, plates were

shifted to 4uC to maximize the color changes. Red and white

colonies were counted, where red colonies have lost the centromere-

containing plasmid and white colonies have retained it.

Microarray Expression Profiling
The SKO1 overexpression strain was induced in parallel with the

corresponding empty vector (BG1766) control strain with 2%

galactose in selective medium for 8 hours, as described above.

Total RNA isolation and processing, microarray hybridization,

and data analysis were performed as described previously [25],

hybridizing RNA isolated from the SKO1 ORF strain against RNA

from the empty vector control strain. For each strain, two

biological replicates were analyzed, each by two technical (array)

replicates. Differentially expressed genes were selected as having a

minimum expression ratio (corresponding to the absolute value of

Log(base2) of R/G normalized ratio (Median)) . = 1.5 for at least

2 arrays. The significance of differential expression was calculated

using the error model of Hughes et al. [26].

Immunofluorescence Microscopy
Yeast cells were induced 8 hours, then fixed in growth medium

with 1/10 volume 37% formaldehyde for 1 hour at 30uC. Fixed

Figure 2. Summary of assay results. (A) The Log2 (1C/2C) ratios of the 5,334 yeast ORF strains with event numbers .5,000 (filled circles; each
represents a bin of width 0.06) were approximately normally distributed and fit by a Gaussian distribution (solid line; R2,0.97). Each strain was
assigned a Z-score based upon its Log2 (1C/2C) ratio in order to identify the ORF strains with significantly different proportions of cells in the G1 and
G2/M cell cycle phases. (B) A comparison of the resulting distribution of Z-scores for the ORF strains (filled black circles; each represents a bin of width
0.2) relative to Z-scores calculated for the replicate empty vector control strains (filled red triangles) shows that the control strains have a considerably
narrower distribution than the ORF strains, with no control strain |Z| scoring higher than 1.96. (C) The numbers of ORF strains showing significantly
divergent rations of 1C to 2C cells in the initial screen as a function of different confidence levels. The P-value in the paper is highlighted in bold red
text; there were 198 ORF strains identified at this confidence level (p,0.05). Of the 198 genes, 108 were validated at least twice manually; 90 were
eliminated for poor reproducibility. (D) The functional classification of the 108 genes reproducibly inducing cell cycle delays upon overexpression.
doi:10.1371/journal.pgen.1000120.g002
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cell cultures were spheroplasted with 0.025 mg/ml zymolyase 20T

(Seikagaku corporation) for 1 hour at 30uC. Cells were then

spotted onto poly-L-lysine coated microscope slides. Cells on the

slide were permeablized in 220uC methanol for 6 minutes,

followed by 220uC acetone for 30 seconds. Cells were blocked

with 3%BSA in PBS for 30 minutes at 30uC in a humid chamber,

followed by incubation with 4 mg/ml mouse anti alpha-tubulin

monoclonal primary antibodies (Invitrogen) for 1 hour and 4 mg/

ml Texas Red conjugated goat anti-mouse secondary antibody

(Invitrogen) for 2 hours at 30uC. After washing three times with

PBS, cells were mounted with 60 ml VECTASHIELD hard set

mounting medium with 1.5 mg/ml DAPI (Vector Laboratories,

Inc), and imaged at 100x magnification with a Nikon Eclipse 800

microscope.

Results/Discussion

High-Throughput Flow Cytometry and Automated
Analysis of DNA Profiles

To analyze the effect of overexpression of yeast genes on cell

cycle progression, we applied high-throughput flow cytometry to

screen 5,556 strains of a yeast ORF collection [14] for genes that

induce delay or arrest at particular cell cycle stages when

overexpressed. Figure 1 outlines the overall approach. Excess

accumulation of cells with either one copy (1C) or two copies (2C)

of DNA content indicates a defect in progression through a

particular cell cycle stage (G1 or G2/M, respectively). Thus, in

order to search for such defects induced by overexpression of a

particular yeast gene, we analyzed asynchronous cell cultures and

determined the distributions of DNA content, assaying if cells from

each given ORF overexpression strain exhibited a skewed

distribution relative to control cells. In all, ,5,700 DNA

histograms were acquired and quantitatively analyzed, measuring

the ratio of 1C/2C cells for each strain, i.e., the ratio of cells in the

G1 phase to cells in the G2/M phase. We observed the Log2 (1C/

2C) ratios of the 5,556 ORF strains and of 139 replicate analyses

of control strains to be approximately normally distributed and

well-fit by a Gaussian distribution (R2,0.97) (Figure 2A).

