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Drosophila SETDB1 Is Required
for Chromosome 4 Silencing
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Histone H3 lysine 9 (H3K9) methylation is associated with gene repression and heterochromatin formation. In
Drosophila, SU(VAR)3-9 is responsible for H3K9 methylation mainly at pericentric heterochromatin. However, the
histone methyltransferases responsible for H3K9 methylation at euchromatic sites, telomeres, and at the peculiar
Chromosome 4 have not yet been identified. Here, we show that DmSETDB1 is involved in nonpericentric H3K9
methylation. Analysis of two DmSetdb1 alleles generated by homologous recombination, a deletion, and an allele
where the 3HA tag is fused to the endogenous DmSetdb1, reveals that this gene is essential for fly viability and that
DmSETDB1 localizes mainly at Chromosome 4. It also shows that DMSETDB?1 is responsible for some of the H3K9 mono-
and dimethyl marks in euchromatin and for H3K9 dimethylation on Chromosome 4. Moreover, DMSETDB?1 is required
for variegated repression of transgenes inserted on Chromosome 4. This study defines DmSETDB1 as a H3K9
methyltransferase that specifically targets euchromatin and the autosomal Chromosome 4 and shows that it is an
essential factor for Chromosome 4 silencing.
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Introduction

Methylation of conserved lysine residues on histone H3 and
H4 tails plays a key role in gene regulation, chromatin
structure, and establishment and maintenance of epigenetic
memory (reviewed in [1]). As proposed by the “histone code”
hypothesis [2], these marks, in association with other
modifications, are interpreted by chromatin-specific regula-
tory complexes that in turn influence chromatin structure
and its accessibility to transcription factors. Euchromatin is
characterized by histone H3 methylated at lysine 4 (K4), K36,
and K79, while heterochromatin is characterized by histone
H3 methylated at K9 and K27 and histone H4 methylated at
K20 [1]. Moreover, histone methylation can be present in
mono-, di-, or trimethylation states [3,4]. All but one enzyme
responsible for histone lysine methylation share an evolu-
tionary conserved domain of about 130 amino acids, called
the SET domain [5,6]. Numerous SET domain-containing
proteins responsible for methylation of specific residues have
been described in all eukaryotic organisms (reviewed in [7]).
Enzymes with histone demethylase activity were only recently
characterized [8].

In Drosophila, similarly as in other organisms, histone H3
lysine 9 (H3K9) methylation plays a crucial role for hetero-
chromatin formation and maintenance and for gene silenc-
ing. Methylated H3K9 is a docking site for the recruitment of
the heterochromatin protein 1 (HP1) through its chromodo-
main [9-11]. Su(var)3-9 was the first H3K9 methyltransferase
characterized in Drosophila [12]. It was historically identified
in genetic screens, together with Su(var)2-5 encoding HP1
and Su(var)3-7, as a haplo-suppressor and triplo-enhancer of
position effect variegation [13], a phenomenon that reflects
the mosaic heterochromatin-induced silencing of genes.
SU(VAR)3-9 is responsible for H3K9 dimethylation at the
chromocenter and trimethylation at the core of the chromo-
center, but not for H3K9 monomethyl marks at the chromo-
center and along the chromosome arms, nor for the dimethyl
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marks at the chromosome arms, telomeres, and Chromosome
4 [14,15]. Recently, Drosophila dG9a was shown to display
H3K9- as well as H3K27- and H4-methyltransferase activity,
to localize at discrete bands in euchromatin, and to be
excluded from Chromosome 4 [16,17], suggesting that it
methylates H3K9 at euchromatic sites. But the histone
methyltransferases (HMTases) that methylate H3K9 outside
the chromocenter have not been formally characterized.
Drosophila melanogaster’s Chromosome 4 is the smallest
autosome and displays a peculiar chromatin organization
(for a review on Chromosome 4 see [18]). It is mostly
heterochromatic, composed of a highly condensed ~3-4-Mb
centromeric region that is under-replicated and a 1.2-Mb
polytenized arm exhibiting a banded pattern. The banded
region displays characteristics typical of heterochromatin
based on a number of criteria: transposable and repetitive
elements are represented at a high density [19,20], P elements
often display a variegated expression [21-23], H3K9 dimethyl
marks are present [14,15], and HP1 is distributed in a banded
pattern [24]. Surprisingly, in opposition to these hetero-
chromatic characteristics, the banded portion shows a gene
density comparable to euchromatin; many of these genes are
essential, therefore expressed during development [25,26]. In
addition, the H3K9 dimethyl mark is not deposited by the
heterochromatic SU(VAR)3-9 [14,15]. These features con-
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Author Summary

DNA is the basic unit carrying genetic information. Within the
nucleus, DNA is wrapped around an eight-histone complex to form
the nucleosome. The nucleosomes and other associated proteins
assemble to a higher order structure called chromatin. The histones
are mainly globular, excepted for their tails that protrude from the
nucleosome core. The amino acids of the histone tails are often
modified. For example, several conserved lysine residues can be
methylated. Methylation of lysine 9 on histone H3 (H3K9) is
important for proper chromatin structure and gene regulation.
Here, we characterize Drosophila DmSETDB1 as a histone methyl-
transferase responsible for H3K9 methylation of the chromosome
arms and Chromosome 4. In addition, we show that in the absence
of DmSETDBI1, silencing of Chromosome 4 is abolished. This study is
an important step towards the understanding of the differential
chromatin domain specificity and mode of action of H3K9
methyltransferases.

verge to the conclusion that chromatin of the Chromosome 4
banded region is different from centromeric heterochroma-
tin.

Human SETDB1 (mouse ESET) is an essential H3K9
methyltransferase involved in silencing in euchromatin [27-
30]. It is composed of a Tudor-, a methyl CpG binding-
(MBD), and a bifurcated SET-domain that is surrounded by
pre- and post-SET domains [31]. Recently, the D. melanogaster
homologue gene of SETDB1 (named dsetbl, eggless, or dEset)
was identified; the domains characteristic of mammalian
SETDBI are well conserved, reaching 76% identity in the
SET-C terminus and post-SET domains [16,32,33]. In addi-
tion, an histone deacetylase-interacting domain was identi-
fied [33]. This gene was shown to be involved in H3K9
trimethylation both in germ and somatic cells of the
germarium and to be required for oogenesis at early stages
of egg chamber formation [32].

Here, we show that DmSETDBI is the missing euchroma-
tin- and Chromosome 4-specific H3K9 HMTase. We gener-
ated a DmSetdbl mutant allele and a 3HA-tagged DmSetdbl
allele by homologous recombination and show that this gene
is essential for fly viability and that the endogenous
DmSETDBI1 protein localizes mainly at Chromosome 4. In
addition, we evidence that DmSETDBI1 is responsible for
some H3K9 mono- and dimethyl marks in euchromatin, as
well as for Chromosome 4 H3K9 dimethylation. Moreover,
DmSETDBI turned out to be required for repression of
variegating transgenes inserted on Chromosome 4, a function
that is consistent with the role of DmSETDB1 in Chromo-
some 4 H3K9 dimethylation. Therefore, DmSETDBI is a key
H3K9 methyltransferase in Drosophila involved in repression
of the peculiar Chromosome 4.

