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Abstract

Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of
a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical
challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a
recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are
orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in
interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the
advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions
that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical
models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional
genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the
interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further
implementations leading to a completely general genotype-phenotype map.
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Introduction

There is an increasing interest in Quantitative Genetics and

Evolutionary Biology to identify genetic effects, and more particu-

larly gene interactions, on a genome-wide scale and to understand its

role in the genetic architecture of complex traits [1,2]. Genome scans

for quantitative trait loci (QTL) have proven to be a successful

strategy for identifying genetic effects and interactions. Two of the

main issues in the development of QTL mapping methods are which

models of genetic effects to use and how to test for effects in regions

between marker locations. The second issue is important not only for

considering the genome as a virtually continuous space where to

map the QTL, but also to efficiently analyze incomplete data sets,

which are the norm in practice [3]. Lander and Botstein [4]

developed the classic interval mapping (IM) method, in which they

showed how to perform a QTL mapping strategy implemented with

the most likely genotypes for the genome regions in between marker

locations, given the genotypes at the flanking markers. This method

has been extended in several ways [5–8]. Albeit the computation of

those likelihoods is complex and time demanding, Haley and Knott

[9], (see also [10]) provided a convenient approximation of them by

means of a simple regression method.

Regarding now the first issue mentioned above—the models of

genetic effects—the definition of the genetic effects in Haley and

Knott’s [9] regression (hereafter HKR) comes from a model that

has been extensively used in Quantitative Genetics, the F‘ model

[11,12]. However, other models of genetic effects have recently

been shown to be more appropriate in QTL mapping. The genetic

effects depend not only on the genotypic values but also on the

genotype frequencies of the analyzed population (e.g. [13–16]). By

taking into account these frequencies, it is possible to build

orthogonal models that are convenient for several reasons [13–19].

First, orthogonal estimates do not change in reduced models,

which considerably facilitates model selection for finding the

genetic architecture of traits. Second, the estimates of genetic

effects obtained by orthogonal models are meaningful in the

population under study—they provide the effects of allele

substitutions in that population. Third, they directly lead to a

proper, orthogonal decomposition of the genetic variance from

which to compute important measures, like the heritability of that

trait in that population. The statistical properties of HKR could

therefore be improved by implementing it with a genetic model

that is orthogonal for any possible genotype frequencies in the

population under study.

The statistical formulation of the recently developed NOIA

(Natural and Orthogonal InterActions) model of genetic effects is

orthogonal in situations where previous models are not—for

departures from the Hardy-Weinberg proportions (HWP) at any

number of loci—and it is therefore more appropriate choice for

estimating genetic effects from data in genetic mapping [16].

Furthermore, a novel feature of NOIA is its implementation to

transform the genetic effects estimated in the population under

study, in two ways. First, they can be transformed into how they

would look like in a population with different genotype frequencies

at each locus, like an ideal F2 population or into an outbred

population of interest. Second, using the functional formulation of
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NOIA, it is possible also to express the genetic effects as effects of

allele substitutions from reference individual genotypes—instead of

from population means like in the statistical formulation. In other

words, starting from the orthogonal genetic effects of a population

or sample under study, which are the ideal ones for performing

model selection and have a particular meaning, NOIA enables us

to obtain the values of the genetic effects that are associated to

other desired meanings and are useful, therefore, to inspect

different aspects of the evolution of a population, or selective

breeding for increasing or decreasing a trait values.

Our motivation for this communication is to show how to use

models of genetic effects to obtain estimates of genetic effects from

data that have the desired meaning of any particular scientific

purpose. To this end we first inspect how much of a difference it

makes to use the classical models for ideal populations, such as

ideal F2 populations, to compute genetic effects in a non-ideal

situation, under departures from the HWP. We address this issue

by generating simulated populations that depart from the HWP in

several degrees and analyzing them with NOIA and other models.

We quantify the deviances from orthogonal estimates due to using

models that assume ideal conditions in the populations under

study, thus showing the practical convenience of using the NOIA

model for performing real estimates of genetic effects in QTL

experiments. Second, we develop an implementation of NOIA

with HKR, allowing it for immediate practical use and illustrate its

performance using an example with real data. By this example we

provide estimates of genetic effects with different meanings and,

for the first time, functional estimates of genetic effects—using an

individual genotype as reference—from a real data set. We discuss

on how this feature opens new possibilities of using real data to

analyze important topics in Evolutionary Genetics.