Therefore, for each strain, we calculated a Z-score for its

distribution of DNA content across cells and could thus identify

the ORF strains with significantly higher accumulations of cells in

the G1 or G2/M growth phases. Based on this Z-score, 2

categories were assigned: ORF strains with Log2 (1C/2C) ratios in

the left tail of the Gaussian distribution were considered to have

significant G2/M delays, in which cells accumulated with two

copies of DNA. Similarly, ORF strains with Log2 (1C/2C) ratios

in the right tail of the distribution showed significantly higher

proportions of cells with one copy of DNA, and were considered to

exhibit G1 delays. Examples are shown in Figure 1C. We could

assign genes to the G1 and G2/M categories using different

confidence levels (Figure 2B). At the 95% confidence level, 198

genes were identified whose overexpression caused cell cycle

detects; only 3 of 139 control strains exceeded this threshold. As

the large-scale screen was based upon only a single culture per

ORF strain, we further selected those strains with reproducible

defects. Of the 198 strains, 108 were validated at least twice by

manual flow cytometry analysis (DNA histograms are shown in

Figure S1). Additionally, we tested that all 108 genes identified

showed cell cycle delay phenotypes only upon induction in

galactose, and that the phenotype for each hit therefore derived

specifically from the GAL-promoter-driven gene. Of the 108

genes, 21 caused a significant accumulation of cells in the G1

phase, 87 genes in the G2/M phase. These genes are listed in full

in Table S1.

Independent Validation by Bud Size Measurements
The size of the bud relative to the size of the mother cell is the

most notable morphological landmark of the cell cycle stages in

budding yeast. Bud size was the basis of classical cell cycle screens

[7–10,27,28], allowing the identification of mutants blocked at

specific stages of the cell cycle: DNA replication occurs when bud

size is small, nuclear division occurs when the bud is about three-

fourths the size of the mother cell, and cell separation when the

bud is approximately equal in size to the mother cell. In order to

independently validate genes in the G1 and G2/M categories

using bud size, we measured the ratio of bud size to mother cell

size for the 108 ORF strains identified by flow cytometry as having

cell cycle defects. Genes in the G1 category caused clearly elevated

populations of unbudded cells when overexpressed, and the 20 of

21 genes in the G1 category tested for bud size all exhibited a

higher percentage of unbudded cells than control strains

(Figure 3A), with 12 being more than 2 standard deviations

higher than controls, as shown in Figure 3A. For example, 92% of

cells were unbudded and only 2% of cells were large-budded when

TRM5 was overexpressed. In contrast, only 57% of wild type cells

were unbudded, and 28% were large-budded (Figure 4B, Table

S1). Of 87 strains in the G2/M category, 85 exhibited a higher

percentage of large-budded cells than control strains (Figure 3B).

For instance, at least 60% of cells had large buds when TUB2 and

SPC97 were overexpressed (Table S1). Consistent with previous

observations, TRM5, TUB2 and SPC97 are known to cause cell cycle

delays when their normal function is perturbed [13,21,29,30]. SPC97

is an example of the successful recovery of genes known to be

important for the cell cycle; it encodes a structural constituent of the

spindle pole body, and performs a key role in mitotic spindle

formation. 47 strains in the G2/M category had proportions of large-

budded cells more than two standard deviations higher than

controls, as shown in Figure 3B. Bud size analysis thus provided a

useful independent validation of the DNA content observations, with

genes validated by both flow cytometry analysis and bud size

distributions being the most likely to affect cell cycle progression.

Subcategorizing Genes Newly Implicated in the Cell
Cycle using Drug Sensitivities

One major expected cause of defective cell cycle progression is

chromosome instability, especially chromosome loss and non-

disjunction. Chromosome loss is characteristic of defects in DNA

metabolism, while non-disjunction typically reflects defects in

mitotic segregation [15]. To help address which chromosomal

functions were primarily affected by the overproduction of the

identified ORFs, we examined the strains’ sensitivities to

hydroxyurea and nocodazole. Hydroxyurea (HU) is an inhibitor

of ribonucleotide reductase, an enzyme necessary for DNA

synthesis. Nocodazole (NOC) is a microtubule depolymerizing

drug that prevents formation of the mitotic spindle. Genes

involved in DNA metabolism and the DNA replication checkpoint

are often sensitive to HU, whereas genes sensitive to microtubule

drugs are often involved with the mitotic checkpoint and mitotic

spindle formation [15]. Due to the presence of the spindle

checkpoint control, yeast mutants affecting spindle structure

normally show cell-cycle arrest in mitosis [31]. We tested the 77

genes potentially newly implicated in the cell cycle for their

sensitivity to HU and NOC separately. In the absence of the

drugs, we observed all but 4 tested strains (all but IMG1, DHR2,

GPT2, and YGR109W-A) to show strong growth defects indicative

of toxicity of the overexpressed proteins. A semiquantitative score

for growth defects, from 0 (no defect) to 3 (strong defect), shows the

77 strains have an average defect of 2.5. Beyond this intrinsic

toxicity, we observed 22 strains to be specifically sensitive to NOC,

Gene Overexpression-Induced Cell Cycle Defects
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Figure 3. Independent support for cell cycle delays from histograms of the percentages of cells with no bud, small bud or large
bud. (A) shows bud size measurements of strains in the G1 category. Strains are sorted by their percentages of cells without buds. All strains show
higher proportions of cells than control strains; 13 strains are more than two standard deviations higher (indicated by red line) than the empty vector
control strains (plotted+/21 s.d.). (B) shows bud size measurements of strains in the G2/M category. Strains are sorted by percentages of cells with
large buds. 85 strains showed higher percentages of large-budded cells than empty vector control strains; 47 of these were more than two standard
deviations above control strains (indicated by red line). In all plots, ORF gene names are indicated in x-axis, percentages of cells on the y-axis.
doi:10.1371/journal.pgen.1000120.g003