Results

DmSetdb1 Is an Essential Gene Expressed throughout
Development

The open reading frame (ORF) of CG30426 was identified
by protein BLAST search (National Center for Biotechnology
Information [NCBI], http://www.ncbi.nlm.nih.gov) as the
closest Dm homologue of the human H3K9 methyltransferase
SETDBI. Others also identified CG30426 by protein BLAST or
in a SET-domain phylogenic tree as the Dm homologue of
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SETDBI [16,34]. Subsequently, CG30426 and the neighboring
CG30422 (see representation Figure 1A) were shown to
produce a single 3.9-kb mRNA transcript in ovaries [32] and
constitute a single transcript in females [33], suggesting that
the DmSetdbl gene is composed of both CG30422 and
CG30426. As a full insert cDNA corresponding to CG30426
alone (AT13877) is present in public databases, we addressed
whether the DmSetdbl gene was transcribed from several
transcription start sites, subjected to alternative splicing in a
tissue-specific manner, or if the 3.9-kb transcript was the
unique product. Northern blot analysis shows that in
embryos, third instar larvae, male and female adults, a single
3.9-kb transcript is detected with a probe specific for
CG30426, with a stronger signal in embryos (Figure 1B). The
same profile is obtained with a probe spanning CG30422
(unpublished data). Therefore, DmSetdbl is expressed as a 3.9-
kb transcript encompassing both CG30422 and CG30426,
which is present at all developmental stages and encodes a
1,261-amino acid protein.

To study DmSETDBI1 function in vivo, we generated the
DmSetdb1'”'* mutant allele by homologous recombination
[35,36]. In this allele, amino acids 421 to 1,261 comprising
the Tudor, MBD, pre-SET, SET-N, SET-C, and post-SET
domains are deleted. The entire ORF was not removed
because when the present study was designed, CG30422 was
not considered part of the DmSetdbl gene. The 5'-end of the
DmSetdbl gene is transcribed in the DmSetdb1'%'* allele
(unpublished data), therefore the 420 first amino acids of
DmSETDB1 are potentially translated, followed by 16
unrelated amino acids and a stop codon (Figure 1A). This
mutation is recessive lethal, in that homozygotes die at late
pupal stage, with no escapers. The same phenotype is
observed in individuals transheterozygous for DmSetdb1'*'
and the chromosomal deficiency Df(2R)ED4065 deleting the
DmSetdbl gene (deleted segment: 60C8-60E7). The polytene
chromosomes of homozygote DmSetdb1'%'* larvae appear
normal (Figure S1). The DmSetdb1'%'* homozygous mutant
flies can be rescued into the adult stage by expression of
DmSETDB1*#!-12%! o1 SHA-DmSETDB1*2!""%%! transgenes
(UAS- DmSetdb1**'=12%1 daGal4 heterozygotes). The rescued
females are sterile, while the males are fertile, leading to the
conclusion that DmSETDB1*2!71201 jg partially functional.
Collectively, phenotypic analysis of DmSetdb1’*'* homozy-
gotes and of transheterozygotes for DmSetdb 1'% and the
chromosomal deficiency Df(2R)ED4065 shows that DmSetdbl
is an essential gene, and that DmSetdb1'%1* behaves as a null
allele.

DmSETDB1 Localizes at Chromosome 4, Euchromatin and
Chromocenter, and Is Involved in Some H3K9 Mono- and
Dimethyl Marks in Euchromatin and in H3K9
Dimethylation of Chromosome 4

We next investigated the biological function of endogenous
DmSETDBI1. We first looked at the localization of the
endogenous DmSETDB1 on polytene chromosomes. There-
fore we generated the DmSetdbI’™™* allele by homologous
recombination, which produces the endogenous DmSETDBI1
protein tagged internally with a 3HA (Figure 1A). DmSetdb 1’
is expressed at a similar level compared with the wild-type
allele (Figure 1B). The transcript of DmSetdbI°™ is slightly
longer than that of the wild-type allele due to the 3HA

May 2007 | Volume 3 | Issue 5 | €76



A

DmSetdb1 alleles

DmSETDB1 Methylation at Chromosome 4

Corresponding DmSETDB1 proteins

DmSetdb1 o

<

&
ATG ATG TAG oF & « Q@’% g<§'$ gé\'o
N H - |
CG30422 TAG CG30426 post-SET— 1281
DmSetdb13HA
ATG ATG Tf«G 3HA
N H 1 |
1306
DmSetdb179-12
ATG TAG
—r‘:H:H—\/l— |:|436
Transgenic constructs:
B
wild type DmSetdb 1% DmSETDB1421-1261
r N \
ele2 I3 m f 13 m f '. |
421 1261
2o— - - - DmSETDB142-126(H1195K) e
26— [ |
421 1261
1.9—
4 3HA-DmMSETDB1421-1261
09— ]
421 126%
- 421-1261 H1195K
P ——— 3HA-DmSETDB1 (H1195K) 113
|
p49

421

1261

Figure 1. Schematic of the DmSetdb1 Alleles and Expression Profile of DmSetdb1 during Development

(A) The structure of the DmSetdb1 gene is represented as well as the two alleles generated by homologous recombination. The gene was previously
annotated as two entities, CG30422 and CG30426. DmSetdb1** consists in a 3HA tag inserted in phase in the third exon. DmSetdb1’%'® is a deletion
removing amino acids 421 to 1,261 of the protein. The protein products of the three DmSetdb1 alleles and of transgenic constructs used in this study

are also represented.

(B) Analysis of DmSetdb1 expression by Northern blot in wild-type and DmSetdb1*** homozygous background at the indicated developmental stages:
el1, 0-4-h embryos; €2, 0-18-h embryos; 13, third instar larvae; m, adult males; f, adult females. Membranes were hybridized with a probe spanning
nucleotides 2,399 to 3,789 of DmSetdb1 ORF and with a RNA loading control probe recognizing the 0.6-kb rp49 transcript.

doi:10.1371/journal.pgen.0030076.g001

sequence (Figure 1B); it was amplified by reverse transcriptase-
PCR and sequenced, and shows no aberrant splicing (unpub-
lished data). DmSetdb 1’4 homozygous flies are viable and can be
maintained as a stock, showing that the 3HA tag does not impair
DmSETB1 function. Staining of homozygous DmSetdb 1’4
larvae polytene chromosomes with anti-HA shows a strong
signal on Chromosome 4 (Figure 2A). DmSETDBI is also
present over the whole length of the euchromatic arms, with
some spots being more occupied. The chromocenter is weakly
stained (Figure 2A), a feature whose significance needs to be
studied further, as DmSETDB1 is not methylating the
chromocenter (see below). As a negative control, polytene
chromosomes of wild-type larvae stained with anti-HA show
no signal (unpublished data). Thus, endogenous DmSETDBI1
localizes at Chromosome 4 and chromosome arms.

