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Abstract

Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of
molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-
based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich
the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary
cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at
18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified,
GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46%)
primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was
associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative
phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to
reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and
overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate
lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.
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Introduction

Pancreatic cancer has among the highest mortality rates of any

cancer, pointing to a critical need for more effective therapies.

While much progress has been made in understanding pancreatic

cancer pathogenesis, a more comprehensive characterization of

molecular genetic alterations is needed to define new molecular

targets and therapeutic opportunities [1].

Genomic DNA copy number alterations (CNAs) are frequent in

pancreatic cancer, where they alter the dosage and expression of

cancer genes. Amplified oncogenes include KRAS (also commonly

activated by point mutation), AKT2 and MYB. Likewise, deleted

tumor suppressor genes (TSGs) include CDKN2A, TP53 and

SMAD4 (also inactivated by mutation and promoter hypermethy-

lation) [2]. Mapping CNAs has become an important starting

point for discovering new cancer genes, and indeed led to the

original identification of CDKN2A and SMAD4 as TSGs [3,4].

During development, the ventral portion of the pancreas arises

from the primitive bile duct [5]. While less is known of extrahepatic

bile duct cancers, they appear to share many features with pancreatic

cancers, including frequent molecular alterations of KRAS, CDKN2A,

TP53 and SMAD4, as well as global patterns of allelic loss [6,7].

Because of their anatomic proximity and similar histologies,

pancreatic and distal bile duct cancers can at times be difficult to

distinguish, and from a clinical and research standpoint are often

practically combined under the umbrella of pancreatobiliary cancer.

Recently, array-based comparative genomic hybridization

(array CGH) has provided a powerful approach to catalog CNAs
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in cancer genomes [8,9]. Profiling pancreatobiliary cancers,

however, presents unique technical challenges due to the strong

stromal response, where tumor cells typically account for less than

20% of cells in the specimen. Not surprisingly, to date genomic

profiling of pancreatic cancer has been largely confined to studies

of derived cell lines [10–13]. Strategies to enrich for tumor cells

from primary cancers include physical microdissection, which is

both technically demanding and, with the low yield of genomic

DNA, is subject to biases in subsequent target amplification. An

alternative strategy is expanding tumors as xenografts in nude

mice, which effectively enriches the tumor cell fraction to .95%,

(with the remaining stromal cells being of murine origin), while

preserving genomic alterations of the parental tumor [14]. Here,

we apply genomic profiling to a set of pancreatic and distal bile

duct cancers grown as xenografts in nude mice, where among

other alterations we identify and characterize GATA6 as a novel

candidate lineage-specific oncogene amplified in pancreatobiliary

cancer.

Results

To comprehensively catalog CNAs in pancreatobiliary cancers,

we carried out array CGH-based genomic profiling of a set of 37

cancers (31 exocrine pancreatic cancers and 6 distal bile duct

cancers) expanded as xenografts to enrich for tumor cells, using

cDNA microarrays representing ,22,000 genes with a median

interprobe spacing of ,15 Kb. We identified numerous CNAs,

among which 17 focal high-level DNA amplifications (i.e.

fluorescence ratios $3, corresponding to at least 5-fold amplifica-

tion [8]) and 7 presumptive homozygous deletions (i.e. fluorescence

ratios #0.25) were particularly informative in pinpointing known or

novel candidate cancer genes (Table 1). By profiling gene expression

in parallel, we also defined the subset of amplified genes exhibiting

elevated expression (Table 1), a characteristic of oncogenes. For a

subset of presumptive homozygous deletions, we validated homo-

zygous loss by polymerase chain reaction (PCR) using human gene-

specific primers (Table 1 and Figure S1).

Among the focal amplifications, we identified gain at 18q11.2 in

19% of pancreatobiliary cancers (5 of 31 pancreatic, and 2 of 6

bile duct). Notably, we found gains spanning 18q11.2 to be less

common in other tumor types we had profiled on the same array

platform, including cancers of the breast (3 gains in 89 (3%)

tumors, 1 in 49 (2%) cell lines), prostate (0 in 64 (0%) tumors), lung

(4 in 76 (5%) tumors, 4 in 52 (8%) cell lines) and colon (1 in 29

(3%) cell lines) [15–17] (and unpublished data), and in these other

tumor types the gains when present were not focal, suggesting the

putative driver oncogene within this locus may be specific to

pancreatobiliary cancer. Strikingly, the smallest shared region of

amplification among the xenograft specimens spanned just two

annotated genes, GATA6 (GATA binding protein 6) and CTAGE1

(cutaneous T-cell lymphoma (CTCL)-associated antigen 1)

(Figure 1A). GATA6 [18] belongs to the GATA factor family of

transcriptional regulators, whose members are expressed in

distinct developmental and tissue-specific patterns and regulate

cell-restricted programs of gene expression [19]. Because GATA6

was known to regulate normal pancreas development [20,21], we

sought to explore a possible functional connection of GATA6 gene

amplification and pancreatobiliary cancer.