Gene Overexpression-Induced Cell Cycle Defects
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6 to be specifically sensitive to HU, and 13 strains to show

sensitivity to both (Table S4 and Figure S2). As expected, TUB2

and PAC2 exhibited the non-disjunction-relevant phenotype,

sensitivity to nocodazole but not hydroxyurea; TUB2 and PAC2

are required for normal microtubule function and mitotic sister

chromatid segregation [21,24]. We might expect that genes in the

same category as TUB2 and PAC2 might be directly or indirectly

involved in microtubule function or functions related to chromo-

some segregation, consistent with nearly all (21 of 22) genes having

increased sensitivity specifically to NOC arresting at the G2/M

phase when overexpressed.

Functional Analysis of Genes Affecting Cell Cycle
Progression when Overexpressed

We examined in more detail the functions for the 108 genes that

caused cell cycle defects when overexpressed. Among these genes, 26

are known to be involved in different aspects of cell cycle progression,

21 are essential ORFs, 17 are transcription factors, 20 ORFs are

uncharacterized, and 4 are dubious ORFs (Table S2 and Figure 2D).

Importantly, of the 26 genes identified in the screen that were

previously known for having cell cycle defects, 24 were consistent

with the previously observed phenotypes. Of 8 Cdc28p cyclins

included in the ORF collection, we recovered 5 (CLN1, CLB2, CLB3,

CLB5, and CLB6). A number of known essential genes cause cell

cycle defects when down-regulated [13]; we recovered 67% of these

genes in this screen. These observations validate the general quality

of the current screen by indicating that cell cycle defects caused by

overexpression of these 108 genes do not generally result from

random effects of overexpression, but rather the 108 genes are

strongly enriched for known regulators of the cell cycle.

We tested to see if the 108 genes were cell cycle regulated or

showed obvious expression level biases. They do not appear to be

cell cycle regulated, as the set of 108 hits is not significantly

enriched for cell-cycle regulated genes as measured by Spellman et

al. [6] (p.0.05, hypergeometric probability). Analysis of the

overexpression levels of the genes show typical induction by 5- to

.15-fold over the native expression levels, for proteins of both low

and high native levels (Figure S3). We analyzed the distribution of

steady state native expression levels of proteins identified in this

screen, and do not observe a significant bias in the native levels of

the hits; the median expression level of the proteins we identified,

measured in rich medium [32], is 2025 copies per cell, versus 2250

copies per cell expected (for all proteins).

We also compared the 108 genes with those previously

identified by Sopko et al. [16] and Stevenson et al. [17] and

observe a significant (p,0.05, hypergeometric probability) but

small overlap, with 15 of the 108 genes observed previously and 93

new to this study (Figure S4). Genes observed in at least two of the

three assays are strongly statistically enriched for direct regulators

of the cell cycle (e.g., the cylins CLB3, CLB2, and CLB5, and

components of the spindle pole body BIM1, TUB2, SPC42, SPC98,

KAR1). Analysis of enriched functions (using Funspec [33]) among

genes observed in $2 assays reveals the most strongly enriched

functions also relate to the cell cycle, with the strongest enrichment

observed for the MIPS annotations ‘‘cell cycle and DNA

processing’’ (p,1027), ‘‘cell cycle’’ (p,1026), and ‘‘mitotic cell

cycle and cell cycle control’’ (p,1026).

In the next two sections, we describe the G1 and G2/M genes

in more detail.

Genes Causing G2/M Delays
The 87 G2/M genes showed dramatic enrichment in cell cycle-

related Gene Ontology (GO) biological process annotations,

including regulation of CDK activity [GO:0000079] (p,961027),

microtubule-based process [GO:0007017] (p,261026), cell cycle

[GO:0007049] (p,461026), cytoskeleton organization and biogen-

esis [GO:0007010] (p,861026), microtubule cytoskeleton organiza-

tion and biogenesis [GO:0000226] (p,861026), G2/M transition of

mitotic cell cycle [GO:0000086] (p,561025), DNA replication and

chromosome cycle [GO:0000067] (p,561025), and related process-

es. These genes include CLB2, CLB3, CLB5, CDC31, KAR1, SPC97,

PAC2, TUB2, NIP100, SLK19, ASK1, AME1, MAD2, and ACT1,

which have direct roles in regulating the G2/M transition and related

processes such as microtubule nucleation, chromosome segregation,

and mitotic spindle checkpoint control. Additionally, 7 genes

identified in previous large-scale studies [13,16,17] (SPO13, SEC17,

MYO2, PRP31, ARF1, TFG2, and SHE1), although not directly

involved in mitotic cell cycle control, were also observed in this study.