By analogy to mammalian SETDB1, which is a H3K9 mono-,
di-, and tri-HMTase [27,28], we asked whether DmSETDBI is
responsible for some of the H3K9 methyl marks present in
chromatin. To address this, H3K9 mono-, di-, and trimethyl
marks of wild-type and homozygous DmSetdb1%'* mutant
larvae on polytene chromosomes were compared. Similarly as
described in the literature, in wild-type conditions, the H3K9
monomethyl antibody stains the chromocenter and the
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euchromatic arms, although faintly. In the DmSetdb1'%1
mutant, the monomethyl H3K9 signal is less intense on
euchromatin, but does not completely disappear. However,
the signal at the chromocenter remains unchanged (Figure
2B). Therefore, DmSETDB] is involved in some but not in all
of the euchromatic H3K9 monomethylation, and displays no
activity at the chromocenter. The H3K9 dimethyl antibody
stains the chromocenter and Chromosome 4 in wild-type
larvae, while the telomeres and the few euchromatic bands
that were shown to bear H3K9 dimethyl marks [14,15] are not
easily detectable. In the DmSetdb1'*'* mutant background the
mark is strongly reduced at the arm of Chromosome 4, while
the telomere and chromocenter are not affected (Figure 2C).
As a consequence, HP1 is present at the chromocenter and at
the telomere, but it is not recruited to the Chromosome 4
arm, except for a few signals visualized as faint bands (Figure
3B). Loss of HP1 at Chromosome 4 reinforces the conclusions
made with the H3K9 dimethyl staining, namely that
DmSETDBI is the H3K9 dimethyl HMTase of the Chromo-
some 4 arm. We wanted to analyze the euchromatic and
telomeric H3K9 dimethyl marks of the other chromosomes in
DmSetdb]l mutant larvae, but the currently available anti-
bodies do not allow detection of these marks. To circumvent
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Figure 2. Localization of Endogenous DmSETDB1 and Comparison of H3K9me1, me2, and HP1 Pattern between Wild-Type and DmSetdb1'%¢
Homozygote Mutant

(A) Salivary gland polytene chromosomes of DmSetdb1*** homozygous larvae were stained with o-HA. DNA is stained with 4’,6-diamidino-2-
phenylindole (DAPI). DmSETDB1 localizes at Chromosome 4 (white arrows) and euchromatic arms. The chromocenter is also stained.

(B) Salivary gland polytene chromosomes of wild-type (wt) and DmSetdb1'®’® homozygous mutant (DmSetdb1'®'%) were immunostained with o-
H3K9me1. In the mutant, the H3K9me1 signal persists at the chromocenter but is weaker on the euchromatic arms when compared to wild type.
(C) Immunostaining with antibodies recognizing H3K9me2 or HP1. Pictures were taken at higher magnification. White arrows show the Chromosome 4
arm. In the DmSetdb1'%'® homozygous mutant H3K9me2 and HP1, signals are lost on most of Chromosome 4 arm but not at chromocenter or telomere.
(D) Immunostaining with a a-HP1 is shown. DNA is stained with DAPI. Pictures were taken at higher magnification and show chromosome 2R arm. The
region 31 is bound by HP1 in wild-type condition but not in DmSetdb1’®'® homozygous mutant. Telomere is bound by HP1 in both genetic

backgrounds.
doi:10.1371/journal.pgen.0030076.9002

this technical problem, stainings were performed with an
antibody recognizing HP1 that produces significant signals.
In the DmSetdb1'*'* mutant background, HP1 is present on
telomere, but disappears from some bands known to be
strongly enriched in H3K9 dimethyl and HP1, as for instance
region 31 of Chromosome 2 [37] (Figure 2D). Telomeres of
the other chromosome arms are also bound by HP1 in the
DmSetdb1'”'* mutant background. Taken together, these
results show that DmSETDB1 has an H3K9 dimethyl HMTase
activity at some sites on the euchromatic arms, at Chromo-
some 4, but not at telomeres.

In terms of the H3K9 trimethyl modification present at the
core of the chromocenter and few sites on the chromosome
arms, we could not detect any difference between wild-type
and DmSetdb 1'% homozygous mutant polytene chromosomes
(unpublished data). We also examined other methylation
marks associated with repression, namely mono- and dimeth-
yl H3K27, and could not show any change in the DmSetdb1'%1¢
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mutant background (unpublished data), arguing in favor of
the specificity of DmSETDBI1 for H3K9. From these data we
conclude that DmSETDBI1 is responsible for some of the
H3K9 mono- and dimethyl marks in euchromatin, and for
most of Chromosome 4 H3K9 dimethylation. Others
HMTases must be responsible for persistent H3K9 mono-
and dimethylation in euchromatin, for H3K9 monomethyla-
tion at the chromocenter, and for H3K9 dimethylation at the
telomeres.

Overexpression of DmSETDB1%2'""2%" |s Lethal and Leads
to Increased H3K9 Methylation and to the Recruitment of
HP1

We next asked if overexpression of DmSETDB1 induces an
increase of H3K9 methylation. This would confirm the ability
of DmSETDB1 to mono- and dimethylate H3K9 and address
if it can trimethylate H3K9, as described for its mammalian
homologue [27,28]. In addition, this would show whether

May 2007 | Volume 3 | Issue 5 | €76



DmSETDB1 Methylation at Chromosome 4

A

3HA-DmSETDB142"1261  3HA-DmSETDB142!-1261

H1195K

Y e

wt + DMSETDB1421125! 4 DmSETDB142'-1261
H1195K

H3K9me1
(G — —
H3K9me3
H3K9me1

5 e —

a-Tubulin

a Wt mut 1
{5 —— —
H3K9me2 H3K9me2

30 . -
HP1

1) P

a-Tubulin

H3K9me3

s "
H3K9me2

1o -

H3

Figure 3. Overexpression of DmSETDB14?'~"?%" Induces Increase in H3K9 Mono-, Di-, and Trimethylation

(A) Salivary glands polytene chromosomes from larvae expressing 3HA-DmSETDB14?'""2%" (CaSpeR-3HA-DmSetdb1*’~"5") or 3HA-DmMSETDB1*?'~
1261(H1195K) (UAS-3HA- DmSetdb1*'~"2%7(H1195K) daGal4 homozygotes) were immunostained with a-HA. For the 3HA-DmSETDB1%*'"%%! Jarvae were
subjected 30 min at 37 °C heat shock and placed 1 h at room temperature for recovery before squashing. 3HA-DmSETDB1%?'""2°" and 3HA-
DmMSETDB1#'~"26" (H1195K) localize at the Chromosome 4 and on the euchromatic arms. White arrows point at the Chromosome 4 and yellow arrows
at the chromocenter.