A single bile duct cancer xenograft specimen (B291) with focal

high-level DNA amplification was particularly informative in

defining amplicon boundaries. Using a custom Agilent ultra-high

definition CGH array with probes tiling 18q11.2 with an average

343nt spacing, we first confirmed the amplicon boundaries in

B291, finding the amplicon peak indeed spanned just GATA6 and

CTAGE1 (Figure 1B). We also validated GATA6 amplification in

B291 by quantitative (Q)-PCR (Figure 1C), and by fluorescence in

situ hybridization (FISH) in the parent tumor from which the B291

xenograft was derived (Figure 1D, left panel), the latter excluding

the possibility of amplification arising during xenograft growth.

Focal 18q11.2 gain was also present in 3 of 18 (17%) pancreatic

cancer cell lines (AsPC1, Panc3.27 and Capan1) we had previously

profiled by array CGH ([13]) (Figure 1A, and data not shown), a

finding we confirmed by FISH (Figure 1D).

Consistent with an oncogenic role, GATA6 exhibited increased

mRNA expression by microarray in B291 (Figure 2A) and among

the group of xenograft specimens with 18q11.2 gain (Figure 2B;

P = 0.003, Mann-Whitney U-Test), a finding also confirmed by Q-

reverse transcription (RT)-PCR (Figure 2C). In contrast, expres-

sion of the neighboring gene CTAGE1 was not detectable by Q-

RT-PCR (data not shown). We also observed increased GATA6

protein levels by Western blot in pancreatic cancer cell lines with

18q11.2 gain, compared to pancreatic cancer cell lines without

gain or to the nontumorigenic human pancreatic ductal epithelial

line HPDE (Figure 2D), and by immunohistochemistry (IHC) in

the parent tumor from which the B291 xenograft was derived

(Figure 2E). To assess the frequency with which GATA6 exhibited

elevated expression in primary pancreatic cancer, we performed

IHC on a tissue microarray (TMA) that included cases of normal

pancreas, pancreatitis and pancreatic ductal adenocarcinoma. We

observed moderate and strong GATA6 nuclear staining respec-

tively in 15 (28%) and 25 (46%) of 54 primary pancreatic cancers

compared to just 3 (9%) and 0 (0%) of 33 normal pancreas

specimens surveyed (P,0.001, x2 test) (Figure 3). GATA6

expression was also elevated in pancreatitis (Figure 3E). There

was no significant relation between GATA6 staining and tumor

grade (P = 0.18, x2 test).

Since GATA6 is a transcriptional regulator, we sought to

identify co-expressed genes, which might include its downstream

transcriptional targets and suggest functional involvements. Using

Significance Analysis of Microarrays (SAM) [22], we identified 86

genes whose expression was significantly (False discovery rate,

FDR, ,1%) increased (73 genes) or decreased (13 genes) in

xenografts with elevated GATA6 expression (Figure 4A). The

SAM-identified gene set spanned diverse biological processes, and

included known cancer genes like FGF1 and EVI1. Gene Set

Enrichment Analysis (GSEA) [23] confirmed an enrichment of

putative upstream GATA factor binding sites among the genes

whose expression correlated with elevated GATA6 levels

Author Summary

Pancreatic cancer is a devastating disease, having among
the lowest survival rates of any cancer. A better
understanding of the molecular basis of pancreatic cancer
may lead to improved rationale therapies. We report here
the discovery of amplification (i.e. extra copies) of the
GATA6 gene in many human pancreatic cancers. GATA6 is
a regulator of gene expression and functions in the
development of the normal pancreas. Our findings
indicate that its amplification and aberrant overexpression
contribute to pancreatic cancer development. GATA6 joins
a growing list of cancer genes with key roles in normal
human development but pathogenic roles in cancer when
aberrantly expressed. Our discovery of GATA6 amplifica-
tion provides a new foothold into understanding the
pathogenic mechanisms underlying pancreatic cancer, and
suggests new strategies for therapy by targeting GATA6 or
the genes it regulates.

GATA6 Amplification in Pancreatic Cancer
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(P = 0.004) (Figure 4B). Interestingly, by GSEA the top functional

gene sets associated with elevated GATA6 expression all related to

mitochondrial activities connected to oxidative phosphorylation

(Figure 4C).

