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Abstract

Gene class, ontology, or pathway testing analysis has become increasingly popular in microarray data analysis. Such
approaches allow the integration of gene annotation databases, such as Gene Ontology and KEGG Pathway, to formally test
for subtle but coordinated changes at a system level. Higher power in gene class testing is gained by combining weak
signals from a number of individual genes in each pathway. We propose an alternative approach for gene-class testing
based on mixed models, a class of statistical models that:

a) provides the ability to model and borrow strength across genes that are both up and down in a pathway,

b) operates within a well-established statistical framework amenable to direct control of false positive or false discovery
rates,

c) exhibits improved power over widely used methods under normal location-based alternative hypotheses, and

d) handles complex experimental designs for which permutation resampling is difficult.

We compare the properties of this mixed models approach with nonparametric method GSEA and parametric method
PAGE using a simulation study, and illustrate its application with a diabetes data set and a dose-response data set.
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Introduction

To help increase power to detect microarray differential

expression and to better interpret findings, gene-class testing or

pathway analysis has become increasingly popular [1]. These

approaches allow the integration of gene annotation databases

such as Gene Ontology [2] and KEGG Pathway [3] to formally

test for subtle but coordinated changes at the system level.

Improved power of gene-class testing is gained by combining weak

signals from a number of individual genes in each pathway. In

addition, pathway analysis has been effectively used to examine

common features between data sets [4].

The most commonly used approach for pathway analysis, the

enrichment or overrepresentation analysis, uses Fisher’s exact test.

This method starts with a list of differentially expressed genes

based on an arbitrary cutoff of nominal p-values, and compares

the number of significant genes in the pathway to the rest of the

genes to determine if any gene-set is overrepresented in the

significant gene list. The Fisher’s exact test is implemented in a

number of software packages such as GOTM [5], WebGestalt [6],

GENMAPP [7], ChipInfo [8], ONTO-TOOLS [9], GOstat [10],

DAVID [11], and JMP Genomics (http://www.jmp.com/

genomics). Although straightforward to implement and interpret,

this method loses information by using only the significant genes

resulted from arbitrarily dichotomizing p-values at some threshold.

More recent approaches such as Gene Set Enrichment Analysis

(GSEA) [12,13] and its extensions use continuous distributions of

evidence for differential expression and are based on a modified

version of the Kolmogorov-Smirnov test that compares the

distribution of test statistics in a pathway to the test statistics for

the rest of the genes. However, as explained in [14], the specific

alternative hypothesis for coordinated association between genes

in a gene-set with phenotype is likely to be a location change from

background distribution. The Kolmogorov-Smirnov test used by

GSEA, which detects any changes in the distribution, is often not

optimally powerful for detecting specific location changes. In

addition, false positives may result when genes in a gene-set have

different variances compared with genes outside the pathway.

Methods that test for location changes include PAGE [15] and

Functional Class Scoring [16]. PAGE uses normal distribution to

approximate test statistics based on differences in means for gene-

set genes and other genes; Functional Class Scoring method

computes mean (-log(p-value)) from p-values for all genes in a

gene-set, and compares this raw score to an empirically derived

distribution of raw scores for randomly selected gene-sets of the

same size using a statistical resampling approach.

PLoS Genetics | www.plosgenetics.org 1 July 2008 | Volume 4 | Issue 7 | e1000115



Other examples of permutation- and bootstrap-based methods

include SAFE [17], iGA [18] and GSA [19]. However,

resampling-based methods rely on exchangeability that may be

hard to achieve in complex experimental designs. For example, in

designs with multiple random effects and/or time-series covari-

ance structures, great care must be taken to achieve an appropriate

resampling-based null distribution. In this paper, we propose an

alternative, parametric approach for gene-class testing based on

mixed linear models [20], which can readily accommodate

complex designs under standard parametric assumptions.

Some parametric methods and their comparisons with the

proposed method are in order. Wolfinger et al. [21] and Chu et al.

[22] considered using mixed models for detecting differentially

expressed genes for cDNA and Affymetrix microarrays. Ng et al.

[23] proposed random effects models to cluster gene expression

profiles, but their gene-sets are derived by statistical learning, not

based on biological knowledge. Other parametric models include

the random effect model of Goeman et al. [24] and the ANCOVA

model of Mansmann [25] for testing whether a particular gene-set

contains any gene associated with outcome. There is an important

distinction between these models and our proposed model. Tian et

al. [14] formulated two statistical hypothesis for testing coordi-

nated association between a group of genes with a phenotype of

interest: hypothesis Q1 - The genes in a gene-set show the same

pattern of associations with the phenotype compared with the rest

of the genes; and hypothesis Q2 - The gene-set does not contain

any genes whose expression levels are associated with the

phenotype of interest. Goeman et al. [24] and Mansmann et al.