(B) Immunostaining of salivary gland polytene chromosomes of wild-type (wt), overexpressing DmSETDB14?'~"2%" (UAS-DmSetdb1*'~"%°" daGal4
homozygotes), and overexpressing mutant DmSETDB1%2"-125T(H1195K) (UAS-DmSetdb1%?7-2%" (H1195K) daGal4 homozygotes) third instar larvae. The
chromosome with a white asterisk corresponds to the overexpression of the 3HA-tagged protein. Chromosomes were stained with antibodies
recognizing H3K9me1, me2, me3, or HP1. Overexpression of DMSETDB1**'~"2¢" but not of mutant DMSETDB1**'~"2"(H1195K) leads to a strong
increase of H3K9me1, me2, and me3 signals on the euchromatic arms and on the Chromosome 4 (white arrow on H3K9me3 panel); moreover HP1 is
recruited to euchromatic arms and strongly binds Chromosome 4 (white arrow on HP1 panel).

(C) Top and middle panels: Western Blot analysis on 20 pg brain, salivary glands, and imaginal discs extracts (dissected together) of wild-type (wt),
DmSetdb1'%12 homozygote mutant (mut), overexpressing DmSETDB1#2'-126" (1) (UAS-DmSetdb1#?'-?%" daGal4 heterozygotes) third instar larvae. First
membrane was probed with a-H3K9me1 and a-a-tubulin, stripped, and probed with a-H3K9me3. Second membrane was probed with a-H3K9me3 and
a-tubulin, stripped, and probed with a-HP1. Bottom panel: 5 g brain extracts from wild-type (wt), overexpressing mutant DmSETDB14?'~"2%"(H1195K)
(TH1195K) (UAS- DmSetdb1*?-"26"[H1195K] daGal4 homozygotes), and overexpressing DmSETDB1%2'""2%7 (1) (UAS-DmSetdb1**'"%%" daGal4
homozygotes) of third instar larvae were loaded twice and membranes were probed with a-H3K9me2 or a-H3.
doi:10.1371/journal.pgen.0030076.g003

DmSETDBI is a limiting factor for the H3K9 methylation
level or not. We overexpressed DmSETDR1*2!-1:261
than full-length protein that nonetheless contains the Tudor,
MBD, pre-SET, SET, and post-SET domains and can rescue
the DmSetdb1'** homozygotes (see above). In addition, the

, a less
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3HA-tagged version of DmSETDB1*#'712%1 [ocalizes similarly
to the full-length protein, namely at Chromosome 4 and at
euchromatin, although the signal is stronger at euchromatin
most likely because of its higher expression (Figure 3A). It is
not possible to assess whether H3K9 methylation is present at
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the chromocenter, since it becomes disorganized upon
DmSETDBI overexpression (Figure S1). Thus, we consider
that DmSETDB1**'7'2% is suitable to study the HMTase
activity of DmSETDBI. expression of
DmSETDBI™'72%! is lethal, as ubiquitously overexpressing
flies (UAS-DmSetdb1?'~"*°" daGal4 homozygotes) die during
the pupal stage, while heterozygous individuals survive and
are fertile. Polytene chromosomes of larvae overexpressing
DmSETDB1*?'""#°! show an aberrant morphology. They
appear thickened with unusual constrictions, and the
chromocenter looks disorganized and decondensed (Figure
S1). Such chromatin defects could be the cause of lethality.
Upon DmSETDB1*21-1:261 overexpression, there is a strong
increase in H3K9 mono-, di-, and trimethylation on all
chromosome arms, including Chromosome 4 (Figure 3B). As a
control, H3K27 mono- and dimethyl marks do not change
when DmSETDBI is overexpressed (unpublished data). The
same stainings were repeated under conditions where the
DmSETDB1*2!-1-261({]1195K) protein is overexpressed. The
histidine 1,195 position is invariant among the SET proteins
and is part of the cofactor AdoMet-binding pocket. The
corresponding point mutation in human SETDBI abolishes
HMTase activity [27]. SHA-DmSETDB1**'""2*(H1195K) lo-
calizes similarly as 3HA-DmSETDB1*2'~%2%! (Figure 3A),
showing that the enzymatic activity is not required for
chromatin localization of DmSETDB1*2!-1:261, Overexpres-
sion of the mutant protein does not induce any increase or
change in the H3K9 mono-, di-, or trimethylation patterns
(Figure 3B).

HP1 recognizes H3K9 di- and trimethylated histones [9-11]
and localizes at the chromocenter, the telomeres, Chromo-
some 4, and at approximately 200 euchromatic sites of wild-
type polytene chromosomes [24]. We wondered whether the
profile of HP1 would be altered under DmSETDBI1-over-
expressing conditions. When DmSETDB1*#'""*%! is overex-
pressed, HP1 is absent from the loose chromocenter, remains
on Chromosome 4, and is recruited to the euchromatic arms,
more intensely at some sites (Figure 2B). Western blot analysis
shows that the total amount of HP1 is similar in
DmSETDB1*!-"2¢! overexpressing and in wild-type larvae
(Figure 3C). These results indicate that HP1 is not expressed
in larger amounts nor stabilized. Recruitment of HP1 to the
chromosome arms does not occur upon overexpression of the
DmSETDB1*2'"12% (H1195K) mutated protein (Figure 2B),
showing that DmSETDB1*21712%! alone cannot recruit HP1.
Taken together, these results show that overexpressed
DmSETDB1*2"120! i5 located at and has an H3K9 mono-,
di-, and tri-HMTase activity on the euchromatic arms and on
Chromosome 4, leading to the recruitment of HP1.

Global levels of H3K9 mono-, di-, and trimethylation were
also measured by western blot analysis in tissue extracts from
wild type, overexpressing DmSETDB1*21-1261 4nd DmSetd-
p1t0He homozygote mutant third instar larvae. Overexpres-
sion of DmSETDB]%21-1:261 markedly increases mono-, di-,
and trimethyl H3K9 levels, whereas absence of DmSETDB1
results in a modest decrease of these three modifications
(Figure 3C, first and second panels). The reduction observed
in the DmSetdbl’®’* mutant background is subtle but
reproducible. Total H3 and HPI1 levels (unpublished data
and Figure 3C, second panel) are not influenced by the
overexpression or the absence of DmSETDBI1. As expected,
overexpression of the DmSETDB1*2'""2!(H1195K) mutant

Increased
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protein has no effect on H3K9 dimethylation (Figure 3C,
third panel) or trimethylation (unpublished data) levels,
except for a subtle increase in signal strength. Note that the
increase in H3K9 dimethylation upon DmSETDB1*?'~20!
overexpression is stronger in the third compared to the
second panel, because the larvae are homozygous for the
transgene. We conclude that DmSETDB1 is an H3K9 mono-,
di-, and tri-HMTase and that increased expression positively
influences the H3K9 methylation level.