To directly assess the functional significance of GATA6

amplification and overexpression in pancreatic cancer, we used

RNA interference (RNAi) to target GATA6 knockdown in two

pancreatic cancer cell lines, AsPC1 and Panc3.27, with GATA6

gain and overexpression. Transfection of two independent On-

TARGETplus short interfering RNAs (siRNAs) targeting GATA6,

designed and chemically modified to minimize off-target effects

[24,25], led to decreased GATA6 protein levels (Figure 5A), and to

decreased cell proliferation compared to a negative control siRNA

pool (Figure 5B). While the reduction in cell proliferation was

relatively modest, it was statistically significant and reproducible in

multiple independent experiments (not shown). In contrast, siRNA

transfection of a pancreatic cancer cell line, PL45, without GATA6

amplification and overexpression (Figure 2D) did not diminish cell

proliferation (Figure 5B, right panel), supporting the specificity of

GATA6 targeting. We examined in more detail the effect of

GATA6 knockdown in AsPC1 cells, where the reduced cell

proliferation was attributable to decreased cell-cycle progression

(as evidenced by decreased S-phase fraction; Figure 5C) but not

increased apoptosis (Figure 5D). GATA6 knockdown in AsPC1

cells also led to reduced colony formation in liquid culture

(Figure 5E).

In complementary experiments, we attempted to overexpress

GATA6 by retroviral transduction in nontumorigenic human

pancreatic ductal epithelial HPDE cells, and in the pancreatic

cancer cell line PL45 harboring activated KRAS but no 18q11.2

gain. Though GATA6 expression was initially detected in infected

cells by Western blot (data not shown), expression was lost upon

expansion of cell pools under selection, suggesting GATA6

conferred negative fitness in these cell contexts.

Discussion

A main objective of our study was to comprehensively catalog

CNAs in pancreatobiliary cancers. Genomic profiling of 31

pancreatic and 6 distal bile duct cancer xenografts identified

Table 1. High-level amplifications and homozygous deletions.

Cytoband P-Border (Kb) Q-Border (Kb) Size (Kb) Specimena
Frequency
CNA (%)b

Selected resident
genesc,d

Amplifications

4q12 57,213 57,681 468 B291 3 REST, IGFBP7

6p21.2 39,162 39,406 244 P410 3 KCNK5

7q22.1 97,489 100,136 2647 P178 19 TRRAP, SMURF1, MCM7

8q24.21 128,135 130,155 2020 P167 54 MYC, PVT1

9p13.3 34,369 34,656 287 P374 27 CNTFR

11p11.2 45,885 46,363 478 P154, P155 22 CREB3L1, MDK

12p12.1 24,854 27,498 2644e P354, B291 22 KRAS

12q15 68,070 69,445 1374 B291 8 YEATS4, FRS2, PTPRR

17q21.2 36,755 36,925 170 P374 27 KRT15

17q21.31 39,624 39,993 369 P294 27 SLC25A39, IGTA2B

17q21.33 46,183 46,513 329 P294 27 CROP, TOB1

18q11.2 18,001 18,287 286 B291 19 GATA6

19p13.3 2,182 2,279 97 P165 27 DOT1L, OAZ1

19p13.2 7,609 7,654 45 P169 11 TRAPPC5

19q13.2 43,769 45,520 1751 B265 30 PAK4, AKT2

19q13.3 48,364 48,927 564 P155 11 PLAUR

20q13.12 43,472 43,789 316 P226 19 PIGT

Deletions

3p24.1 30,025 30,711 685 P224 16 TGFBR2

4q35.1 187,380 187,509 129 B301 41 TLR3

5q23.1 115,701 115,755 54 P266 27

8p23.1 6,781 7,759 978 P266 41 DEFA1

9p21.3 21,321 21,961 640e P198, P291 59f CDKN2A

9p21.2 27,219 27,521 302e P201, P374 57 IFT74, TEK, MOBKL2B

19q13.43 63,219 63,330 111 P374 14 ZNF135

aSpecimen(s) with high-level amplification or presumptive homozygous deletion.
bIncludes low-level respective gain/loss at the same locus.
cBoldface indicates gene expression well-measured by microarray and elevated when amplified.
dUnderlined genes are those confirmed homozygously deleted by PCR.
eBoundaries vary among specimens; minimum shared region indicated.
f43% of specimens exhibited homozygous deletion by PCR.
doi:10.1371/journal.pgen.1000081.t001
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numerous focal high-level DNA amplifications and homozygous

deletions, thereby pinpointing known and candidate cancer genes.

Known cancer genes included focal amplifications of MYC

(8q24.21), KRAS (12p12.1) and AKT2 (19q13.2), and homozygous

deletions of TGFBR2 (3p24.1) and CDKN2A (9p21.3). Other focal

changes suggest entirely new pathobiology. For example, homo-

zygous deletion of TLR3 (Toll-like receptor 3) (4q35.1), which

functions in the innate immune response and is also highly

expressed in pancreas [26,27], suggests a possible role of infection

in pancreatic carcinogenesis.

Prominent among novel oncogene candidates we identified

GATA6 amplification at 18q11.2. GATA6 is one of six members of

the mammalian GATA family of transcriptional regulators, each

having two zinc finger domains and binding the common DNA

sequence element (A/T)GATA(A/G) [19]. GATA factors 1–3 are

expressed mainly in hematopoietic lineages, while GATA factors

4–6 are expressed in various tissues derived from mesoderm and

endoderm, including the heart, liver, lung, gut, ovary and testis,

where they function in cell lineage specification [19,28]. In relation

to pancreas development in the mouse, GATA4 and GATA6 are

expressed in both endocrine and exocrine cell precursors, while in

the adult pancreas expression of GATA4 and GATA6 is restricted

to the exocrine and endocrine compartment, respectively [20,29].