Of 63 genes newly identified in this screen (3 were not tested for

growth phenotype), 56 caused slow growth upon induction and the

overexpression of 21 genes lead to specific sensitivity to nocodazole.

In order to better classify the genes by the nature of their

overexpression defects, i.e., as to whether the cells exhibited M

phase arrest or whether chromosome segregation defects led to

G2/M arrest, 3 classes of nuclear morphology were assigned based

on the patterns of DNA staining, as shown in Figure 4 D–F: an

undivided nucleus in one cell body (class I, pre-M), an undivided

nucleus in the bud neck (class II, early-M), and divided nuclei in

two cell bodies (class III, late-M) [17]. In control strains, 60% of

the cells exhibited class III nuclear morphology, with chromo-

somes in these cells successfully segregated, while only 11% of cells

showed class I morphology, and 26% of cells class II morphology.

We observed 20 ORF strains to have significantly elevated

percentages (95% confidence level) of cells with class I morphol-

ogy, 13 ORF strains with class II, and 17 ORF strains with class

III (Figure 5). Among the 33 genes in the Class I and II, 9 have

direct roles in regulating G2/M transition (CLB2, CLB3 and

CLB5), or related important events in the mitotic cell division

phase (ACT1, TUB2, NIP100, PAC2, CDC31, SPC97). For

example, Spc97p is a component of the microtubule-nucleating

Tub4p (gamma-tubulin) complex and overproduction of SPC97

causes microtubule defects, which in turn gives rise to a failure of

chromosome segregation and a early M phase arrest (Figure 5B)

[29]. We therefore reasoned that 24 newly implicated Class I and

II genes causing a similar phenotype to that of SPC97 might play

direct or indirect roles in chromosome segregation, especially for

genes whose overexpression also leads to hyper sensitivity to

nocodazole (GEA2, RFA1, HOS3, YPR015C, AVO2, CBF1, SHE1,

and TEA1; Figure S2). We characterized two of these genes, RFA1

and YPR015C, in more detail.

Overexpression of YPR015C Results in Mitotic Instability
and Activates the DNA Damage Checkpoint

YPR015C encodes an uncharacterized putative transcription

factor known to exhibit synthetic lethality with and be functionally

linked to CTF4 [34,35]; both genes have zinc finger motifs. CTF4

encodes a chromatin-associated protein required for sister

chromatid cohesion, which in turn regulates high-fidelity chro-

mosome segregation (Hanna et al., 2001). Deletion of CTF4

increases chromosome instability and causes early mitotic delay

[36–38]. We observe overexpression of YPR015C to give rise to a

very similar phenotype to deletion of CTF4. YPR015C overex-

pression causes hyper sensitivity to nocodazole and slight

sensitivity to hydroxyurea (Figure S2), and an elevated population

of large-budded cells with the nucleus in the bud neck (Figure 6B).

In order to test whether the overexpression of YPR015C also leads

to chromosome instability, we overexpressed YPR015C in the

strain Cry1 (MAT a ade2-1, ura3-1, leu2-3, 112, trp1, his3-11)

Gene Overexpression-Induced Cell Cycle Defects

PLoS Genetics | www.plosgenetics.org 7 July 2008 | Volume 4 | Issue 7 | e1000120



carrying the low copy centromere-containing plasmid

pRS412::ADE2 [cir+]. Overexpression of YPR015C doubled the

rate of loss of centromere plasmids: 36% in the YPR015C

overexpressing strain vs. 16% in the wild type control strain,

indicating chromosome instability and mis-segregation.

Bud size and nuclear morphology indicated that cells arrested in

early mitosis phase when YPR015C was overexpressed (Figure 6B).

To test whether the early mitotic delay caused by the

overexpression of YPR015C is due to activation of the DNA

damage checkpoint or the spindle assembly checkpoint, we

overexpressed YPR015C in the background of rad9D or mad2D
mutants in which the DNA damage or spindle assembly

checkpoints were removed, respectively. Cell cycle progression in

these mutants was measured by DNA content analysis of

galactose-induced cultures (Figure 6E). We observed that the

YPR015C-induced early mitotic delay was dependent on the DNA

damage checkpoint and not the spindle assembly checkpoint, in

contrast to the early mitotic delay caused by deletion of CTF4,

which is dependent on the spindle checkpoint [37]. Interestingly,

three ribonucleotide reductases (RNR2, RNR3, RNR4) are the most

significantly up-regulated genes following overexpression of

YPR015C [39], and these three ribonucleotide reductases are

regulated by the DNA replication and DNA damage checkpoint

pathways [40]. Since transcriptional response, DNA replication,

DNA repair, and chromosome condensation are the major

chromatin restructuring events in cohesin operation [37], it

appears that overexpression of YPR015C may interfere with

chromosome cohesion, inducing defects in mitotic chromosome

segregation via a different mechanism than CTF4.