DmSETDB1 Is Required for Repression of Variegating
Transgenes Inserted on Chromosome 4

Given that DmSETDB1 strongly localizes to and methylates
H3K9 on Chromosome 4, we next assessed its role in gene
regulation on that peculiar chromosome. To do this, we
analyzed whether DmSETDB1 level would affect expression
of white transgenes when placed on Chromosome 4. There-
fore, we used previously characterized lines where the white
gene is expressed from P elements inserted in or at the edge
of Chromosome 4 heterochromatic interspersed domains
[21,22,38-40]. These lines display a variegated phenotype,
indicating that the white gene is stochastically silenced. This
pattern is reminiscent of heterochromatic position-effect
variegation on other chromosomes, and mutations in HPI or
Su(var)3-7 result in re-expression of the white gene, in all but
one line (39C5) [21,38-40]. On the other hand, these
variegating reporters do not respond to an additional or
missing dose of SU(VAR)3-9 (mentioned in [18] as personal
communication from K. Haynes [41]). If DmSETDB1 were
implicated in repression via its HMTase activity, its absence
would lead to reactivation of white expression. In parallel,
four variegating lines were tested, two that have P elements
inserted near centromeric heterochromatin of Chromosome
2, one that has a P element inserted in the subtelomeric
region of 2L, and the other being the In(1)w™™" line, in which
an inversion relocates the endogenous white gene next to
centromeric heterochromatin. White expression was analyzed
in wild-type DmSetdb1'%1 heterozygous and homozygous
mutant late pupae. In the heterozygous mutant background,
none of these lines differs from the wild type (unpublished
data). In the DmSetdbl’%'" homozygous mutant context,
however, the lines with transgene on Chromosome 4 show a
robust expression of the white reporter (Figure 4, compare
DmSetdbl +/— and —/— in panels A-E). This is neither the case
for the three transgenes on Chromosome 2 (H, F, and I), nor
for the white gene on the X Chromosome (G). The expression
in the In(l)w™™ line (G) is even reproducibly lower in the
absence of DmSETDBI, for as yet not understood reasons.
These results show that DmSetdbl is a recessive suppressor of
variegation of Chromosome 4. In the absence of DmSETDBI,
repression of transgenes located in the vicinity of Chromo-
some 4 heterochromatic domains is abolished.

Discussion

In D. melanogaster, the enzyme(s) responsible for H3K9
methylation at euchromatin, telomeres, and at the peculiar
autosomal Chromosome 4 have not yet been characterized.
Here, we identify DmSETDB1 as a major H3K9 methyltrans-
ferase at euchromatin and Chromosome 4. We demonstrate
that DmSetdbl is an essential gene, and that DmSETDBI is
required for Chromosome 4 silencing. Thus, DmSETDB1 is
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Figure 4. Chromosome 4 Variegating Transgenes Are Derepressed in DmSetdb1'®'® Homozygotes

Eyes pictures showing expression of variegating white transgenes on Chromosome 4 (A-E) and other chromosomes (F-I), in DmSetdb

110.1(1

heterozygous (+/—) and homozygous (—/—) background. Wild-type flies show the same phenotype as DmSetdb1'%'® heterozygotes (unpublished data).
Pictures show heterozygous and not wild-type flies, because heterozygous and homozygous mutant flies were generated from the same cross and are
thus directly comparable. Genotypes were analyzed by PCR. (A) corresponds to the 39C12 P element, (B) to 39C72, (C) to 118E10, (D) to 6M193, (E) to
118E15, (F) to 39C3, (G) to the In(1)w™" inversion, (H) to Heidi, and (I) to 39C5. P elements in (A-E) are inserted on Chromosome 4 arm, in (F) and (H) near
Chromosome 2 centromeric heterochromatin, in (I) near telomere of 2L, and (G) is an inversion on Chromosome X relocating the endogenous white
gene next to centromeric heterochromatin. For genotypes, see Materials and Methods.

doi:10.1371/journal.pgen.0030076.g004

the second H3K9 methyltransferase characterized in Droso-
phila, the first one being the heterochromatin-specific
SU(VAR)3-9.

DmSetdb1 Is an Essential Gene

Whereas Su(var)3-9 and dG9a are not essential ([42], C.
Seum, unpublished data), DmSetdbl is the first gene described
encoding a H3K9 methyltransferase that is required for fly
viability. DmSetdbl transcript can be detected at every stage of
development. Our analysis by Northern blot confirms that the
only transcript is 3.9 kb long, encompassing both CG30422
and CG30426. Early embryos show relative high mRNA levels,
suggesting deposition of the transcript in the embryo. Others
conclude that DmSetdbl transcript is not present in 0-3-h
embryos when tested by reverse transcriptase-PCR [33], a
result that is not easily reconciled with our observations.
DmSetdb1'*'* homozygotes are rescued with the UAS-
DmSetdb1*?'72°1 daGal4 transgene; the males are fertile, while
the females are sterile. Thus, the rescue is not complete in
females, because of either nonappropriate expression of the
transgene or because DmSETDB1*2'""2%! is not full-length.
This observation is consistent with the fact that DmSetdbl
(eggless) was shown to be required for oogenesis [32].
Preliminary data suggest that sterility in rescued females
and in eggless mutant alleles [32] is due, at least in part, to
defects in germline development. Indeed, using the FLP-
ovo®! system [43], we could not generate any DmSetdbI''
homozygous mutant germline clone (unpublished data). This
suggests that germline-specific expression of DmSetdbl is
required before stage 5 of oogenesis. This does not exclude,
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however, that a maternal contribution is required for proper
oogenesis.

DmSETDB1 Localizes at Chromosome 4 and Euchromatin

The polyclonal antibody directed against a DmSETDB1
peptide we generated does not recognize DmSETDB1 on
polytene chromosomes. Therefore, we generated the
DmSetdbI’™ allele that results into the expression of the
endogenous DmSETDBI1 protein tagged with 3HA (Figure
1A). Such an approach has the advantage that the endoge-
nously expressed protein can be detected with highly specific
monocolonal antibodies. This allowed us to show that
DmSETDBI localizes at a high level on Chromosome 4 and
over the chromosome arms (Figure 2A). DmSETDB1 is also
present at the chromocenter. We do not know if this feature
has any biological significance as DmSETDB1 does not
methylate the chromocenter. The association of DmSETDBI1
with chromatin is not dependent on its own catalytic activity,
since the DmSETDBlQl*l’%l(Hl195K) mutant protein local-
izes similarly to DmSETDB1**'""%%! (Figure 8A). The mode of
DmSETDBI1 recruitment thus differs from that of SU(VAR)3-
9, since the latter appears to require its HMTase activity for
binding to heterochromatin [44]. It is currently not known
how DmSETDBI1 is recruited to chromatin. Mammalian
SETDBI is recruited to DNA together with HP1, either via
the KRAB-zinc-finger protein KAP1 corepressor [27,45] or by
the ERG transcription factor [46], or as a component of the
MBDI1-mAM/MCAF1-SETDB1 complex [30,47,48]. It is tempt-
ing to speculate that in Drosophila transcriptional repressors
also recruit DmSETDB1 onto euchromatin or at Chromo-
some 4.
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DmSETDBT1 Is a Euchromatin- and Chromosome 4-H3K9
Methyltransferase