Recently, GATA4 and GATA6 have both been shown to be

required for normal pancreas specification and development

[20,21]. While GATA6 has been linked to pancreas development,

Figure 1. GATA6 is focally amplified in pancreatobiliary cancer. (A) Genomic profiles by CGH on cDNA microarrays of pancreatic (P) and bile
duct (B) cancer xenografts across cytoband 18q11.2. Genes are ordered by genome position. Red indicates positive tumor/normal aCGH ratios (scale
shown), and samples called gained at 18q11.2 are marked below by closed circle (gains highlighted in yellow). Genes and ESTs (IMAGE clone ID
shown) on the microarray residing within the amplicon core are indicated. CTAGE1 (asterisked) was not present on the array but resides where shown.
(B) Genomic profile of B291 by CGH on an Agilent ultra high-definition custom microarray tiling 18q11.2, mapped onto the UCSC genome browser
(http://genome.ucsc.edu) [55]. The amplicon peak spans two genes, GATA6 and CTAGE1. (C) Q-PCR validation of GATA6 amplification in B291. Note,
hybridization measurements by CGH tend to underestimate true CNA ratios [8]. (D) FISH validation of GATA6 amplification in the parent tumor
(paraffin section) from which xenograft B291 was derived (left), and GATA6 gain in pancreatic cancer cell lines AsPC1 (center) and Panc3.27 (right). Gain
is evident by the increased ratio of GATA6(red)/centromere-18(green) signals. DAPI (nuclear) counterstaining is shown in grayscale.
doi:10.1371/journal.pgen.1000081.g001
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our findings now also connect GATA6 to pancreatic cancer, where

GATA6 amplification and resultant overexpression contribute

significantly (albeit at modest levels) to oncogenic phenotypes (cell

proliferation, cell-cycle progression and colony formation) of

pancreatic cancer cells.

Given its connection to development and cell specification, an

oncogenic role of GATA6 might seem surprising. Indeed, GATA6

has been characterized as a TSG in other cell contexts [30,31], and

inactivating mutations have been identified in human malignant

astrocytomas [31]. Nonetheless, other cell lineage-specific tran-

scription factors have been found amplified in cancers, including

MITF in melanoma [32], AR in hormone-independent prostate

cancer [33], ESR1 in breast cancer [34], and most recently NKX2-1

(TITF) in lung cancer [17,35–37]. The altered expression of such

transcriptional regulators, having normal roles in lineage prolifer-

ation or survival, might be needed for tumor survival and

progression in some cellular and genetic contexts, indicating a state

of ‘‘lineage-dependency’’ [38]. More generally, the deregulated

expression of transcription factors with roles in normal development

reflects the principle of ‘‘oncology recapitulating ontogeny’’ [39].

While we detected GATA6 amplification primarily in pancreatobil-

iary cancers, GATA6 expression is not restricted to the developing

pancreas, and therefore it remains to be determined whether

GATA6 might have an oncogenic role in other cell lineages.

Another characteristic of lineage-specific oncogenes is that their

oncogenic activity appears to be highly cell and genetic context

dependent. MITF expression is growth inhibitory in normal

human melanocytes [40], but in the context of BRAF activation

(along with TP53 and RB1 pathway inactivation) leads to growth

factor and anchorage independent growth [32]. Likewise, TITF1

is growth inhibitory when expressed in immortalized human lung

epithelial cells [35], but promotes cell proliferation and survival

when amplified in lung cancers [17,37]. Consistent with these

findings, GATA6 expression imparted negative fitness in immor-

talized human pancreatic ductal epithelial cells (HPDE), and in a

pancreatic cancer cell line (PL45) with KRAS activation but no

18q11.2 gain. Additional studies are needed to clarify the genetic

context of GATA6 oncogenic function.

While GATA6 was amplified in 19% of xenograft specimens, it

was highly expressed at the protein level in 46% of primary

pancreatic tumors surveyed. This finding suggests that GATA6

expression is likely elevated by mechanisms other than gene

amplification in a substantial subset of cases. We also noted

increased GATA6 expression in pancreatitis, which is a known risk

factor for developing pancreatic cancer [41], and suggests a possible

mechanistic link. As noted above, GATA4 is also expressed during

normal pancreas development, though unlike GATA6 its expres-

sion is retained in the adult exocrine pancreas. Of interest, we have

also observed DNA gains spanning GATA4 at 8p23.1 in a subset of

xenografts (not shown), though none having focal DNA amplifica-

tion. Additional studies are needed to examine the function, if any,

of GATA4 in pancreatobiliary cancer.