Overexpression of RFA1 Induces Chromosome
Segregation and Spindle Defects

RFA1 is another gene involved in DNA replication whose

overexpression leads to G2/M delay. The Rfa1p protein is a subunit

of the heterotrimeric replication protein A (RPA), which is involved

in DNA replication, repair, and the DNA damage checkpoint

[41,42]. RFA1 is essential for yeast viability, an RFA1 null mutant is

inviable [18]. However, several point mutations of RFA1 caused

accumulation of large-budded [43] or dumb-bell shaped cells with a

single nucleus in the bud neck [42] at the nonpermissive temperature

and had defects in DNA replication and DNA repair [42–45]. We

observe ,73% of large-budded cells of the RFA1 overexpression

strain showed a butterfly-shaped nucleus in their bud necks, similar

to phenotype of SPC97 overexpression (i.e., asymmetric chromosome

segregation) and fewer than 10% of large-budded cells had

chromosomes segregated into two cell bodies (Figure 7B), suggestive

of chromosome mis-segregation. In contrast, 63% of large-budded

cells of the parental control strain had the chromosomes successfully

segregated into two cell bodies.

Furthermore, we observed that the RFA1 overexpression strain

had short mitotic spindles, with spindle pole bodies not clearly

attached to the nucleus (Figure 7C, lower row). This defect is

distinct from the spindle morphology caused by overexpression of

SPC97 (Figure 7C, middle row); Spc97p is a component of the

microtubule-nucleating Tub4p (gamma-tubulin) complex and is

involved in spindle pole body separation and mitotic spindle

formation. Cells either carrying point mutations [29] or overex-

pressing SPC97 (Figure 7C, middle row) had short spindles and

elongated cytoplasmic microtubules, but the spindle pole appeared

normally attached to the nucleus. Given that Rfa1p is a single-

stranded DNA binding protein involved in DNA replication, it

seems likely that overexpression of RFA1 disrupts DNA replication

and leads to the observed spindle morphology defects, giving rise

to the observed early mitotic delay. Such a role would also be

consistent with the observation that DNA replication proteins can

act as cohesion proteins and play important roles in regulating

spindle integrity and maintaining the tension on chromosomes

exerted by spindle microtubules [37,46,47].

Figure 4. Representative cell images from ORF strains showing G1 or G2/M cell cycle delays. Cell nuclei were stained with Sytox green,
and cells visualized through FITC and DIC filters; overlaid images are shown. (A) Empty vector control strain. Overexpression of (B) TRM5 or (C) ARC1
causes G1 cell cycle delays, marked by an accumulation of unbudded cells. (D–F) shows strains with G2/M delays illustrating the three classes of large-
budded cell nuclear morphology. (D) Class I (pre-M): overexpression of TUB2 causes elevation in large-budded mononucleate cells. (E) Class II (early-
M): overexpression of SPC97 accumulates large budded cells with undivided nuclei at the bud necks. (F) Class III (late-M): increased proportions of
large-budded cells that had completed nuclear DNA segregation are apparent upon IME2 overexpression.
doi:10.1371/journal.pgen.1000120.g004
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Genes Causing G1 Delays
While the strains arresting in G2/M phase were strongly

enriched for cell cycle associated functions, diverse mechanisms

are known to induce G1 arrests [16,17]. This diversity was

reflected in the enrichment of GO biological process annotations

among the G1 arresting ORFs: no pathway was enriched at

p,0.001 when calculated by the method of [33], consistent with

previous overexpression studies [16,17]. When calculated as in

[25], the strongest enrichment consisted of negative regulators of

transcription from RNA polymerase II promoters (GO:0000122;

p,461024).

Among the 21 genes inducing G1 delays, 6 (29%) are

uncharacterized or dubious ORFs. The only functional information

available for YOR131C and YDR493W is localization: YOR131C is

localized in the nucleus and cytoplasm, and YDR493W is localized in

mitochondria [18,19,48]. Our data further associate these two genes

Figure 5. Genes in the G2/M category can be categorized based upon nuclear DNA staining in large-budded cells. (A) Category I (20
genes): an undivided nucleus in one cell body. (B) Category II (13 genes): undivided nuclei in bud neck. (C) Category III (17 genes): two divided nuclei
separated to two cell bodies.
doi:10.1371/journal.pgen.1000120.g005