Results

Genetic Models under Departures from Hardy-Weinberg
Figure 1 shows the results of estimating, with three different

models (NOIA, G2A and F2), the genetic effects of a two-locus and

two-allele genetic system (Table 1) in nine simulated populations

under linkage equilibrium (LE) with various degrees of departure

from the HWP (see Methods). The eight genetic effects plus the

population mean in the only model that is orthogonal in all

simulated populations—the statistical formulation of the NOIA

model—respond to the increasing departures from HWP in three

groups. The first and most influenced group contains the three

genetic effects involving the additive effect of the locus affected by

departures from HWP, aA, aa, and ad. These genetic effects

Author Summary

The rediscovery of Mendel’s laws of inheritance of genetic
factors gave rise to the research field of Genetics at the
very beginning of the last century. The idea of traits being
determined by the effects of inherited genes is thus the
conceptual core of Genetics. After more than one century,
however, we still lack a completely general mathematical
description of how genes can control traits. Such descrip-
tions are called genotype-phenotype maps, or models of
genetic effects, and they become particularly cumbersome
in the presence of interaction among genes, also referred to
as epistasis. The models of genetic effects are necessary for
unraveling the genetic architecture of traits—finding the
genes underlying them and obtaining estimates of their
individual effects and interactions—and for meaningfully
using that information to investigate their evolution and to
improve response to selection in traits of economical
importance. Here, we illustrate the convenience of using a
recently developed model of genetic effects with arbitrary
epistasis, NOIA, to inspect the genetic architecture of traits.
We implement NOIA for practical use with a regression
method and exemplify that theory with a real dataset.
Further, we discuss the state of the art of genetic modeling
and the future perspectives of this subject.

Figure 1. Effects of departures from the HWP on genetic
effects. The genetic effects were obtained using the F2, G2A and NOIA
models in a two locus genetic system that was simulated in nine F2

populations with departures from HWP ranging from zero to 97% (see
text for details).
doi:10.1371/journal.pgen.1000062.g001

Table 1. Genotype-phenotype map of the two-locus system
used in the simulated populations to evaluate the effect of
departures from HWP on genetic effects estimated using the
F2, G2A and NOIA models.

Genotype at locus B

Genotype at locus A B1B1 B1B2 B2B2

A1A1 0.25 20.75 20.75

A1A2 20.75 2.25 2.25

A2A2 20.75 2.25 2.25

doi:10.1371/journal.pgen.1000062.t001

Meaning of Genetic Effects
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increase substantially with increasing departures from HWP and

are doubled when the homozygote A2A2 is almost completely

absent. The second group contains the reference point—the mean

of the population, m—and the single locus effects of locus B (the

one at HWP), aB and dB. The estimates in this group decreased

with increasing departures from HWP. The third group contains

the remaining three genetic effects, dA, da and dd, whose estimates

are not affected by departures from HWP at locus B. The genetic

effects measured by the G2A model show the same qualitative

behavior described above for NOIA (i.e. also responds in three

distinct groups), but are quantitatively different. The reason for

this is that G2A can adapt the measurements to the changes in the

allele frequencies of the population, but not to the precise

departures of the genotype frequencies from the HWP. The

genetic estimates obtained using the F2 model always give the

same values independently of the genetic constitution of the

population. The F2 thus fails to capture the effects of departures

from HWP at all. Thus, unless when the studied population is an

ideal F2 (and the deviances from HWP are zero, see Figure 1), the

estimate of the population mean from G2A and F2 is biased and

the genetic estimates do not reflect the average effects of allele

substitutions in the population under study. Those deviations

become more severe as the departure from HWP increases

(Figure 1).

Figure 2 shows the variance component estimates obtained in

the nine simulated populations, which were obtained by

computing the variance over the individuals of the sample

population of the correspondent genetic effects (additive effect at

locus A, additive effect at locus B, etc). For orthogonal models, the

sum of the three components of variance gives the total genetic

variance—which in this case equals the phenotypic variance, since

there is no environmental variance in the simulated populations.