Comparative analysis of H3K9 methylation and HP1 profile
on polytene chromosomes of wild-type and DmSetdb1'%1¢
homozygous mutant larvae shows that DmSETDBI is involved
in some of the H3K9 mono- and dimethyl marks in
euchromatin and in dimethyl marks on Chromosome 4
(Figure 2B and 2C). Loss of methylation at Chromosome 4
and euchromatin is coherent with the localization profile of
the DmSETDBI1 protein itself. Western blot analysis of the
H3K9 methylation level in mixed salivary glands, brain, and
imaginal discs tissue in DmSetdbl mutant background shows a
decrease in all three H3K9 methyl marks (Figure 3C). We
could not evidence any change of trimethylation in polytene
chromosomes of DmSetdb1'”!* mutant larvae. This suggests a
distinct H3K9 trimethylation profile in the tissues analyzed by
Western blot and in polytene chromosomes. This hypothesis
is corroborated by the recent finding that DmSETDB1
trimethylates H3K9 in germ and somatic cells of the
germarium [32].

The overexpression data provide a mirror image, in that
they show the ability of DmSETDB1 to mono-, di-, and
trimethylate H3K9 (Figure 3). Thus, Drosophila DmSETDB1
and mammalian SETDB1 are conserved with respect to their
HMTase activity, as both Drosophila DmSETDB1 and mamma-
lian SETDB1 are H3K9 mono-, di-, and tri-HMTases [27,28].
Although such a mechanism has not yet been described, we
cannot exclude that DmSETDBI1 is exclusively a H3K9
monomethyltransferase providing monomethyl substrates
for other enzymes; but in that case, the partner enzyme
would not be SU(VAR)3-9, since its absence does not impair
Chromosome 4 or euchromatic dimethylation. In mammals,
conversion of the H3K9 dimethyl- to the trimethyl-state by
SETDBI is strongly facilitated by the mAM cofactor [28]. Such
a mechanism can also be envisaged for DmSETDBI1, and
CGI12340 is a candidate Drosophila homologue of mAM.

We could not detect any HMTase activity of DmSETDBI1 in
cell-free conditions. Immunopurified DmSETDB], regardless
of whether expressed in mammalian or in Drosophila S2
embryo cell lines, did not show any activity when tested on
GST-H3, GST-H4, core histones, or oligonucleosomes, while
mammalian SETDB1 produced under identical conditions
showed robust H3 specific activity (unpublished data). We
hypothesize that another protein or a post-translational
modification is necessary for HMTase function of
DmSETDBI. This activity would not be present in S2 cell
line; this is consistent with the fact that overexpression of
DmSETDBI1 in S2 cells does not induce any increase in H3K9
mono-, di-, or trimethylation (unpublished data).

DmSETDB1 Functionally Interacts with HP1

DmSETDBI1 functions in association with HP1; HP1 is
recruited when DmSETDB1*2!~1:261 jg overexpressed and lost
from some euchromatic bands and Chromosome 4 in the
DmSetdb1''* mutant. In addition, HP1 is required for
DmSETDBI1-dependent repression of Chromosome 4 varie-
gating transgenes [21,38-40]. We speculate that HPI is
recruited to chromatin by both the DmSETDBI protein and
the H3K9 methyl mark. Indeed, the DmSETDBI1 protein is
not able to recruit HP1, because the DmSETDB1*%!~
12611 195K) mutant protein does not influence HP1 local-
ization. On the other hand, the H3K9 methyl mark alone is

@ PLoS Genetics | www.plosgenetics.org

DmSETDB1 Methylation at Chromosome 4

not sufficient to recruit HP1 [49]. Therefore, we hypothesize
that HP1 recognizes the H3K9 methyl mark in association
with DmSETDB1, or with another factor. The situation is
similar for Suv39H]1, where the protein itself does not recruit
HP1, despite a direct interaction that is necessary for HP1
binding in collaboration with the H3K9 methyl mark [49]. We
do not know if a direct DmSETDB1-HP1 interaction occurs,
but two arguments in mammals argue in favor of this. First,
KAPI directly binds HP1 [50] and SETDB1 [27], and in such a
complex, contacts between HP1 and SETDB1 are probable.
Second, heterochromatin targeted HP1 recruits SETDBI1
[61,52], although an intermediate factor cannot be excluded.

DmSETDB1, SU(VAR)3-9, and Other Potential H3K9
HMTases

Although both DmSETDB1 and SU(VAR)3-9 methylate
H3K9, one cannot substitute for the other. Indeed, in a
mutant background for one enzyme, the other will not
compensate for its absence. In addition, we can conclude that
both enzymes function independently; SU(VAR)3-9-medi-
ated H3K9 di- and trimethylation and HP1 deposition at the
chromocenter are not affected in the DmSetdbl’%!“ mutant
context, and conversely, H3K9 mono- and dimethyl marks at
euchromatic arms, dimethyl marks on Chromosome 4, and
the associated HP1, are not affected in a Su(var)3-9 mutant
background [14,15]. Surprisingly, SU(VAR)3-9 is present on
Chromosome 4; it is most probably recruited by HP1, but it
does not induce any H3K9 methylation [14,15]. Thus,
DmSETDB1 and SU(VAR)3-9 exert nonoverlapping and
independent functions, suggesting that they accomplish
distinct biological roles. We anticipate that at least one
additional HMTase is involved in H3K9 methylation in
Drosophila. H3K9 monomethylation at the chromocenter,
H3K9 dimethylation at the telomeres, and some of the
H3K9 mono- and dimethylation marks at euchromatic bands
are not deposited by SU(VAR)3-9 nor DmSETDBI1. One
candidate, dG9a, was recently shown to methylate H3K9 and
to localize to euchromatin [16,17].

DmSETDB1 Is Required for Repression of Chromosome 4
Variegating Transgenes

The repressive function of DmSETDB1 demonstrated for
Chromosome 4 is consistent with the fact that H3K9
methylation is generally found in association with transcrip-
tional silencing [53,54]. Indeed, the mammalian SETDBI
homologue fulfills such a function [27,45,47,48]. DmSETDBI1
could also be implicated positively in gene expression, since
H3K9 di- and trimethylation, as well as HP1y were recently
found in the coding region of active genes [55,56]. One task
will be to identify endogenous genes that are regulated by
DmSETDBI1 in euchromatin and at Chromosome 4. Genes
located in the region 31 are potential candidates, given that
the HP1 signal is lost in the DmSetdb1'%' mutant. The second
set of candidate genes are those physically associated with
HP1 but not with SU(VAR)3-9. Greil et al. [57] performed
large-scale mapping of HP1 and SU(VAR)3-9 targeted loci in
embryonic Kc cells and showed that whereas HP1 and
SU(VAR)3-9 bind together to transposable elements and
pericentric genes, HP1 binds to many genes on Chromosome
4, mostly independently of SU(VAR)3-9. The latter, together
with a class of euchromatic genes showing the same protein-
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factor occupation profile, possibly depend on DmSETDBI for
H3K9 methylation and regulation.