Gene Overexpression-Induced Cell Cycle Defects

PLoS Genetics | www.plosgenetics.org 9 July 2008 | Volume 4 | Issue 7 | e1000120



Figure 6. Overexpression of YPR015C results in mitotic instability and activates the DNA damage checkpoint. (A) Flow cytometry
histograms of empty vector control strain and PGAL1-YPR015C strain show the G2/M delay phenotype upon overexpression YPR015C. (B) Summary of
the results from analysis of nuclear DNA staining. PGAL1-YPR015C showed a higher percentage of large-budded cells with undivided nuclei at the bud
neck than the empty vector control strain. (C) An assay of mitotic instability using a reporter plasmid (pRS412::ADE2 [cir+]) shows that YPR015C
overexpression increases mitotic instability, indicated by an increase in red colonies (signifying loss of the centromere-containing plasmid) relative to
white colonies (correctly carrying the plasmid). Quantitation of this trend (D) reveals the PGAL1-YPR015C strain to have about twice the rate of
centromere loss than that of the empty vector control strain. (E) Flow cytometry indicates that deletion of RAD9 suppressed the G2/M delay caused
by overexpression of YPR015C, while deletion of MAD2 did not suppress the G2/M delays caused by overexpression of YPR015C, indicating that the
G2/M delay requires RAD9, and thus the DNA damage checkpoint.
doi:10.1371/journal.pgen.1000120.g006
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with cell cycle progression, either directly or indirectly. Tma64p is

another protein of unknown function, previously identified in a mass

spectrometry-based proteomic screen of yeast ribosomal complexes

[49]. Tma64p associates with ribosomes, has a RNA binding

domain and interacts with Rps4bp, a component of the small (40S)

ribosomal subunit [50]. Moreover, it has been suggested that there

might be a strong connection between ribosomal biogenesis and G1

transit [11,13]. Therefore, the G1 delay caused by overexpression of

TMA64 may suggest a role in ribosomal biogenesis.

The weak enrichment observed for transcriptional regulators

derives from 4 transcription factors involved in responding to

environmental stress that were observed in the G1 category. Three

are transcriptional repressors (MIG3, NCB2, and SKO1), and the

fourth (GAT4) is unclear as to mode of action. We observed

unusual cellular morphology upon overexpression of SKO1, and

examined this repressor in more detail.

Overexpression of SKO1 Activates the Pheromone
Response Pathway

We observed overproduction of SKO1 to strongly inhibit cell

growth and arrest cells at the G1 phase (Figure 8A). Bud size

analysis showed that 90% of cells had no bud when SKO1 was

overexpressed (Table S1). SKO1 is a basic leucine zipper (bZIP)

transcription factor of the ATF/CREB family, involved in osmotic

and oxidative stress responses. The Sko1p protein forms a complex

with Tup1p and Ssn6p to both activate and repress transcription

[51–53]. Surprisingly, overproduction of SKO1 resulted in

formation of shmoos, cell morphology changes that are normally

Figure 7. Overexpression of RFA1 causes chromosomal segregation and spindle defects. (A) The G2/M delay phenotype upon
overexpression of RFA1 is apparent in flow cytometry histograms of the empty vector control strain and the PGAL1-RFA1 strain. (B) Quantitation of cell
microscopy results following nuclear DNA staining indicates that PGAL1-SPC97 and PGAL1-RFA1 strains exhibit considerably higher percentages of
large-budded cells with undivided nuclei than the empty vector control strain. (C) Log-phase cultures of the wild type control strain and cells carrying
PGAL1-SPC97 or PGAL1-RFA1 were fixed in formaldehyde and stained to visualize DNA (by DAPI) and microtubules (by immunofluorescence). The cells
carrying the empty vector correctly showed a long anaphase spindle, with nuclei successfully segregated into two cell bodies. Overexpression of
either SPC97 or RFA1 resulted in a failure of chromosome segregation; the spindle morphology of PGAL1-RFA1 cells is distinct from that of PGAL1-SPC97
cells, with shorter mitotic spindles poorly aligned with the division axis.
doi:10.1371/journal.pgen.1000120.g007
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seen in mating yeast in response to mating pheromone (Figure 8B).

We reasoned that the elevated expression of SKO1 might activate

the pheromone response pathway either directly or indirectly,

causing shmoo formation and a mating-associated G1 arrest.

Since Fus1p is a marker protein induced during shmoo formation

that localizes to the shmoo tip when the pheromone response

pathway is activated [54], we tested SKO1 activation of the

pheromone response pathway by examining the localization of

Fus1p when SKO1 was overexpressed. We transformed PGAL1-SKO1

plasmids into a MATa strain in which FUS1 was C-terminally tagged

with green fluorescent protein (GFP) [19]. Upon SKO1 overexpres-

sion, Fus1-GFP localized to the shmoo tip (Figure 8B), resembling its

localization pattern upon alpha factor treatment, demonstrating that

the morphological changes are accompanied by general activation of

the mating pathway, thus explaining the G1 cell cycle arrest

phenotype of the SKO1 ORF strains.