Figure 2. GATA6 is overexpressed when amplified. (A) Plot of DNA (by array CGH) vs. mRNA (by expression profiling) ratios for genes on
chromosome 18 for specimen B291 shows GATA6 (indicated) to be the most highly expressed gene within the 18q11.2 amplicon. (B) GATA6 mRNA
levels, measured by microarray, are elevated in pancreatobiliary xenografts with compared to without DNA gain at 18q11.2 (GATA6). Box plots show
25th, 50th and 75th percentiles; P-values (Mann-Whitney U-Test) for pairwise comparisons are indicated. (C) Q-RT-PCR validation of microarray-
measured GATA6 transcript levels in eight specimens, four each with and without 18q11.2 gain. (D) Western blot analysis of representative pancreatic
cancer cell lines indicates GATA6 (56 kD) is overexpressed at the protein level when amplified; GAPDH serves as a loading control. (E) IHC analysis of
GATA6 protein expression (nuclear brown staining) indicates elevated expression in the parent tumor from which xenograft B291 was derived (left), in
comparison to normal pancreatic duct from the same paraffin section (right).
doi:10.1371/journal.pgen.1000081.g002
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Our analysis of gene-expression patterns correlated with

GATA6 transcript levels has revealed an intriguing association

with genes functioning in mitochondrial oxidative phosphoryla-

tion. Such altered mitochondrial activity might contribute to

carcinogenesis through changes in cell metabolism, reactive

oxygen species (ROS) production, or (through altered mitochon-

drial membrane potential) mitochondrial-associated apoptotic

pathways [42,43]. In the latter regard, it is notable in that we

did not observe an effect of GATA6 knockdown on apoptosis, but

rather on cell-cycle progression. While the exact connection to

mitochondrial oxidative phosphorylation remains to be elucidated,

it is of interest that a similar ‘‘OxPhos’’ expression pattern was

recently identified in a subset of diffuse large B-cell lymphomas

[44].

Since GATA6 is expressed in normal adult tissues like the

endocrine pancreas, the lung, liver and heart [18], it is itself

unlikely to become a useful target for therapy. However, future

investigations will more precisely define the transcriptional

effectors and pathways through which GATA6 mediates its

oncogenic function, some of which might become important

molecular targets. In conclusion, our genomic profiling and

functional studies define GATA6 as a candidate lineage-specific

oncogene in pancreatobiliary cancers, a finding which should lead

to new opportunities for therapeutic intervention.

Materials and Methods

Specimens
Pancreatic and distal bile duct cancer xenografts were generated

as described [14] at the Johns Hopkins Hospital, with Institutional

Review Board (IRB) and Institutional Animal Care and Use

Committee approval. Briefly, a 1 mm3 piece of the primary tumor

was soaked in Matrigel (Collaborative Biomedical Research), then

implanted subcutaneously in a nu/nu mouse. Engrafted tumors

were harvested when they reached 1–2 cm in diameter. Tumor

cell enrichment was confirmed by H&E-stained frozen section.

From adjacent pieces of the xenograft, DNA was isolated using the

Qiagen DNeasy Tissue kit, and RNA using the Trizol (Invitrogen)

method. Pancreatic cancer cell lines were obtained from the

American Type Culture Collection, and the HPDE cell line [45]

was kindly provided by Dr. Ming Tsao (University of Toronto).

Array CGH and Expression Profiling
cDNA microarrays were obtained from the Stanford Functional

Genomics Facility and included 39,632 human cDNAs, repre-

senting 22,279 mapped human genes (18,049 UniGene clusters

[46], together with 4,230 additional mapped ESTs not assigned

UniGene IDs). Array CGH and expression profiling were

performed according to our published protocols [47,48]. For

array CGH, 4 mg of genomic DNA from each test sample was

random-primer labeled with Cy5 and co-hybridized to the

microarray along with 4 mg of Cy3-labeled sex-matched normal

leukocyte reference DNA from a single donor. For gene-expression

profiling, 50 mg of total RNA from each sample and 50 mg of

‘‘universal’’ reference RNA (derived from 11 different established

human cell lines) were differentially labeled with Cy5 and Cy3,

respectively, and co-hybridized to cDNA microarrays. Following

overnight hybridization and washing, arrays were imaged using a

GenePix 4000B scanner (Molecular Devices). Fluorescence ratios

were extracted using SpotReader software (Niles Scientific), and

the data uploaded into the Stanford Microarray Database (SMD)

[49] for storage, retrieval and analysis. The complete microarray

datasets are available at SMD and at the Gene Expression

Omnibus (GEO) (accession GSE11152).
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Figure 3. GATA6 is overexpressed in primary pancreatic tumors. Shown are representative IHC stains for GATA6 protein expression in (A)
normal pancreas, and in pancreatic ductal adenocarcinoma with (B) absent, (C) moderate, and (D) strong nuclear staining. Filled arrowheads indicate
pancreatic ductal epithelial cells (A), or pancreatic adenocarcinoma cells (B–D). Open arrowhead (A) shows non-specific cytoplasmic staining observed
in pancreatic acinar cells. (E) Distribution of GATA6 expression among different diagnoses represented on the tissue microarray. The IHC staining
score considers both staining intensity and fraction of cells with nuclear staining (see Materials and Methods). GATA6 expression is significantly
elevated in pancreatic cancer compared to normal pancreas (P,0.001, x2 test).
doi:10.1371/journal.pgen.1000081.g003