[25] both test Q2 whereas our proposed model tests Q1. The most

similar parametric method with our proposed model that tests Q1

is PAGE [15] mentioned above; test statistics for both PAGE and

the proposed method are based on differences in means for gene-

set genes and other genes. Our method can be viewed as an

extension of PAGE with the ability to account for design of

experiment (e.g. covariate adjustment) and modeling dependency

between genes with a more general covariance structure.

In Materials and Methods, we describe the proposed mixed

model, including assumptions and interpretations. This model

incorporates both fixed effects (e.g. type of tissues, cases vs.

controls) and random effects which are assumed to be sampled

from a normal distribution and naturally fall into a hierarchical

empirical Bayes framework. The inclusion of random effects both

facilitates inferences to be made to the underlying population

represented by the observed samples and is a simple mechanism

for modeling a covariance structure within groups of correlated

observations. Another advantage is that mixed models provide a

powerful, unified and flexible framework that allows one to

conduct hypothesis testing for gene-sets and accounting for other

design factors at the same time. With mixed models, between-

arrays normalization, adjusting for covariates and gene-set testing

are achieved in a single step; in contrast, other gene-class testing

methods usually require separate data processing steps for

normalization, assessing statistical significance of individual genes

using a test statistics such as the t-score, and comparison of the test

statistics for genes in the pathway with non-pathway genes. In the

Results section, we first confirm the increased power over the

nonparametric method GSEA and parametric method PAGE

using simulations and then illustrate the method using two

microarray datasets, a human diabetic muscle dataset [12] and a

dose-response study [26]. In the Discussion section, we provide

some concluding comments.

Materials and Methods

Given two groups of samples and an a priori defined set of genes

from a particular pathway, we are interested in testing whether the

differential expression between the groups are significantly

different for genes in the pathway compared with the rest of the

genes. For sake of concreteness we assume without loss of

generality the two groups of samples are from patients with a

disease phenotype (cases) and otherwise (controls).

Data Preprocessing
We assume reliable numerical values are obtained from gene

expression intensities and are on the log2 scale. In single colored

arrays, the expression values for each gene are derived from each

spot on the array; in two-colored arrays, the expression values for

each gene can be the original intensities or the ratios of expression

values for experimental sample compared to reference sample.

When multiple probe sets for a gene are present, they can be

mapped to some standard gene IDs such as the Ensembl Gene IDs

(http://www.ensembl.org) and the median is used for further

analysis. This is often done for computational efficiencies of larger

arrays. In the following discussion, we assume there is one value

for each gene, at the end of the Discussion section, we discuss

extensions of basic mixed model to accommodate multiple gene

expression values per gene.

Next, to homogenize variances for all the genes included in

mixed model and to make their means comparable, we

standardize values for each gene with control group mean and

standard deviations. Specifically, the mean and standard deviation

of each gene from control patients are calculated, and all the gene

values are standardized by subtracting the control group mean and

dividing by the control group standard deviation. The standard-

ized gene expression values then represent the number of standard

deviations away from the ‘‘normal’’ gene expression values. In a

time course experiment, expression values at baseline can be used

similarly as control group data to standardize all measurements in

the time course.

Linear Mixed Model
Linear mixed models is a class of statistical models that handles

data where observations are not independent, such as gene

expression values from the same array. They include both fixed

effects and random effects, and thus are called mixed effect

models. The fixed effects model the systematic effects or the mean

structure of data, and the random effects account for complex

covariance structure of observations, such as those between genes.

In addition, they also allow inferences to be made to the entire

population of samples from which the observed samples arise.

Author Summary

In microarray data analysis, when statistical testing is
applied to each gene individually, one is often left with too
many significant genes that are difficult to interpret or too
few genes after a multiple comparison adjustment. Gene-
class, or pathway-level testing, integrates gene annotation
data such as Gene Ontology and tests for coordinated
changes at the system level. These approaches can both
increase power for detecting differential expression and
allow for better understanding of the underlying biological
processes associated with variations in outcome. We
propose an alternative pathway analysis method based
on mixed models, and show this method provides useful
inferences beyond those available in currently popular
methods, with improved power and the ability to handle
complex experimental designs.

Statistical Analysis of Biological Pathways
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Assuming after data pre-processing, there are one measurement

per gene from each array, we propose the following basic linear

mixed models for comparing differential expression pattern in the

pathway (or gene-set) m and the rest of genes:

Model 1: ygjklm~mjkzArraylzPathwaym gð Þzegjklm

Here, y represents log transformed gene expression values, j = 1 if

gene g is from the pathway m and j = 0 otherwise; k = 1 for case

values and k = 0 for control values. The parameters mjk model

systematic effects or fixed effects affecting gene expression values,

and correspond to a classical cell-means model [27]. The fixed

effects portion of Model 1 is equivalent to a model with intercept,

indicator variable Group (case or control), indicator variable

Pathway m (yes or no), and Group6Pathway m interaction effects.