Here, this is only observed for the variances computed using

NOIA. The other two models are not orthogonal in the

populations under study (except in the ideal F2 population, where

the three models coincide), and thus there exist covariances

between the genetic effects that would need to be accounted for to

obtain the true genetic variance of the population [20]. The

decomposition of the genetic variance made by the G2A and F2

models is, thus, non-orthogonal. The G2A leads to a greater

departure form an orthogonal decomposition of variance than the

F2 model by the particular kind of departures from HWP

simulated here. Both the G2A and F2 models underestimate the

additive variance and therefore also the heritability of the trait in

the simulated populations.

An Example Using Experimental Data
For illustrating the advantage of using NOIA for analyzing

experimental data, we reanalyze a two-locus (A and B) genetic

system with epistasis affecting growth rate in an F2 cross between

Red junglefowl and White leghorn layer chickens [21]. The two

loci are on different chromosomes, thus avoiding linkage

disequilibrium (LD). Locus A departs significantly from the

HWP when considered alone, but not when correcting for

multiple testing (see Methods). Table 2 shows the genetic effects

and the components of variance for this two-locus system using

several models of genetic effects—NOIA, G2A, F2 and F‘. As

explained in the previous subsection, NOIA is orthogonal under

departures from the HWP, whereas the other models are not. The

F‘ model deviates severely from the estimates obtained by NOIA.

Deviations are expected since the F‘ model is non-orthogonal

even in an ideal F2 population with no deviations from the

expected frequencies due to sampling errors. The F2 and G2A

models, on the other hand, would be orthogonal under ideal

circumstances and the observed deviations from orthogonality of

those models when analyzing these experimental data are due to

sampling (as explained above). Table 2 shows that the estimates

obtained using F2 and G2A differ substantially from these of

NOIA (up to 18/42% for the G2A and 53/138% for the F2

model, for the genetic effects/variance component estimates). This

example with real data, thus, shows that it makes a substantial

improvement to use NOIA to compute genetic effects and

variance decomposition in QTL mapping experiments over the

classical models of genetic effects designed to fit ideal experimental

situations.

Transformation To Get Functional Genetic Effects
From the statistical estimates in Table 2, we have computed

functional estimates of genetic effects using an analogous

expression to (S6), shown in Text S1, derived by Álvarez-Castro

and Carlborg [16]. The variances of the statistical estimates can

also be transformed to give the variances of the functional

estimates using (6), as derived in the Methods section. Choosing

‘‘A1A1B1B1’’ as reference genotype, the estimates of functional

genetic effects, and the standard deviations associated to these

estimates, are shown in Table 3. Whereas statistical genetic effects

Figure 2. Effects of departures from the HWP on the variance
components. The variance decomposition was performed for the
same cases as in Figure 1. VP is the phenotypic variance, which (in
absence of environmental variance) is equal to VG, the genetic variance.
VA is the additive variance, VD is the dominance variance and VI is the
epistatic (interaction) variance.
doi:10.1371/journal.pgen.1000062.g002

Meaning of Genetic Effects
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describe the average effects of allele substitutions in a population,

functional genetic effects describe the genotype-phenotype map as

a series of allele substitutions performed in the genotype of a

particular—reference—individual genotype [16,22], in this case

the genotype of the Red junglefowl, ‘‘A1A1B1B1’’.

To illustrate the usefulness of these functional genetic effects for

understanding how epistatic effects can contribute to phenotype

change, we consider the role of this QTL pair in increasing the

growth rate in the Red junglefowl. For simplicity, we assume

hereafter that A and B are the only two loci affecting growth rate.

From the marginal genetic effects in Table 3, it can be deduced

that the White leghorn layer allele at locus A slightly increases the

phenotype whereas the White leghorn allele at locus B actually

decreases it, when considered in homozygotes. However, the

dominance effects are positive and have a higher absolute value

than the additive effects. Therefore, if one White leghorn layer

allele appeared by mutation in a Red junglefowl population at any

of the two loci, A or B, it would be maintained at a certain

frequency because of balancing selection—superiority of the

heterozygote—but it would neither disappear nor reach fixation.

This suggests that one mutation could be present at some

frequency in the population when the second one appeared.