GATA6 Amplification in Pancreatic Cancer

PLoS Genetics | www.plosgenetics.org 6 May 2008 | Volume 4 | Issue 5 | e1000081



Microarray Data Analysis
Background-subtracted fluorescence ratios were normalized by

mean centering genes for each array. For array CGH analysis, we

included for subsequent analysis only well-measured genes with Cy3

reference-channel fluorescence signal intensity at least 1.4-fold

above background in at least 50% of samples. Map positions for

arrayed cDNA clones were assigned using the NCBI genome

assembly, accessed through the UCSC genome browser database

(NCBI Build 36). For genes represented by multiple arrayed

cDNAs, the average fluorescence ratio was used. DNA gains and

losses were identified by the fused lasso method [50]. We defined

high-level DNA amplifications and presumptive homozygous

deletions as contiguous regions identified by fused lasso with at

least 50% of genes displaying fluorescence ratios $3 or #0.25,

respectively. For expression profiling, fluorescence ratios were

normalized for each array, and then well-measured genes

(fluorescence intensities for the Cy5 or Cy3 channel at least 1.5-

fold above background) were subsequently ‘‘mean-centered’’ (i.e.

reported for each gene relative to the mean ratio across all samples).

SAM analysis [22] was performed using the 2-class method,

comparing xenograft specimens with above and below mean

GATA6 mRNA levels. GSEA [23] was carried out as described

[51]. Genes with putative GATA binding sites (within the first 1-

Kb upstream promoter sequence) were defined using MATCH

software ([52]; default settings set to minimize false positives),

applied to the common binding site matrix V$GATA_Q6 (all six

GATA factors share a common DNA binding site, (A/T)GA-

TA(A/G) [19]). To assess enrichment of GATA binding sites, the

absolute value of the GSEA metric (Pearson correlation) was used

in order to consider both upregulated and downregulated targets.

GSEA using 522 functional gene sets was carried out as described

[23].

Figure 4. GATA6 expression signature. (A) Heatmap representation of genes identified by SAM analysis with significantly (FDR,1%) increased
(73 genes) or decreased (13 genes) expression in xenografts with GATA6 mRNA levels above the mean. Specimens are ordered by GATA6 expression
level; genes are ordered in descending rank of their SAM score. Expression levels are indicated by colorimetric ratio-scale (shown). (B) GSEA identifies
enrichment of genes with putative GATA binding sites in xenografts with GATA6 expression levels above the mean. Enrichment is evidenced by the
early positive deflection of the Kolmogorov-Smirnov running sum. The significance of the maximum running sum (S) was evaluated by comparison to
500 trials with randomly permuted class labels; the P-value is the frequency that S in the actual data is equaled or exceeded in the permuted data. (C)
Top ranking (FDR shown) functional gene sets identified by GSEA to be enriched in xenografts with above-average GATA6 expression levels. TCA:
tricarboxylic acid (Krebs) cycle.
doi:10.1371/journal.pgen.1000081.g004
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High-Definition 18q11.12 CGH Microarray
A custom ultra high-definition CGH microarray was designed

and obtained from Agilent Technologies [53]. The array included

4,362 probes tiling 1.5 Mb (Mb 17.5–19.0) of 18q11.2 with an

average inter-probe spacing of 344 nt, and an additional 23,652

probes spanning the remaining genome for data normalization.

DNAs were labeled as above, then hybridized to the Agilent array

following the manufacturer’s instructions, except using a 40 hr

hybridization time (rather than the recommended 24 hr). Arrays

were scanned using an Agilent G2505B scanner, and data

extracted and normalized using Agilent Feature Extraction

software (version 9.1) with default settings.

PCR Assays
To validate homozygous deletions (see Table 1), we used gene-

specific primer-pairs to PCR amplify genomic DNA from

xenograft specimens. Primer-pairs for genes flanking the regions

of homozygous deletion, and designed to have a distinguishable

fragment size, were included in the PCR reactions as internal

controls, and normal DNA was used as positive control for primer

pairs. PCR was performed on an Applied Biosystems GeneAmp

9700, using 40 ng DNA template, 16 PCR buffer (Applied

Biosystems), 200 mM dNTPs, 2.0 mM MgCl2, 10 pmol each

individual primer (Table S1), and 1 U of AmpliTaq Gold DNA

polymerase (Applied Biosystems) in a 10 ml reaction. The reaction

conditions were: 95uC 10 min initial denaturation, followed by 35

cycles (94uC 30 s; annealing temp (see Table S1) 30 s; 72uC 30 s),

and a final extension of 72uC 7 min. PCR products were resolved

by gel electrophoresis on a 1.8% TAE agarose gel, and visualized

using a UVP gel documentation system.