Although Model 1 does not include gene-specific fixed effects, we

account these through standardization of gene values (Data

Preprocessing in Materials and Methods) which makes expression

values from different genes comparable and homogenizes their

variances.

While mjk are fixed unknown parameters to be estimated from data,

the terms Arrayl and Pathwaym(g) for l-th array and m-th pathway are

random variables, we use the subscript (g) to emphasize values for

Pathway random effects vary according to genes. We discuss in detail

the construction of these random effects and the specific covariance

structure accounted by them in the Materials and Methods section.

Finally, e represents variations due to measurement error and we

assume egjklm,N(0, s2). Parameters from the mixed model are

estimated using the method of restricted maximum likelihood

(REML) along with appropriate standard errors.

The hypothesis we are testing is whether the amount of

differential expression between cases and controls for gene-set

genes are significantly different from the other genes. This is

essentially the interaction effect between gene-set and group. In

terms of Model 1, we want to test H0:(m112m10)2(m012m00) = 0.

Here, m112m10 represents differential expression for genes in the

pathway and m012m00 represents differential expression for the rest

of the genes.

In feedback or reverse regulation, in response to an input signal,

genes in a gene-set may shift in both directions, that is, a fraction

of gene-set genes are up-regulated and another fraction of gene-set

genes are down-regulated, then testing changes in the entire gene-

set will not be effective as the changes in different directions will

cancel each other out. Instead, we propose modeling reverse

regulation with

Model 2: ygijklm~mijkzArraylzPathwaym gð Þzegijklm

where i indicates direction of changes for gene g, i = 1 for up-

regulated genes and i = 0 for down-regulated genes. With

this model, we estimate D̂~ m̂111{m̂110

� �
{ m̂101{m̂100

� �� �
z

{ m̂011{m̂010

� �
{ m̂001{m̂000

� �� �� �
~0 where m̂111{m̂110

� �
{

m̂101{m̂100

� �
estimates amount of up-regulation and m̂011{m̂010

� �
{ m̂001{m̂000

� �
estimates amount of down-regulation.

Because the direction of change i for each gene is estimated

from data, the hypothesis we are testing in this case is equivalent to

H0:{[(m112m10)2(m012m00)|i = 1]2[(m112m10)2(m012m00)|i = 0]} = 0.

Therefore, D̂~ m̂11{m̂10

� �
{ m̂01{m̂00

� �
i~1j

� �
{ m̂11{m̂10

� �
{

�
m̂01{m̂00

� �
i~0j � is the difference of two conditional random

variables, its distribution is a skewed unimodal distribution and can

not be approximated well using normal distribution. We propose a

Box-Cox transformation [28] of the test statistics to account for this.

Specifically, to test for significance of n (e.g. 500) gene-sets, we follow

these steps:

1. Generate gene expression values for n ‘‘null gene-sets’’, see

details below.

2. For each null gene-set, fit Model 2 to data and calculate t-

statistics TD corresponding to estimate D̂.

3. Consider t-statistics for all null gene-sets, let TD+ = TD2

min(TD) where min(TD) = minimum over all t-statistics, so that

TD+$0. The Box-Cox transformation of Tz
D is defined by

T
lð Þ

Dz~
Tl

Dz
{1

l l=0

ln TDz l~0

(
where l maximizes the function

l lð Þ~{
n

2
ln

1

n

Xn

j~1

T
lð Þ

Dz,j{T
lð Þ

Dz

� �2

" #
z l{1ð Þ

Xn

j~1

ln TDz,j

with T
lð Þ

Dz~ 1
n

Pn
j~1

T
lð Þ

Dzand T
lð Þ

Dz,j~transformed test statistic

for jth gene-set. The Box-Cox transformation ensures the

transformed variable T
^l
� �
Dz can be well approximated by a

normal distribution.

4. With estimated l̂, apply the Box-Cox transformation to t-

statistics corresponding to those gene-sets to be tested to obtain

T
l̂
� �
Dz,TEST . Here, TD+,TEST is calculated by subtracting mini-

mum from t-statistics of all gene-sets to be tested. The p-value for

a particular gene-set j with t-statistics t can then be approximated

by Pr T
l̂
� �
Dz,TEST ,jwt

	 

~1{W

t{TT

^lð Þ
Dz;TESTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var T
l̂ð Þ

Dz;TEST

� �r
8>><
>>:

9>>=
>>; where W(?)

is c.d.f. of standard normal distribution.

We use the Monte Carlo simulation approach [29] to simulate

gene expression values with the same covariance structure as those

in real microarray data. First, we fit Model 2 to real microarray

data and estimate covariance parameters corresponding to

variance components for random effects and residual errors e.