For analyzing what would happen if eventually the two

mutations were present at the same time in the population, we

have to consider also the interaction effects. The double

homozygote for White leghorn layer allele increases the phenotype

with roughly forty grams (four times aa, in Table 3 as it can be

deduced from G = S?E, with the reference of R = G1111), relative to

the expected value without epistasis, which is a decrease in roughly

20 grams from the Red junglefowl. In total, this makes the

phenotype of the White leghorn layer 20 grams higher than the

Red junglefowl. However, for inspecting if this results support the

White leghorn layer alleles being likely to reach fixation we also

need to consider the phenotypes of the heterozygotes. Interactions

involving dominance in locus B are all negative, thus favoring the

fixation of the White leghorn layer allele, B2. The role of allele A2

is not as obvious, since da is positive. The genotypic value of

‘‘A1A2B2B2’’ is roughly 30 grams higher than the Red junglefowl

(computed again from Table 3 and G = S?E) and ten grams higher

than the pure White leghorn layer. The expected, therefore, would

be that the two alleles segregate at locus A. The standard

deviations of the estimates are however rather large and thus do

not rule out the possibility of fixation of the White leghorn layer

allele at locus A.

Discussion

The Meaning of the Statistical Estimates
The statistical formulation of NOIA is orthogonal under

random deviations from ideal experimental populations and

outbreeding pedigrees [16]. Therefore, NOIA can provide

meaningful estimates of genetic effects—as allele substitutions

made in the population or sample under study—and a proper

decomposition of the genetic variance under those circumstances.

In this article, we illustrate the practical implications of these

achievements for estimation of genetic effects and QTL analysis in

two ways. First, we simulated a two-locus genetic system under

departure from the HWP affecting one of the loci underlying the

trait under study. This scenario can have a biological origin or be

due to sampling alone and it is commonly occurring in

experimental data both from natural and experimental popula-

tions, such as for the QTL pair we have studied (see below). We

therefore deemed it relevant to test the performance of NOIA in

practice—by assessing how departures from HWP cause other

models to deviate from the orthogonal values. Our results show

that departures from HWP substantially affect both the genetic

effects and the decomposition of variance. The cause for this is that

epistasis makes the genetic effects dependent on the genetic

background, which is different under different degrees of

departures from HWP. NOIA can capture the proper, orthogonal

genetic effects, and thus also their orthogonal variances, in the

simulated populations whereas the deviances from these values

due to using the other—nonorthogonal—models increases with

the departures from HWP.

Second, we used experimental data on epistatic QTL from a

previously published study [21] to explore how much of a

difference it makes to use NOIA instead of previous statistical

Table 2. Estimates of statistical genetic effects (to the left of each cell) and components of the genetic variance (to the right) for
an epistatic QTL for growth rate pair in a Red junglefowl6White leghorn layer intercross [21] using four different models.

Vector of genetic effects, E, and components of variance associated to each of the genetic effects

Model m1 aA dA aB dB aa ad da dd

NOIA 269.49 | 169 1.00 | 0.45 6.74 | 11.28 4.47 | 9.75 211.75 | 34.32 9.67 | 20.78 220.30 | 46.66 8.22 | 8.18 224.80 | 37.87

G2A 269.32 | 164 1.18 | 0.64 7.00 | 12.25 4.15 | 8.43 210.74 | 28.66 9.68 | 20.83 220.21 | 46.28 8.28 | 8.35 224.80 | 38.19

F2 269.68 | 177 1.53 | 1.07 7.44 | 13.84 4.90 | 11.80 211.15 | 31.08 10.48 | 24.76 219.70 | 44.56 9.50 | 11.07 224.80 | 38.44

F‘ 265.23 | 581 11.38 | 59.46 19.84 | 212.83 0.15 | 0.01 1.25 | 0.80 10.48 | 24.76 219.70 | 90.72 9.50 | 23.94 224.80 | 169.37

1The variances in this column are the total genetic variances computed as the sum of the components of variance given in the rest of the columns.
doi:10.1371/journal.pgen.1000062.t002

Table 3. Estimates of functional genetic effects from the
reference of genotype A1A1B1B1, G11116sG1111 = 265.1868.35
grams, and their standard deviations for an epistatic QTL pair
for growth rate in a Red junglefowl6White leghorn intercross
[21].