To further explore which genes involved in the pheromone MAP

kinase pathway were activated by the overexpression of SKO1, we

performed cDNA microarray profiling and found that the activated

genes were highly enriched in pheromone response and mating

genes. Significantly upregulated genes (p,0.01) included MFA1,

STE2, BAR1, FAR1, FUS1, KAR4, FIG1, FIG2, GIC2, PRM4, PRM5,

PRM8, AGA1, and AGA2, as listed in Table S5. To establish direct

genetic interactions between SKO1 and pheromone response

pathway, we overexpressed SKO1 strains in ste2D, ste4D, ste20D,

ste11D, ste5D, kar4D, fus3D, far1D, fus1D, sst2D, and dig2D strains, and

examined whether or not SKO1 overexpression induced shmoo

formation in these deletion strains. We did not observe SKO1-induced

shmoo formation in ste2D, ste4D, ste20D, ste11D, ste5D, kar4D, and

far1D strains (Figure 8C), indicating that these genes are required for

shmoo induction by SKO1 overexpression. FUS3 is functionally

compensated by KSS1, FUS1 is downstream of the pheromone

response signal transduction pathway, SST2 and DIG2 are inhibitors

in the pathway; deletion of these genes affects neither pheromone nor

SKO1-dependent shmoo induction. The observed effects of SKO1

overexpression on cell cycle progression thus appear to be indirect,

activating the pheromone response pathway in a manner dependent

upon the pheromone receptor (STE2) and MAP kinase signal

transduction pathway, and this activation in turn results in G1 arrest

through the normal mating pheromone-mediated pathway.

Figure 8. Overexpression of SKO1 activates the pheromone response pathway. (A) shows flow cytometry analysis of DNA content for the
empty vector control strain, PGAL1-SKO1 strain, and the sko1D strain with its corresponding control strain. Overproduction of SKO1 causes a strong
arrest at the G1 phase (78% of PGAL1-SKO1 cells accumulated at the G1 phase vs. 58% of control cells at the G1 phase). In contrast, there was no
obvious G1 arrest in the sko1D strain. (B) While the sko1D strain exhibits a typical yeast cell morphology, cells from the PGAL1-SKO1 strain resemble
yeast cells presented with mating pheromone (shmoos). Overexpression of SKO1 in cells expressing a green-fluorescent protein-tagged version of the
mating projection marker Fus1 induces Fus1-GFP localization to the tip of the projection (shown as an overlay of the GFP channel on the DIC image),
consistent with SKO1 overexpression inducing shmooing. (C) SKO1 induces shmooing when overexpressed in the deletion strains fus1D, fus3D, sst2D,
and dig2D, as well as in the corresponding parental strain (BY4741), but not when overexpressed in the deletion strains ste2D, ste4D, ste5D, ste20D,
ste11D, far1D, and kar4D, indicating that the latter genes are required for SKO1-induced shmoo formation.
doi:10.1371/journal.pgen.1000120.g008
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Overexpression Phenotypes Are Generally Distinct from
Loss-of-Function Phenotypes

Overexpression of a normal gene product can result in gain-of-

function, but may also mimic loss-of-function phenotypes [16],

such as in cases where precise levels of a protein are required, with

either too much or too little equally disruptive. In order to

systematically assess the extent of these phenomena amongst the

phenotypes of the overexpression strains, we took advantage of

quantitative cell morphology data (bud count data) for deletion

strains collected in the Saccharomyces cerevisiae Morphology Database

(SCMD) [55] and compared them to our quantitative bud count

data. Of 108 genes from this screen, 77 also appear in SCMD (21

essential genes and 10 additional genes are not included in SCMD)

(Figure 9). We selected genes from our screen with significantly

elevated populations (p,0.05) of unbudded cells or large-budded

cells. In the G1 category, there were 12 strains from our screen

whose percentages of cells without buds were significantly higher

than that of wild type. Of these 12 G1 genes, only one also led to a

significantly elevated population of unbudded cells when deleted,

as measured by SCMD. Therefore, our rough estimate is that 11/

12 (92%) of genes in the G1 category exhibit an overexpression

phenotype distinct from the loss-of-function phenotype, at least as

measured with regard to proportions of unbudded cells. Similarly,

44 (94%) genes in the G2/M category caused a significantly

elevated proportion of large-budded cells when overexpressed but

not when deleted, versus 3 that resembled the loss-of-function

phenotype (Figure 9, Table S3). Thus, the majority of the

overexpressed genes in this paper appear to exhibit a phenotype

distinct from the loss-of-function case, supporting the previously

hypothesized notion that gain-of-function may be common

amongst the overexpression phenotypes [16].

SKO1 appears to represent such an example of a gain-of-

function leading to differences between the overexpression

phenotype and the corresponding deletion phenotype. When

overexpressed, SKO1, which encodes a transcription repressor

responsive to salt and osmotic stresses, activates the pheromone

response pathway and leads to a strong G1 arrest, but the deletion

of SKO1 has no detectable arrest or mating phenotype (Figure 8B).