Next, we simulate gene values with random effects and errors

generated according to the estimated covariance parameters.

Because the dependency between genes are captured approxi-

mately by random effects and covariance parameters in mixed

models (Materials and Methods), the simulated gene expression

values will have essentially the same covariance structure as gene

values in real microarray data. Also, since no fixed effects were

added, the simulated data do not depend on outcome and

therefore correspond to null gene-sets values.

Once we obtain nominal p-values from steps described above,

we next calculate adjusted p-values to control for False Discovery

Rate (FDR). An adjusted p-value of 0.05 for a gene set indicates

that among all significant gene sets selected at this threshold, 5 out

100 of them are expected to be false leads.

Random Effects and Covariance Structure Modeled by
Mixed Model

In Models 1 and 2, we assume normal distributions for the

random effects: Array1,Array2, . . . ,ArrayNarray
*N 0,s2

array

� �
and

Pathway1 gð Þ, . . . ,PathwayNpathway gð Þ*N 0,s2
pathway

� �
. Here, the

Array random effects model effects due to sample variations and

Pathway random effects represent variations associated with

different biological processes defined by pathways. The random

effects have the advantage of requiring only a single parameter

(e.g. s2
array), the variance component, to be estimated. In the

Statistical Analysis of Biological Pathways
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simulation study we accommodate 50 pathways simultaneously.

For real microarray dataset, one can also construct a separate

pathway ‘‘other’’ to include all genes not belonging to any gene-

sets to be tested.

Another important advantage of random effects is that they help

capture the heterogeneous covariations across genes. In particular,

the Array random effects account for covariance among all

observations from the same array and Pathway random effects

account for covariance among genes from the same pathway. Note

that the random Pathway effects vary according to genes, to model

different amount of dependencies between pairs of genes. We

discuss the specific covariance structure accounted by these

random effects and their constructions in details next.

The Array random effects are constructed as indicator variables for

each array, that is, Arrayl = I{array l}. To construct the Pathway ran-

dom effects, first, calculate t-statistics for each gene based on observed

data. Let X1, . . . ,XNcontrols
be gene expression values from control

samples, and Y1, . . . ,YNcases
be gene expression values from case

samples. Compute Tg~ Y g{X g

� �, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnc

i~1

Xgi{X g

� �2
.

nc{1ð Þ
s

where X̄g and Ȳg are average gene values for control samples and case

samples respectively. Next, we construct Pathwaym(g) = Tg6I{pathway

m}, where I(pathway m) is indicator variable for a gene belonging to

pathway m. Therefore, for genes within pathway m, Pathwaym(g) varies

depending on Tg and it is 0 for genes outside pathway m.

Using matrix algebra, it can be shown that Array and Pathway

random effects induce a covariance structure in the marginal

model that accommodates different amount of dependencies

between genes (see for example, [29], page 737). More specifically,

let yglm be gene expression value for gene g from pathway m on

array l, then var yglm

� �
~s2

arrayzs2
pathwayzs2 where s2 is residual

variance associated with measurement errors and

Cov yglm,yg0l0m0
� �

~

tgtg0s
2
pathwayzs2

array if l~l0, m0~m Að Þ
tgtg0s

2
pathway if l=l0, m0~m Bð Þ

s2
array if l~l0, m0=m Cð Þ
0 if l=l0, m0=m Dð Þ

8>>>><
>>>>:

Here, tg denotes value of statistic T for gene g. In (B), for genes

from the same pathway, the correlations between genes depend on

directions and magnitudes of their differential expression changes.

So two genes are highly positively correlated if there are large

differential expression changes for both genes and their changes

are in the same direction. In (C), assuming most of covariations

between genes come from those genes within the same pathway

and genes from different pathways but on the same array are only

weakly correlated, we model a common covariance between these

genes. In practice, we found assuming heterogenous covariances

tgtg0s
2
array tend to be too strong for genes from different pathways

and tests for gene-sets based on it lose too much power.

Comparing (A) and (B), (C), genes from the same arrays and

pathways are more correlated than those from different arrays or

from different pathways. In (D), we assume genes from different

arrays and different pathways are independent given the arrays are

from independent patients.

Results

Simulation Study
We performed a simulation study to assess the sensitivity and

specificity of a mixed model approach compared with GSEA and

PAGE which also test hypothesis Q1 in Tian et al. [14], that is, the

association of gene-set genes with outcome is similar with the

association for the rest of the genes. For each scenario in Table 1,

two sets of 50 microarray samples were simulated for treatment

and control groups. Each sample consisted of 1500 values

generated from the standard normal distribution as an approxi-

mation to log transformed gene expression values. These values

were assigned to 50 gene-sets, each with 30 genes. Treatment

effects were added to gene-set 1 according to the parameters p, up,

m where

p = Proportion of genes with treatment effect added to

case group,

up = Among treated genes, the proportion of genes for

which positive treatment effect m were added,

12up = Among treated genes, the proportion of genes

for which negative treatment effects 2m were added.