B2

A1 aB = 210.33 dB = 20.95

saB = 6.24 sdB = 10.63

aA = 0.90 aa = 10.48 ad = 219.70

saA = 5.96 saa = 4.71 sad = 7.75

dA = 10.34 da = 9.50 dd = 224.80

sdA = 9.01 sda = 6.76 sdd = 11.27

1QTL on chromosome 2 (486 cM).
2QTL on chromosome 3 (117 cM).
doi:10.1371/journal.pgen.1000062.t003

Meaning of Genetic Effects
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models, when departures from HWP are not larger than expected

by sampling. Even though the population we studied was rather

large (approximately 800 individuals), the random deviations from

the HWP in this set of available individuals cause considerable

differences in the estimates of genetic effects performed with

models that would be orthogonal in totally ideal situations, as

compared to the estimates obtained using NOIA. These

differences become even more noteworthy for the components of

variance estimated using the different models. These values

influence consequential quantities, like the heritability of one trait,

which may be needed for instance for performing artificial

selection at the available sample of individuals. Orthogonal

models are also important for finding the genetic architecture of

traits—albeit this has not been our focus in this communication. In

principle, when testing the effect of a particular locus or set of loci

in a QTL analysis, the choice of the model of genetic effects to use

does not matter. However, it does matter when it comes to

compare which of several putative sets of loci is the most likely

genetic architecture underlying the trait, i.e., when performing

model selection in QTL analysis. This is so because orthogonal

models have the convenient property that the estimates and their

variances remain the same when considering reduced models,

which facilitates model selection strategies [19].

Translating Estimates To Fit Other Meanings
After model selection and the estimation of genetic effects have

been properly carried out using an orthogonal model, the obtained

estimates provide the effects of allele substitutions in the sample of

individuals used in the study, and the decomposition of variance is

also the appropriate one in that particular sample of individuals.

The NOIA model provides convenient tools for transforming

those estimates into the ones with any other desired meaning, like

the orthogonal estimates and the decomposition of variance in a

different population [16]. This is useful to compare results from

QTL studies performed in different populations, and to use the

results obtained with one orthogonal model in one population to

study the evolution of the same trait in a different population.

One example of the previous is removing the characteristics of

the data that are not supposed to be properties of a target

population from the estimates. The departures from HWP of the

experimental data we dealt with in this article are in fact supposed

to be only due to sampling, instead of being caused by real Hardy-

Weinberg disequilibrium in the F2 population. If we were

interested in the genetic effects or in the decomposition of

variance of the ideal F2 as a target population—in which the

departures from HWP are absent—we could use the transforma-

tion tool of NOIA to obtain (from the original estimates with the

reference of the mean of the sample population) the ones with the

reference of the mean of an ideal F2 population. Further, as

illustrated in the example with real data, it is possible to transform

statistical estimates of genetic effects into functional ones, using a

particular reference genotype. Another situation in which these

transformations are valuable is, for instance, in a three-locus

genetic system with pairwise epistasis. In this case, NOIA would

easily permit to consider only the significant genetic effects and to

re-compute the genotypic values only from the significant genetic

effects (assuming the non-significant third-order interactions to be

zero).

Functional Estimates of Genetic Effects
Statistical models of genetic effects are necessary for QTL

analysis and for performing orthogonal decompositions of the

genetic variance in populations. Functional models of genetic

effects, on the other hand, are convenient—especially in the

presence of epistasis—for studying evolutionary properties of the

populations such us adaptation in the presence of drift and

speciation (see e.g. [23,24]). NOIA is the first model framework

that successfully unifies functional and statistical modeling of

genetic effects [16]. This enables researchers to feed models of

functional genetic effects, so far mainly used in simulation studies

(see e.g. [2,24]), with real data obtained using statistical models in

QTL mapping experiments. Here, we have actually transformed

statistical genetic effects, obtained from real data of an F2

experimental population, into functional genetic effects as allele

substitutions performed from a reference individual. Concerning

these functional estimates of genetic effects, we have shown in the

previous section how they can improve the understanding of the

genetic system by inspecting a two-locus model obtained from real

data. Notice that when changing the reference of the model, the

genetic effects can change their magnitudes and even their signs

(see Tables 2 and 3). Therefore, for reaching the kind of

conclusions we obtain above for the evolution of a population

from an ancestral genotype ‘‘A1A1B1B1’’, the genetic effects have to

be described with a model that uses that particular genotype as

reference point. Those are the only ones that are meaningful for

analyzing the problem under consideration.