DmSETDBI is the H3K9 HMTase responsible for hetero-
chromatin silencing on Chromosome 4, because variegating

101a mutant back-

transgenes are derepressed in a DmSetdbl
ground. As both alleles have to be mutated in order to obtain
an effect, the DmSetdb]l gene is a recessive suppressor of
variegation on Chromosome 4. Conversely, loss of a single
dose of HP1 or SU(VAR)3-7 results in loss of silencing [21,38-
40]. This difference could be explained by the fact that
DmSETDBI is an enzyme, whereas HP1 and SU(VAR)3-7 are
dosage-sensitive structural components. Alternatively,
DmSETDB1 might be present in excess. Heterochromatic
variegating reporters are responding to an additional or
missing dose of SU(VAR)3-9 when inserted on Chromosomes
2, 3, or X, but not on Chromosome 4 (mentioned in [18] as
personal communication from K. Haynes [41]). This observa-
tion is henceforth explained by the fact that DmSETDBI1
mediates H3K9 dimethylation on Chromosome 4. Conversely,
and as expected, variegating expression responding to the
SU(VAR)3-9 dosage is not under the control of DmSETDB1
(Figure 4F-4I). This corroborates once again that SU(VAR)3-
9 and DmSETDBI function independently. Mammalian
SETDBI is involved in epigenetic maintenance, since silenc-
ing is stably maintained for more than 40 population
doublings, once it is established on an integrated reporter
by a short transient pulse of the corepressor KAP1 that
subsequently recruits SETDB1 and HP1 [58]. DmSETDBI1
could also be involved in epigenetic maintenance; in that
case, transient expression would suffice for long-term
repression of Chromosome 4 variegating transgenes.

The arm of Chromosome 4 is composed of a minimum of
three euchromatic domains interspersed with heterochro-
matic domains [21,38]. The variegating P elements that we
tested were inserted within the banded region, in or at the
edge of heterochromatic domains [38]. Chromosome 4
heterochromatic bands are qualitatively different from
centromeric heterochromatin, as they are H3K9 dimethy-
lated and regulated by DmSETDB1, not by SU(VAR)3-9. Two
possibilities can be envisaged for the Chromosome 4 domains
that are methylated by DmSETDBI. First, they could be
representative of equivalent bands at euchromatic arms,
which would be smaller and/or more dispersed, and therefore
would not yet have been identified functionally. Alternatively,
D. melanogaster Chromosome 4 could make use of specific
machinery dedicated to gene regulation and/or epigenetic
maintenance. The other well-known example of chromo-
some-specific regulation is the dosage compensation of sex
chromosomes [59]. In that case, DmSETDBI1 function would
depend on partners or DNA sequences specific for Chromo-
some 4, such as for instance the Chromosome 4-specific
factor POF [60,61], or the Hoppel element, also known as 1360,
which is over-represented on the D. melanogaster Chromosome
4 [62], and which could be an initiation site for hetero-
chromatin formation [21].

In conclusion we have characterized DmSETDBI as a major
nonheterochromatic H3K9 methyltransferase in Drosophila.
We also demonstrated that DmSetdbl is an essential gene and
that its loss has functional consequences on gene expression
on Chromosome 4. This work represents an important step
toward the understanding of the differential specificity and
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mode of action of distinct H3K9 HMTases and underlines a
specific mode of regulation of Chromosome 4 in Drosophila.

Materials and Methods

Drosophila lines. The 39C12, 39C72, 118E10, 118 E15, 6M193, 39C3,
and 39Cb lines contain the P[hsp26pt, hsp70-w] element and are gifts
from Sarah Elgin [21,22,40]. Heidi was described in [63]. The stocks y w
(); Pfry", 70FLPJ4 Pfu', 70I-Scel]2B Sco/S CyO and w'''%; Py,
70FLP]10 were provided by Y. Rong and K. Golic. Description of
other stocks can be found at FlyBase (http:/flybase.bio.indiana.edu).

Establishment of DmSetdb1**’~"?% transgenic lines. DmSetdb1*?'~"2%!
(CG30426) ORF was cloned by RT-PCR. 3HA- DmSetdb1??1712%1 carries
in the N terminus a 3HA epitope derived from pBSKS-3HA [64].
DmSetdb]‘}ZI_I'zm(Hl195K) point mutation was generated by PCR. All
constructs were verified by sequencing. 3HA- DmSetdb1**'="2%" was
cloned into pCaSpeR. DmSetdb1*?112 ', DmSetdbl”""%'(HlI95K),
3HA- DmSetdb1™'~"2%! and 3HA- DmSetdb1™'~"2*/(H1195K) were
cloned into pUASP vector [65]. Cloning details are available upon
request. Constructs were injected into w’'’® embryos with the
pUChsndelta2-3 plasmid at a 3:1 ratio. Transformant flies were
selected with the white marker. DmSETDB1*2'"25! yersions cloned in
the pUASP vector and located on Chromosome 3 were recombined
with the daGal4 driver located on Chromosome 3. Homozygous
DmSetdb1'*'* larvae were selected from the stock w; Setdb’'*'* /CyO
GFP, where nonfluorescent homozygous mutant larvae were selected.

Generation of DmSetdb1'®'* and DmSetdb1*™ alleles by homolo-
gous recombination. DmSetdb1'%'“ were generated as follows. Cloning
4.1-kb genomic DNA located 5’ from CG30426 as well as 3.9-kb located
3" from CG30426, (corresponding respectively to positions 95154
91021 and 88189-84215 [NCBI]), were amplified with high fidelity Taq
DNA polymerase (Roche, http:/lwww.roche.com). PCR products were
sequenced to ensure integrity of genes present in those regions. The 5’
amplified region was cloned into the NotlI site of pW25 (a gift from K.
Golic), and the 3’ region was cloned into the AscI site. The procedure
for the targeting screen was performed as described previously [35,36].
Briefly the targeting construct was injected into the w""® strain with
the pUChsndelta2-3 plasmid at a 3:1 ratio to obtain “donor” lines. A
total of four independent donor lines on Chromosomes 3 or X were
obtained. A total of 200 females of each donor line were crossed with
yw; 70FLP, 70I-Scel, Sco/CyO males. We carried out two heat shocks on
first- and second-instar larvae for one hour at 37 °C. From the
progeny, 800 mosaic females carrying the 70FLP, 70 I-Scel chromo-
some were crossed with yw homozygous males expressing 70FLP
constitutively. From the progeny, nonmosaic white;)ositive flies were
selected and further analyzed, to confirm that the »'™ marker replaced
the coding region of DmSetdbl. The reduction step eliminates the w'™
marker flanked by two loxP sites. The homologous recombinants were
crossed to the yw;CyO PfuA- 70Crel/Sco] (FlyBase) line expressing the Cre
recombinase. From the progeny, white negative flies were further
characterized, and deletion of DmSetdbl was confirmed by sequencing
the region where homologous recombination occurred.