Moreover, transcriptional profiling of cells overexpressing SKO1

revealed that genes involved in the pheromone response pathway

are significantly upregulated. However, genes involved in the

pheromone response pathway do not appear to be regulated by

SKO1 under normal culture conditions, at least as measured by

chromatin-immunoprecipitation of SKO1 [56]. Therefore, our

results suggest that SKO1 regulates genes in the pheromone

response pathway through a gain-of-function mechanism, e.g.,

such as by enabling binding to a cryptic or lower affinity promoter

when overexpressed.

Conclusions
In this paper, we describe a near-saturating screen for yeast

genes whose overexpression causes cell cycle delays and which are

thus likely to function in cell cycle progression. We individually

examined the effects of overexpression on cell cycle progression for

each of ,5,556 yeast ORFs, and report the 108 genes with the

most significant and reproducible cell cycle defects. 82 of these

genes have not been reported in previous large-scale screens

[13,16,17], probably due to different overexpression conditions

and strain backgrounds, false positives in large-scale screens [11],

or more likely, false negatives, e.g., such as might derive from

variable 2 micron plasmid copy numbers [57] increasing

phenotypic variability and thus allowing cell cycle defects to

escape detection. Our analysis thus complements previous screens.

These results lay the foundation for future experiments to

elucidate the precise roles of these genes in cell cycle progression,

such as the mechanisms of RFA1 and YPR015C. Overexpression

screens such as we have described here provide complementary

information to loss-of-function studies and therefore offer new

opportunities for discovery of genetic interactions, such as by

systematically testing the overexpression plasmids in deletion

strains to screen for phenotype suppression or synthetic interac-

tions. Finally, since overexpression is an efficient technique in

human cell culture and since regulation of cell proliferation is an

important aspect of studying human diseases, we anticipate that a

similar effort to this work in human cell lines could accelerate our

understanding of cell cycle control in mammalian systems and

help to further clarify the many connections between cell cycle

control and cancer.

Supporting Information

Figure S1 Flow cytometry histograms of 108 ORF overexpres-

sion strains causing cell cycle defects upon induction.

Found at: doi:10.1371/journal.pgen.1000120.s001 (0.44 MB PDF)

Figure S2 77 of 82 ORF strains not previously known to show

cell cycle defects upon induction were tested for drug sensitive

growth phenotypes.

Found at: doi:10.1371/journal.pgen.1000120.s002 (10.62 MB

PDF)

Figure 9. Overexpression phenotypes are generally distinct
from loss-of-function phenotypes. Of 108 genes causing cell cycle
defects when overexpressed, quantitative cell morphology information
for 77 of the corresponding deletion mutants was available in the
Saccharomyces cerevisiae Morphology Database (SCMD), with 16 genes
in the G1 category and 61 in the G2/M category. Considering only those
ORF strains whose bud size index differs from control strains with
p,0.05, 12 genes caused significantly higher percentages of cells
without buds than control strains when overexpressed. Of these 12
genes, only 1 gene led to significantly high proportions of unbudded
cells when deleted. For G2/M genes, 47 genes caused significantly
elevated percentages of cells with large buds upon overexpression;
only 3 of them also lead to significantly high populations of large-
budded cells when deleted. Thus, the large majority of overexpression
phenotypes are not mirrored by the corresponding deletion strains,
raising the likelihood for overexpression phenotypes to have arisen
through gain-of-function mechanisms.
doi:10.1371/journal.pgen.1000120.g009

Gene Overexpression-Induced Cell Cycle Defects

PLoS Genetics | www.plosgenetics.org 13 July 2008 | Volume 4 | Issue 7 | e1000120



Figure S3 Protein expression is significantly induced in overex-

pression strains, even for proteins expressed natively at high levels.

Found at: doi:10.1371/journal.pgen.1000120.s003 (0.14 MB PDF)

Figure S4 Overlap of identified genes with previous large-scale

studies.

Found at: doi:10.1371/journal.pgen.1000120.s004 (0.15 MB PDF)

Table S1 108 yeast ORFs causing cell cycle defects when

overexpressed.

Found at: doi:10.1371/journal.pgen.1000120.s005 (0.03 MB PDF)

Table S2 Summary of 108 strains with cell cycle defects.

Found at: doi:10.1371/journal.pgen.1000120.s006 (0.01 MB PDF)

Table S3 Comparison between over-expression and loss-of-

function phenotypes.

Found at: doi:10.1371/journal.pgen.1000120.s007 (0.01 MB PDF)

Table S4 Genes whose overexpression induces slow growth,

drug sensitivity.

Found at: doi:10.1371/journal.pgen.1000120.s008 (0.01 MB PDF)

Table S5 Genes upregulated following overexpression of SKO1.

Found at: doi:10.1371/journal.pgen.1000120.s009 (0.02 MB PDF)

Table S6 Over-expression strains appearing diploid or 3C.

Found at: doi:10.1371/journal.pgen.1000120.s010 (0.04 MB PDF)
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