The HKR with NOIA
The computation of genetic effects using NOIA in the example

with real data required the use of the theory developed in this

article, the implementation of the model to handle missing data

(1). When performing IM for searching for the positions and

estimates of genetic effects in QTL mapping experiments, missing

data occurs at two levels. First, the genotype of the QTL located in

a marker interval is not known and needs to be estimated from the

observed flanking marker genotypes. Second, in most experimen-

tal datasets there are missing genotypes for many genetic markers

that can be imputed from genotypes at closely linked informative

markers. Thus, the implementation of HKR with NOIA enables

us to perform IM with a regression method and using a model of

genetic effects that is orthogonal regardless of how far the available

data is from the HWP.

The HKR has been assessed as a good approximation of IM

when dense marker maps are available and missing data are few

and random [25,26], but some disadvantages of this method have

also been reported. The residual variance of the HKR has been

found to be biased, as first pointed out by Xu [27]. Kao [26]

further characterized that bias and found it to be noticeable under

LD or strong epistasis. Nevertheless, even in those cases, the

estimated genetic effects themselves are not biased [26]. Feenstra et

al. [25] have developed a new method, the estimating equation

method, which reduces the reported bias of the HKR and is

therefore more suitable in the cases when it has proven to be

strongly biased. However, the traditional HKR is still popular and

convenient mainly due to its dramatic advantage in computational

time [25], and this is why in this study we have chosen this method

for implementing NOIA for IM.

Toward a Completely General Model of Genetic Effects
Models of genetic effects need to be further generalized. Two

important cases that need to be accounted for are multiple-alleles

and LD, which have been addressed in several recent publications

dealing with statistical models of genetic effects. Yang [18] has

developed a model to test the importance of LD in QTL data, by

designing a component of variance due to LD. This statistical

model, like the statistical formulation of NOIA, actually accounts

for departures from HWP, although it is restricted to the two-locus

case. Wang and Zeng [20] have developed a statistical model with

Meaning of Genetic Effects
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multiple alleles in which they also test the importance of LD, in

this case by computing all the covariances between the

components of variance, due to LD. It is, however, restricted to

HWP. Mao et al. [28] have developed a model to account for LD

when computing genetic effects in a two-locus model specially

designed for single nucleotide polymorphisms. The desired

situation, which we are currently aiming toward is to consider

all the different departures from ideal situations gathered under

the umbrella of a general formal framework of genetic effects.

Methods

Genetic Models under Departures from Hardy-Weinberg
We use a simulated numerical example to show how departures

from the HWP affect the estimates of genetic effects in several

models of genetic effects. We simulate a trait controlled by two

biallelic loci, A and B, generating several populations with the

second locus affected by departures from the HWP in several

degrees. The genotype-phenotype map corresponds to the

phenotype mean of the population and all the genetic effects

being equal to one in an ideal F2 population (Table 1). We first

constructed data for an ideal F2 population of 800 individuals in

strict HWP and LE. From this population we subsequently

removed 24 A2A2 individuals and added eight A1A1 and 16 A1A2

individuals in a balanced way, without affecting the population

size, the frequencies at locus B, the proportion of A1A1 versus A1A2

individuals or LE. Only deviations from the HWP against the A2A2

homozygote were introduced in the data. We repeated this

procedure eight times in total and saved each population data,

until only eight A2A2 individuals remained. We measured the

departures from HWP in these populations by computing the

percentage of reduction of A2A2 individuals relative to A1A1, which

of course was zero in the ideal F2 population we started from.

We analyzed the simulated data by computing the genetic

effects of the system using three models: NOIA, G2A and F2. The

F2 model, described in Text S1, is constructed for F2 populations,

although it is only orthogonal in ideal F2 populations with the

genotypic frequencies being exactly J, K, J. The NOIA model

is as described in Text S1. The G2A model [19] accounts for any

gene frequencies of—and it is orthogonal at—populations under

exact HWP. Álvarez-Castro and Carlborg [16] obtained it as a

particular case of NOIA by constraining (S5), in Text S1, to HWP:

SG2A~

1 {2 1{pð Þ {2 1{pð Þ2

1 {1z2p {2p 1{pð Þ
1 2p {2p2

0
B@

1
CA,

where p is the frequency of allele A1. The genetic effects were

computed for each individual genotype using the genetic-effects

design matrices and the estimates of genetic effects from each of

the three models, which produced different outcomes. The

additive, dominance and interaction variances were obtained as

the correspondent sums of the variances of each genetic effect (for

instance, the sum of the variances of the additive effects of each of

the loci gives the additive variance).