Therefore, among all the genes in the gene-set, there were

306p6up up-regulated genes and 306p6(12up) down-regulated

genes. For example, for Scenario 1 in Table 1, there were 9

( = 3060.3) genes in gene-set 1 with treatment effect added, among

them 5 (<3060.360.5) gene values were increased with 0.2 units

and the remaining 4 genes were decreased with 20.2 units. In

scenes 4–6 and 7–9, the total proportions of genes with treatment

effects were changed to 0.5 and 0.8 respectively. In scenes 10–18,

among treated genes, 80% of genes were moved up and 20%

genes were moved down. These parameters were chosen to

represent different degrees of feedback and reverse regulation. For

each scenario, only the first gene-set was associated with

treatment-control groups and the other gene-sets were null gene-

sets by design of experiment.

The javaGSEA implementation was used for GSEA analysis

and the algorithm described on page 10 of [15] was used for

PAGE. SAS PROC MIXED [29] was used for mixed model

analysis. For datasets with up_p = 0.5, GSEA algorithm was

implemented with gene list sorting mode ‘‘abs’’, so genes were

sorted based on absolute values; the mixed model was imple-

mented with Model 2. For each scenario with up_p = 0.5, l̂ was

estimated by applying Box-Cox transformation (Linear Mixed

Model in Materials and Methods) to t-statistics of the 49 null gene-

sets. The results showed the estimated l̂ was 0.7 for all scenarios

for the transformed t-statistics to achieve approximate normality.

To compare the performances of Mixed Model 1 with GSEA

and PAGE, we generated 20 datasets for each set of parameters p,

up, m and computed the Area Under the receiver operating

characteristic Curve (AUC) for each method. The receiver

operating characteristic (ROC) curves show trade-off between

sensitivity and 1-specificity as the significance cutoff is varied. The

AUC assesses the overall discriminative ability of the methods at

determining whether a given gene-set is associated with outcome

over all possible cutoffs. In addition, we calculated the test sizes of

each method (the proportions of p-values less than 0.05 for null

gene-sets). Because under the null hypothesis we expect the p-

values to follow a uniform distribution, a method with test size

equal to or less than the significance cutoff (e.g. 0.05) is desirable.

In terms of AUC, when most genes are shifted in one direction

(up_p = 0.8), the mixed model and PAGE performed similarly,

and they both outperformed GSEA consistently across scenarios

10–18 (Table 1, Figure 1). These results show that improved

power can be gained over GSEA, which tests for any differences in

distributions, by using approaches such as the mixed model or

PAGE that test for location changes. When genes are shifted in

both directions equally (up_p = 0.5), the mixed model performed

Statistical Analysis of Biological Pathways
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better than both GSEA and PAGE. The better performance of the

mixed model vs. PAGE shows that combining signals for up-

regulation and down-regulation by Mixed Model 2 is more

effective in this setting because signals from genes shifted in

different directions may be cancelled out. We note also that all

methods maintained proper test sizes for all scenarios.

Reanalysis of Diabetes Study Data
Mootha et al. [12] compared gene expression of skeletal muscle

biopsy samples from human diabetes patients and patients with

normal glucose tolerance. There were 17 control patients (group

NGT) and 18 diabetic patients (group DM2) in this study and 149

curated gene-sets were tested for enrichment using GSEA. They

found that genes involved in oxidative phosphorylation were

coordinately down regulated in human diabetes. To compare the

results of the mixed model approach with GSEA and to confirm

that mixed models can also detect subtle but coordinated changes

in gene expression within gene-sets, we reanalyzed this data set.

Table 2 tabulates analysis results for gene-sets selected by mixed

models and the GSEA method. The results for GSEA were

obtained from http://www-genome.wi.mit.edu/mpg/oxphos/.

For the mixed model method, the nominal p-value were estimated

by fitting Model 1 and testing the interaction term Type6Path-

way. Because the Pathway random effects were also included in

Model 1, they induce a more general covariance structure between

genes, so mixed model analysis accounts for heterogeneous

variances of different pathways and gene-gene correlations. False

discovery rate (FDR) adjusted p-values were also calculated, an

adjusted p-value of 0.05 for a pathway indicates that among all

significant pathways selected at this threshold, 5 out 100 of them

are expected to be false leads.

The results show that both the mixed model and GSEA selected

the pathway ‘‘OXPHOS_HG_U133A_probes’’ as the most

significantly changed pathway and ranked the pathways ‘‘human_

Table 1. Area Under ROC Curve (AUC) for the comparison of
Mixed Model, PAGE and GSEA methods using simulated data.