To validate GATA6 amplification in B291, we carried out Q-

PCR using the Quantitect SYBR Green PCR kit (Qiagen) on an

ABI 7500 sequence detection system as per manufacturer’s

instructions. PCR was initiated at 95uC for 15 min (to activate

the modified Taq polymerase), followed by a 40 cycle amplifica-

tion (95uC 15 s, 58uC 30 s, 72uC 30 s). Melting curve analysis was

performed to ensure specific PCR product while excluding primer

dimers. We used the comparative CT method [54] to calculate

relative DNA levels normalized to NPC1 (a gene located outside

the 18q11.2 amplicon and not exhibiting CNA), which we then

expressed as a ratio to the Ct value of GATA6 (also normalized to

NPC1) obtained from normal DNA. PCR primer sequences are

listed in Table S1.

Figure 5. GATA6 amplification/overexpression contributes to cell proliferation. (A) Confirmation of siRNA-mediated knockdown of GATA6
in AsPC1 and Panc3.27 cells. Two different siRNAs (GATA6-1 and GATA6-2) were used to target GATA6, along with a non-targeting siRNA pool
(control). GATA6 levels assayed by Western blot; GAPDH levels provide a loading control. (B) GATA6 knockdown results in decreased cell proliferation
in reduced serum, measured by WST-1 assay, in cells with (AsPC1, Panc3.27) but not without (PL45) GATA6 gain/overexpression. *, P,0.05; **, P,0.01
(Student’s t-test; GATA6 compared to control). (C) GATA6 knockdown reduces cell-cycle progression in AsPC1 cells, evidenced by decreased S-phase
fraction following BrdU labeling, quantified by flow cytometry. *, P,0.05; (Student’s t-test; GATA6 compared to control). (D) GATA6 knockdown does
not significantly alter levels of apoptosis, quantified by annexin V staining. (E) GATA6 knockdown reduces colony growth of AsPC1 cells in liquid
culture. Box plot illustrates 25th, mean and 75th percentile; P values (Student’s t-test) indicated. Representative fields of Giemsa-stained colonies are
shown (right).
doi:10.1371/journal.pgen.1000081.g005
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To validate microarray-measured GATA6 mRNA levels, we

carried out Q-RT-PCR using the QuantiTect SYBR Green RT-

PCR Kit according to the manufacturer’s instructions. The

reaction mixture was first incubated at 50uC for 30 min for

reverse transcription, then Q-PCR was carried out as above. For

each specimen, relative levels of GATA6 transcript were

calculated as the ratio of Ct value of GATA6 to that of GAPDH.

Ratio values were then converted to log2 scale and normalized to

the mean across all specimens. PCR primer sequences are listed in

Table S1.

FISH
Probe labeling and FISH were performed using Vysis reagents

according to the manufacturer’s protocols. A locus-specific BAC

mapping to GATA6 at 18q11.2 (RP11-1083G24; BACPAC

Resources Centre) was labeled with SpectrumOrange, and co-

hybridized with SpectrumGreen-labeled chromosome 18 centro-

mere probe (CEP18; Vysis). Chromosomal locations of BACs were

validated using normal metaphase slides (not shown). Slides were

counterstained with DAPI, and imaged using an Olympus BX51

fluorescence microscope with Applied Imaging Cytovision 3.0

software.

Immunohistochemistry
A tissue microarray (TMA) was constructed using a tissue

arrayer (Beecher Instruments) and archived formalin-fixed,

paraffin-embedded pancreatic tissue specimens from Stanford

University, with IRB approval. The TMA contained 1.2 mm

cores representing normal pancreas (33 cases), pancreatitis (16),

other benign diagnoses (9), and pancreatic ductal adenocarcinoma

(54). For immunohistochemistry, a 4 mm section was cut from the

tissue microarray block, de-paraffinized in Citrisolv (Fisher

Scientific), and hydrated in a graded series of alcohol solutions.

Heat-induced antigen retrieval was performed by microwave

pretreatment in citrate (1 mM, pH 6.0) for 15 minutes before

staining. Endogenous peroxidase was blocked by preincubation

with 1% hydrogen peroxide in phosphate-buffered saline. A

GATA6 mouse monoclonal antibody (R&D systems) was used at

1:10 dilution for 30 min. Chromogenic detection was carried out

using a peroxidase-conjugated secondary antibody and DAB

reagents provided with the Envision detection kit (Dako). Nuclear

staining intensity (absent, weak, medium, strong; 0–3 scale) and

fractional epithelium staining (up to 25%, 50%, 75%, 100%; 1–4

scale) were each recorded, then summed for a final staining score.

siRNA Transfections
On-TARGETplus siRNAs targeting GATA6, along with a

negative control siRNA pool (ON-TARGETplus siCONTROL

Non-targeting Pool), were obtained from Dharmacon. Sequences

of siRNAs are listed in Table S1. Cell lines were maintained at

37uC in complete media of RPMI-1640 (Invitrogen), 10% FBS,

50 U/ml penicillin, and 50 U/ml streptomycin. For transfection,

100,000–250,000 cells were seeded per 6-well plate well, and

transfected using Lipofectamine 2000 reagent (Invitrogen) accord-

ing to the manufacturer’s protocol. Cells were transfected with a

final concentration of 50 nM siRNA for 6 hrs, subsequently

replaced with reduced serum (2% FBS) growth media, where

siRNA-mediated phenotypic effects were more reproducibly

observed.