Implementing the Haley-Knott Regression with NOIA
We recall the required theory behind the HKR and NOIA in Text

S1. Here we extend the NOIA model to IM with HKR. We do this

by implementing the genetic-effects design matrix of the statistical

formulation of NOIA, SS (S5), in the HKR method, as we do with the

F2 model in Text S1. The original genotype frequencies p11, p12 and

p22 in the NOIA statistical formulation (S5) are the exact genotype

frequencies at the considered loci. In the HKR, the genotype

frequencies are not known, but can be estimated as:

�pp11~
1

N

XN

k~1

prob v11 Pj k

� �

�pp12~
1

N

XN

k~1

prob v12� Pj k

� �

�pp22~
1

N

XN

k~1

prob v22 Pj k

� �

where N is the number of individuals in the population under study.

We implement this model in the general expression of the HKR (S4),

in Text S1, and obtain:

G�k~mz prob v12� Pkjð Þzprob v22 Pj k

� �
{ �pp12z2�pp22ð Þ

� �
az

�pp11�pp22prob v12� Pkjð Þ{ 1
2

�pp12�pp22prob v11 Pj k

� �
z�pp11�pp12prob v22 Pkjð Þ

� �

�pp11z�pp22{ �pp11{�pp22ð Þ2
dzek

Let G* be the column-vector of observed phenotypes, G*
k, k = 1,…,N,

e the corresponding vector of errors, and Z, which is an N63-matrix

whose rows are the vectors vk (S4). With this notation, the general

expression of regression (S4) is:

G�~Z:SS
:Eze ð1Þ

This has a straightforward extension to several loci with LE. The SS

matrix and the E vector can be extended as in Álvarez-Castro and

Carlborg [16]. The Z matrix can be extended as the row-wise

Kronecker product of the matrices of the single loci, also as in

Álvarez-Castro and Carlborg [16], albeit in that article the matrix

accounted for only complete marker information, instead of for IM

with HKR, or for missing data probabilities. For instance, for a two-

locus (A and B) case, the ZAB matrix is an N69-matrix that is built as:

ZAB~

prob vB11 jPB1ð Þ prob vB12� jPB1ð Þ prob vB22 jPB1ð Þð Þ 6 prob vA11 jPA1ð Þ prob vA12� jPA1ð Þ prob vA22 jPA1ð Þð Þ
..
.

prob vB11 jPBkð Þ prob vB12� jPBkð Þ prob vB22 jPBkð Þð Þ 6 prob vA11 jPAkð Þ prob v�A12� jPAkð Þ prob vA22 jPAkð Þð Þ
..
.

prob vB11 jPBNð Þ prob vB12� jPBNð Þ prob vB22 jPBNð Þð Þ 6 prob vA11 jPANð Þ prob v�A12� jPANð Þ prob vA22 jPANð Þð Þ

0
BBBBBBBB@

1
CCCCCCCCA

Experimental Data
Carlborg et al. [21] identified 10 genome-wide significant QTL

for growth rate in chicken from eight to 46 days of age in an F2

intercross of roughly 800 individuals between one Red junglefowl

male and three White leghorn females. A simultaneous two-

dimensional genome scan was performed to identify pairs of

interacting loci regardless of whether their marginal effects were

significant or not. We have studied in more detail one of the

detected pairs involving QTL on chromosome 2 (486 cM) and 3

(117 cM), hereafter loci A and B respectively. This pair was

selected for a number of reasons. First, these loci interact

epistatically, in spite of showing no significant marginal effects in

the studied population. Second, since they are located in different

chromosomes, there is no physical linkage between them. Third,

the genotype frequencies at locus A depart significantly from the

HWP (p,0.05) when considered independently, but the departure

is not significant after applying multiple testing correction

accounting for the rest of the detected QTL. Thus, locus A is an

example of the departure of the HWP that is expected in QTL

experiments just due to sampling. The level of departure from the

Meaning of Genetic Effects
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HWP for the evaluated pair roughly equals the 30% deviation in

Figures 1 and 2.