Scene tot_p up_p mu Mixed Model GSEA PAGE

1 0.3 0.5 0.2 0.6158 0.5468 0.5453

2 0.3 0.5 0.4 0.9346 0.6762 0.5852

3 0.3 0.5 0.6 0.9986 0.7349 0.6230

4 0.5 0.5 0.2 0.7735 0.7417 0.5452

5 0.5 0.5 0.4 0.9868 0.7321 0.5851

6 0.5 0.5 0.6 1.0000 0.7373 0.6225

7 0.8 0.5 0.2 0.9106 0.7394 0.5063

8 0.8 0.5 0.4 1.0000 0.7373 0.5064

9 0.8 0.5 0.6 1.0000 0.7373 0.5062

10 0.3 0.8 0.2 0.7074 0.6395 0.7002

11 0.3 0.8 0.4 0.8814 0.8484 0.8755

12 0.3 0.8 0.6 0.9718 0.9710 0.9683

13 0.5 0.8 0.2 0.8472 0.7173 0.8456

14 0.5 0.8 0.4 0.9872 0.9750 0.9888

15 0.5 0.8 0.6 0.9999 0.9957 1.0000

16 0.8 0.8 0.2 0.9551 0.8969 0.9572

17 0.8 0.8 0.4 1.0000 0.9956 1.0000

18 0.8 0.8 0.6 1.0000 0.9964 1.0000

tot_p = proportion of genes with treatment effect added to treatment group.
up_p = among treated genes, the proportion of genes for which positive
treatment effect mu was added.
1-up = among treated genes, the proportion of genes for which negative
treatment effect - mu was added.
doi:10.1371/journal.pgen.1000115.t001

Figure 1. Area under ROC Curves (AUC) for the comparison of Mixed Model, PAGE and GSEA methods using simulated data. For
each scene, there were 20 simulated datasets, each with 1500 genes assigned to 50 gene-sets, among them only the first gene-set (gene-set 1)
include genes associated with outcome by design. The test results from each method were compared with true classification of the gene-sets. The
AUC measures the ability of a test to correctly classify whether a gene-set is associated with outcome. In scenes 1–9, when genes were shifted in both
directions equally (up_p = 0.5), mixed model outperformed both GSEA and PAGE. In scenes 10–18, when most of genes were shifted in one direction
(up_p = 0.8), mixed model and PAGE performed similar, and they both outperformed GSEA, especially when the magnitude of differential expression
in gene-set 1 is small (scenes 10, 13, 16).
doi:10.1371/journal.pgen.1000115.g001
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mitoDB_6_2002_HG_U133A_pro’’, ‘‘mitochondr_HG_U133A_

probes’’ high on their significant pathways list. While mixed model

selected 9 gene-sets at 5% FDR level, all FDR adjusted p-values for

GSEA method were greater than 0.2 (the minimum was 0.447). As

diabetes is primarily a chronic disorder of carbohydrate metabo-

lism, additional pathways identified by the mixed model, such as the

‘‘Glycolysis/Gluconeogenesis’’ and ‘‘Starch and sucrose metabo-

lism’’ make biological sense. Chronic diabetes has also been

associated with changes in ‘‘Tyrosine metabolism’’ [30], another

pathway identified by the mixed model.

A Dose Response Study
We next applied the mixed model method to a dose-response

microarray experiment. West et al. [26] conducted experiments to

study the effect of HNE (4-hydroxy-2-nonenal) on RKO human

colorectal carcinoma cells. It is postulated that HNE induces

cellular dysfunction in a variety of disorders such as inflammation,

cancer, neurodegenerative, cardiovascular disease [31,32]. In this

study, Affymetrix U133 Plus 2.0 chips were used with RKO cells

to explore transcriptional changes induced following treatment for

6 or 24 hours with 5,20, or 60 mM HNE. Figure S1 shows the

dose response relationships averaged over all genes for each gene

set for each treatment duration.

Our main objective was to identify gene sets with significant

monotone changes over doses and to assess whether the changes

were similar for the two treatment durations. With permutation

based methods such as GSEA, one needs to decide a priori whether

to test for trends of gene expression over different doses of HNE

for each treatment duration separately or to test for trends by

pooling data from both treatment durations. In contrast, the

mixed model framework provides a more efficient way to

incorporate information from both treatment durations, and

standard methods apply for testing polynomial trends of gene

expressions over different doses of HNE and for testing trend by

treatment duration interaction.