Western Blot
72 hours post-transfection, cells were lysed in 16 RIPA Lysis

buffer (Upstate/Chemicon) supplemented with 16 Complete

Protease Inhibitor (Roche, Indianapolis, IN), 0.1 mM sodium

orthovanadate, 1 mM sodium fluoride and 1 mM PMSF, and

protein quantified using the DC Protein Assay (Biorad). For

Western blot, 25–40 mg protein lysate was electrophoresed on a

10% Tris/glycine polyacrylamide gradient gel (Biorad) and

transferred to PVDF membrane (Biorad). After blocking in TBS-

T buffer (20 mM Tris-HCl pH 7.4, 0.15 M NaCl, 0.1% Tween

20) with 5% dry milk for 30 min, blots were incubated sequentially

with primary antibody at 4uC overnight, then HRP-conjugated

secondary antibody at room temp for 45 min. Antibodies were

used as follows: anti-GATA6 rabbit polyclonal antibody (1:200;

Santa Cruz Biotechnology); anti-GAPDH rabbit polyclonal

antibody (1:5,000 for loading control; Santa Cruz Biotechnology);

HRP-conjugated anti-rabbit IgG (1:20,000, Pierce). Detection was

carried out using the ECL kit (Amersham Biosciences).

Cell Proliferation Assay
24, 72 and 96 hours post-transfection, cell proliferation was

quantified by colorimetry based on the metabolic cleavage of the

tetrazolium salt WST-1 in viable cells, according to the

manufacturer’s protocol (Roche). WST-1 reagent was added at

1/10th the culture volume and incubated at 37uC for 30 min.

Absorbance was then measured at 450 nm with reference to

650 nm using a Spectra Max 190 plate reader (Molecular

Devices). Transfections were performed in triplicate and average

(61 SD) OD reported.

Cell-Cycle Analysis
72 hours post-transfection, cell-cycle distribution analysis was

performed by flow cytometry using the BrdU-FITC Flow kit (BD

Biosciences) per the manufacturer’s instructions. Cells were

incubated with 10 mM BrdU at 37uC for 4 hrs, then fixed and

permeabilized with Cytofix/Cytoperm buffer (BD Biosciences).

Cellular DNA was treated with DNase at 37u C for 1hr to expose

incorporated BrdU, then cells were stained with anti-BrdU FITC

antibody (to quantify incorporated BrdU) and 7-aminoactinomy-

cin D (7-AAD; to quantify total DNA content). 10,000 events were

scored by FACSCalibur (BD Biosciences) and analyzed using

CellQuest software (BD Biosciences). Transfections were per-

formed in triplicate and average (61 SD) cell-cycle fractions

reported.

Liquid Colony Formation Assay
24 hours post-transfection, 200 cells were plated each onto ten

10 cm dishes in complete media. After 2 weeks, surviving cells

were stained with Giemsa (Sigma-Aldrich) for 15 min, and visible

colonies counted on a light box.

Apoptosis Assay
72 hours post transfection, apoptosis was assayed by annexin V

staining, quantified by flow cytometry using the Vybrant Apoptosis

Assay kit (Invitrogen) as per the manufacturer’s instructions.

Floating cells and trypsinized adherent cells were pooled and

resuspended in 200 ml annexin binding buffer. 2.5 ml Alexa Fluor

488 annexin V and 1 ml of 100 mg/ml propidium iodide (PI)

solution were added and cells incubated for 15 min at room temp.

Cells were then resuspended in equal volume of annexin binding

buffer and analyzed immediately by flow cytometry. 10,000 events

were scored by FACSCalibur and analyzed using CellQuest

software. Transfections were performed in triplicate, and average

(61 SD) percent apoptosis reported.
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Supporting Information

Figure S1 Representative PCR-validations of homozygous

deletion. (A) 3p24.1 deletion. TGFBR2, located within the

presumptive homozygous deletion, is PCR-amplified from normal

genomic DNA, but not from pancreatic cancer xenograft P224. (B)

9p21.2 deletion. MOBKL2B, within the deletion, is PCR-

amplified from normal genomic DNA but not from P201.

Found at: doi:10.1371/journal.pgen.1000081.s001 (0.22 MB PDF)

Table S1 Primer/siRNA sequences.

Found at: doi:10.1371/journal.pgen.1000081.s002 (0.02 MB

XLS)
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