DmSetdb I’ was generated using the following procedure. A 4.1-kb
Xba/Not DNA fragment containing sequences 5 of CG30426
(positions 95154-91021[NCBI]) with a I-Scel site inserted at position
93069 (Eagl), a 3.0-kb Xba/Eagl fragment containing CG30426
(positions 91020-88310), and a 3HA tag in at position 91020, were
cloned into the pTV2 (Notl) vector [66]. In this clone, the ORF is
conserved from CG30422 to CG30426, and the I-Crel site faces
position 88312. All PCR products were se;luenced. The targeting
screen procedure is similar to the DmSetdbl’*'* allele. The reduction
step involves a recombination that replaces the endogenous CG30426
with the 3HA-tagged CG30426 and deletes the w'™ marker. Females
recombinant/SM5 were crossed with males CyOA570-1 Cre 1A/ TM3.
Heat shocks were made on first instar larvae 30 min at 37 °C, and
variegated males were balanced with w"''®; CyO;TM3/ T2-3Ap™*
females. w/CyO flies were crossed with each other. Homozygote-
reduced recombinant flies were analyzed by PCR. The region where
the 3HA is inserted was sequenced.

Western blot analysis. Brains, salivary glands, and imaginal discs
from third instar larvae were dissected in PBS, resuspended in 50 mM
Tris (pH 7.8), 150 mM NaCl, 5 mM EDTA, 1% SDS, 1 mM PMSF, and
protease inhibitors (Complete, Roche), boiled 10 min, and cleared by
centrifugation. We separated 20-ug or 5-pg extract on 15% SDS-
PAGE, and proteins were transferred on PVDF membrane (Millipore,
http:/lwww.millipore.com) by semi-dry transfer. Membranes were
blocked in TBS, 0.1% tween, 5% non fat milk, hybridized in TBS,
0.1% tween, 1% non fat milk, with a-H3K9mel (1/1000) (a gift from
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T. Jenuwein), o-H3K9me2 (1/1000) (a gift from T. Jenuwein), o-
H3K9me3 (1/1000) (Upstate Biotechnology 07-523, http:/fwww.upsta-
te.com), o-H3 (1/5000) (Abcam 1791, http://lwww.abcam.com), o-HP1
(1/4000) (a gift from L. Wallrath), or a-a-tubulin (1/5000) (Sigma T
9026, http:/lwww.sigmaaldrich.com). Membranes were washed with
TBS, 0.1% tween, hybridized with HRP-coupled secondary antibody,
washed, and revealed by chemoluminescence. Where indicated, the
membranes were stripped and reprobed.

Northern blot analysis. Total RNA from 0-4-h and 0-18-h
embryos, third instar larvae, and male and female adults was
extracted using Trizol reagent (Invitrogen, http://[www.invitrogen.
com). We separated 20 pg RNA from each sample on 1% agarose-
formaldehyde gel, transferred to Hybond-N+ membrane (Amersham,
http://lwww.amersham.com), and UV crosslinked. Membrane was
hybridized in Rapid-Hyb buffer (Amersham) with a probe covering
nucleotides 2,399-3,789 of DmSetdbl ORF and subsequently with an
RNA-loading control probe recognizing rp49. Probes were radio-
actively 2P labeled using the Redi-prime labeling kit (Amersham) as
described by the manufacturer.

Immunostaining of polytene chromosomes. Polytene chromosomes
were performed as described previously [67]. Briefly, salivary glands
were dissected in Cohen’s buffer, fixed for 2 min in 2% formaldehyde,
2% Triton X-100, and then squashed in 2% formaldehyde, 45%
acetic acid. Slides were hybridized with the following primary
antibodies: o-HA (1/200) (Covance MMS-101R, http://www.covance.
com), o-HP1 (1/400) (a gift from L. Wallrath), a-H3K9mel (1/200) (a
gift from T. Jenuwein), a-H3K9me2 (1/100) (Upstate Biotechnology
07-441), and a-H3K9me3 (1/200) (Upstate Biotechnology 07-523).

Suppression of Position Effect Variegation in DmSetdbl mutant
context. Picture of flies at pupal stage with the following genotype
were taken: Figure 4A: w/w; DmSetdeIo'I“/+; 39CI12M4 and w/w;
DmSetdb1'*'/ DmSetdb1'%'*; 39CI12/+. Figure 4B: whw; DmSetdb1"*'/t;
39C72/4 and whv; DmSetdb1'*'/DmSetdb1'%1; 39C72/4- Figure 4C: whw;
DmSetdb1"""#+; 118E10/ and whv; DmSetdb1*'“/DmSetdb1'*'; 118E10/
+. Figure 4D: whv; DmSetdb1'*'“/; 6MI193/4+ and w/w; DmSetdb1**'%/
DmSetdb1'*'; 6M193/t. Figure 4E: who; DmSetdb 1'%/ 118E15/+ and
whw; DmSetdb1'%'/DmSetdb1'*'"; 118EI5/-. Figure 4F: who; DmSetd-
bI'1/39C3 and who; DmSetdb1'*'* 39C3/ DmSetdb1''. Figure 4G:
In()w"™ fw; DmSetdbI'*'“/4 and In()w™"fw; DmSetdb1'*'*/ DmSetd-
bI1'%1, Figure 4H: w/w; DmSetdb1**'/Heidi and whv; DmSetdb1'*'* Heidi/
DmSetdb1'"'". Figure 41: whv; DmSetdb1'"'*/39C5 and whw; DmSetdp1'*'
39C5/ DmSetdb1"*'. Lines 39C12, 39C72, 118E10, 118E15, and 6M193
[22] are on Chromosome 4, and lines 39C3, 39C5 [22], and Heidi [63]
are on Chromosome 2.
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Supporting Information

Figure S1. Structure of Polytene Chromosomes of Third Instar Larvae

Structure of polytene chromosomes of (A) wild-type, (B) DmSetdb1'%'*
homozygous mutant (DmSetdb1'*'*|DmSetdb1'*'*), and (C and D)
overexpressing DmSETDB1*21-121 (UAS-DmSetdb 1'% daGal4
homozygotes) of third instar larvae are shown. Polytene chromo-
somes were stained with orcein. “C” points at the chromocenter and
“4” at Chromosome 4. Overexpression of DmSETDB1*2'"12%! causes
loosening of the chromocenter and constrictions on the arms. The
polytene chromosomes of DmSetdb1'*1 homozygous mutant do not
present any abnormalities.

Found at doi:10.1371/journal.pgen.0030076.sg001 (1.9 MB PPT).
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