We next describe the analysis workflow. First, probe sets were

mapped to Ensembl Gene IDs and median expression levels for

multiple probe sets corresponding to the same gene were

calculated. After this step, we were left with 17278 genes and

they were tested for enrichment against gene sets generated based

on the biological process categories in Gene Ontology. Genes in

the human genome were mapped to GO categories according to

Ensembl annotation (http://www.ensembl.org). We focused on

GO categories with 10 to 200 genes by removing all the other

categories. Note that this is the size of a gene set when all of the

genes in the genome are considered. For genes on a specific array,

the gene counts for a gene set will be slightly smaller. In order to

reduce the redundancy in GO, we further removed all child-

categories if corresponding parent-category was within the size

limitation. After the above processes, 444 remaining gene sets were

used for the enrichment analysis.

Next, we calculated means and standard deviations for each

gene at dose 0 for each treatment duration separately and then

used these values to standardize all gene expression values. That is,

the values for each gene were standardized by subtracting the dose

0 means and dividing by dose 0 standard deviations. The

standardized gene expression values then represented the number

of standard deviation away from the ‘‘normal’’ gene expression at

dose 0.

Finally, we applied the mixed model with fixed effects Dose,

Treatment Duration, Dose6Treatment Duration to the gene

expression values. Because the data were collected at different

times, the variable Batch was also added to adjust for the effects of

different batches. In addition, a random Array effect was included

in the model to account for correlations of genes from the same

array and to facilitate inference to an entire population of arrays,

not only to those considered in this study. Contrasts of parameters

from this model based orthogonal polynomial coefficients were

then used to test for linear trend of expression values over doses

and Duration6Linear trend effect. The orthogonal polynomial

coefficients are linear transformations of the natural polynomial

scores and they alleviate collinearity problems of natural

polynomial scores. Adjusted p-values were then computed using

the R multtest package [33] to control for False Discovery Rate

(FDR) using the method of Benjamini and Hochberg [34].

Because we were mainly interested in gene sets directly

responding to changes in HNE, our analysis focused on gene sets

with significant linear trends of expression values corresponding to

monotone changes over doses. At the adjusted p-value level of

0.01, we identified 5 and 1 responsive gene sets for 6 h and 24 h

treatment, respectively (Figure 2). However, after testing for a

Duration6Linear Trend interaction, and refitting gene sets for

which the interaction was nonsignificant, we identified 40

responsive gene sets at the adjusted p-value level of 0.01

Table 2. Comparison of Mixed Model and GSEA Results for the Analysis of Diabetes Dataset from Mootha et al. (2003).

Pathway Nominal p-values FDR Adj. p-value

Size GSEA Mixed Model Mixed Model

OXPHOS_HG_U133A_probes 114 0.003 1.40E-12 2.11E-10

c18_U133_probes 248 0.932 4.43E-07 3.34E-05

human_mitoDB_6_2002_HG_U133A_probes 594 0.091 6.97E-06 3.51E-04

mitochondr_HG_U133A_probes 615 0.087 2.03E-05 7.68E-04

c25_U133_probes 64 0.246 9.07E-04 0.027

MAP00350_Tyrosine_metabolism 47 0.965 0.00110 0.028

c19_U133_probes 203 0.778 0.00253 0.048

MAP00010_Glycolysis_Gluconeogenesis 91 0.759 0.00255 0.048

MAP00500_Starch_and_sucrose_metabolism 30 1 0.00294 0.049

Size refers to the number of genes in the gene-set. Both mixed model and GSEA selected the pathway ‘‘OXPHOS_HG_U133A_probes’’ as the most significantly changed
pathway and ranked the pathways ‘‘human_mitoDB_6_2002_HG_U133A_pro’’, ‘‘mitochondr_HG_U133A_probes’’ high on their significant pathways list. Mixed model
selected 6 additional gene-sets at 5% FDR level.
doi:10.1371/journal.pgen.1000115.t002
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(Figure 3). Among them, 36 out of the 40 gene sets were not

identified in the individual test. These 36 gene sets represented

some important biological processes that are known to be

responsive to HNE treatment, such as ‘‘mismatch repair’’,

‘‘double-strand break repair’’, and ‘‘response to inorganic

substance’’ (Table S1). These results demonstrated that pooling

data with similar trends from both treatment durations is helpful

for improving statistical power and identifying biologically

meaningful gene sets.

On the other hand, the interaction tests were also used to select

gene sets showing different response trends for the 6 h and 24 h

treatments. Among the 12 gene sets with significant interactions

(p-value,0.01), 8 of them were responsive for 6 h treatment

(adjusted p-value,0.05) but not for 24 h treatment (adjusted p-

value.0.95, see Figure 3). These gene sets represented biological

processes that responded to HNE in a quick manner, including

‘‘cytoplasmic sequestering of protein’’, ‘‘negative regulation of

transcription factor import’’, and ‘‘cellular response to stimulus’’

etc. (Table S1). Down-regulation of the biological processes

‘‘cytoplasmic sequestering of protein’’ and ‘‘negative regulation

of transcription factor import’’ at 6 h will lead to the release of

transcription factors that are sequestered in the cytosol, which is

consistent with the significant increase in overall transcription after

6 h of HNE treatment. One gene set, ‘‘pyrimidine deoxyribonu-

cleotide metabolism’’, showed a significant response for the 24 h

treatment (adjusted p-value = 0) but not for 6 h treatment

(adjusted p-value = 0.33). These results indicated that although

both signaling and metabolic changes were involved in oxidative

stress, metabolism response was slower than the signaling

response, e.g. transcription factor import.