We have computed the genetic effects of the epistatic pair

involving loci A and B, using several models of genetic effects. First

we used the F‘ model, which was the one also used by Carlborg et

al. [21] as it was the model originally implemented in HKR [9,29].

Second, the F2 model, which was designed for F2 populations.

Third, the G2A model, which can account for departures of the

gene frequencies from K, and finally the statistical formulation of

NOIA, which can adapt to the genotype frequencies of the sample

used for the estimation of QTL effects. In these analysis we have

made use of the theory developed in this article: the implemen-

tation of HKR with NOIA. These developments enable us to deal

both with missing data and with the estimation of genetic effects of

positions inside the marker intervals.

Transforming Errors of the Estimates in NOIA
Álvarez-Castro and Carlborg [16] have shown how to

transform genetic effects obtained using an orthogonal-statistical

model in one population, into statistical genetic effects at any other

population or into functional genetic effects from any reference

individual. In each of these two cases, the transformation is done

as in expression (S6), in Text S1, using the S matrix—the genetic-

effect design matrix—of the orthogonal system, G = S1?E1, and the

inverse of the S matrix in the new system, G = S2?E2:

E2~S{1
2
:S1
:E1: ð2Þ

Let

T12~S{1
2
:S1 ð3Þ

be the transformation matrix. From (2) and (3), the estimates in E1

can be expressed as functions of the estimates in E2 as:

e2
i e1

j

� �
~
X

j

t12
ij e1

j , ð4Þ

where the letters and their superindexes indicate the vector, or

matrix, they are scalars of and the subindexes indicate the position

of the scalars inside the vectors or matrices. From (2), the variances

of the estimates E2, can be computed from the ones in E1 as:

s2
e2

i
~
X

j

t12
ij

� �2

s2
e1

j
: ð5Þ

Now for obtaining the vector of variances of the estimates E2, V2,

from the vector of variances of the estimates E1, V1, we just rewrite

(3) in algebraic notation as:

V2~ T120T12ð Þ:V1, ð6Þ

where the open circle stands for the Hadamard product—giving

the matrix whose scalars are the product of the scalars at the same

position in the original matrices.

Supporting Information

Text S1 Background information on the HKR and NOIA.

Concepts and equations related to the original formulation of the

HKR and to the NOIA statistical formulation that will help the

reader to deeper understand some details of the methods used in

the article.

Found at: doi:10.1371/journal.pgen.1000062.s001 (0.09 MB

DOC)
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21. Carlborg Ö, Kerje S, Schutz K, Jacobsson L, Jensen P, et al. (2003) A global

search reveals epistatic interaction between QTL for early growth in the chicken.

Genome Res 13: 413–421.

22. Hansen TF, Wagner GP (2001) Modeling genetic architecture: a multilinear

theory of gene interaction. Theor Popul Biol 59: 61–86.

23. Barton NH, Turelli M (2004) Effects of genetic drift on variance components

under a general model of epistasis. Evolution 58: 2111–2132.

24. Turelli M, Barton NH (2006) Will population bottlenecks and multilocus

epistasis increase additive genetic variance? Evolution 60: 1763–1776.

25. Feenstra B, Skovgaard IM, Broman KW (2006) Mapping quantitative trait loci

by an extension of the Haley-Knott regression method using estimating

equations. Genetics 173: 2269–2282.

Meaning of Genetic Effects

PLoS Genetics | www.plosgenetics.org 7 May 2008 | Volume 4 | Issue 5 | e1000062



26. Kao CH (2000) On the differences between maximum likelihood and regression

interval mapping in the analysis of quantitative trait loci. Genetics 156: 855–865.

27. Xu S (1995) A comment on the simple regression method for interval mapping.

Genetics 141: 1657–1659.

28. Mao Y, London NR, Ma L, Dvorkin D, Da Y (2006) Detection of SNP epistasis

effects of quantitative traits using an extended Kempthorne model. Physiol
Genomics 28: 46–52.

29. Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses

between outbred lines using least squares. Genetics 136: 1195–1207.

Meaning of Genetic Effects

PLoS Genetics | www.plosgenetics.org 8 May 2008 | Volume 4 | Issue 5 | e1000062