Discussion

In this paper, we have proposed linear mixed models for the

analysis of microarray data at the pathway-level. This flexible,

unified and practical approach can be easily implemented in

common statistical software packages. The proposed model makes

three main improvements over popular methods for gene-set

testing: improved power through testing location shift of gene-set

genes, more refined modeling of covariance structure between

genes through specification of random effects, and the ability to

account for complicated experimental designs through inclusion of

design factors and covariate effects.

As suggested by Tian et al. [14], power is lost when GSEA tests

Q1 (genes in a gene-set show the same pattern of associations with

the phenotype compared with the rest of the genes) but generates

the null distribution of test statistic under hypothesis Q2 (all genes

in gene-set are not associated with outcome) by permuting

samples. In addition, the alternative hypothesis that is of interest

for Q1 is more likely to be location shift for genes in the gene-set

compared to background genes; the use of an omnibus test such as

the Kolmogorov test by GSEA may result in further loss in power

and produce false positives for tightly correlated gene-sets. Our

proposed method provides a simple way to test for location shifts in

Q1 while accounting for covariance structure between genes at the

same time. It provides increased power while still maintaining

control of the false positive rate.

The use of random effects to account for a general covariance

structure that varies according to genes in the proposed models

represent our efforts for improving covariance structure modeling of

current parametric methods. False positives are likely to result when

dependency between genes are not accounted for [15], or through

Figure 2. Receiver Operating Characteristic Curves for Mixed Model, GSEA and PAGE using simulated data. tot_p = proportion of
genes with treatment effect added to treatment group in gene–set 1; up_p = among treated genes, the proportion of genes for which positive
treatment effect mu was added; 12up = among treated genes, the proportion of genes for which negative treatment effect –mu was added. See text
for details of simulation experiment.
doi:10.1371/journal.pgen.1000115.g002

Figure 3. Workflow and results for Mixed Model analysis of HNE dataset. When individual tests were conducted with 6 hr treatment
samples and 24 hr samples separately, only 5 and 1 gene-sets were significant at 0.01 FDR level. However, when all samples were used, for testing
gene-sets with non-significant Duration6Linear Trend interaction, 40 gene-sets were significant at 0.01 FDR level. This shows pooling data with
similar trends from both treatment durations improves the statistical power for identifying biologically meaningful gene sets.
doi:10.1371/journal.pgen.1000115.g003
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the use of homogenous correlation between all genes on the same

array [23]. Our proposed model, although may not be perfect,

provides a way to capture the primary heterogeneous covariance

structure between genes. As genes operate with complex covariation

patterns, covariance structure modeling is a challenge for

parametric methods and future study with further refined modeling

of dependencies between genes will extend the power and potential

of mixed models and other parametric methods.

On the other hand, the strength of parametric methods such as

the proposed mixed models lie in their ability to account for

complicated design information. When there are multiple sources of

covariation in the data, permutation or resampling methods are

often difficult to employ. In contrast, mixed Models 1 and 2 can be

easily extended to handle a variety of more complex designs. For

example, for two-color arrays and other arrays with multiple

measurements per gene on each array, Model 1 can be augmented

with additional random effects corresponding to spot or block

effects. When arrays are processed in multiple batches, a batch effect

can be added to the model to adjust for systematic effects from

different batches. Similarly, other random effects from blocks and

sites where the experiments were performed can also be

incorporated into the models. In the A Dose Response Study

section, although we have analyzed a dose response study, time-

course experiments can also be analyzed in a similar way. For

example, for a time-course study with two treatments and four time

points, a mixed model with fixed effects Treatment, Time and

Treatment6Time plus random effects can be constructed. In

addition, these models can be further extended to accommodate

design information such as matched case-control pairs. Littell et al.

[29] provides a comprehensive set of examples covering a wide

range of mixed models and related covariance structures. Tests for

multiple interaction effects in these and numerous other mixed

model settings can provide valuable sentinels for scientific discovery.

Supporting Information

Figure S1 Average standardized gene expression values for each

dose and each treatment duration.

Found at: doi:10.1371/journal.pgen.1000115.s001 (0.77 MB PDF)

Table S1 Supplementary table for HNE data.

Found at: doi:10.1371/journal.pgen.1000115.s002 (0.24 MB

XLS)
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