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Due to the increasing power of personal computers, as well as the availability of flexible forward-time simulation
programs like simuPOP, it is now possible to simulate the evolution of complex human diseases using a forward-time
approach. This approach is potentially more powerful than the coalescent approach since it allows simulations of more
than one disease susceptibility locus using almost arbitrary genetic and demographic models. However, the
application of such simulations has been deterred by the lack of a suitable simulation framework. For example, it is not
clear when and how to introduce disease mutants—especially those under purifying selection—to an evolving
population, and how to control the disease allele frequencies at the last generation. In this paper, we introduce a
forward-time simulation framework that allows us to generate large multi-generation populations with complex
diseases caused by unlinked disease susceptibility loci, according to specified demographic and evolutionary
properties. Unrelated individuals, small or large pedigrees can be drawn from the resulting population and provide
samples for a wide range of study designs and ascertainment methods. We demonstrate our simulation framework
using three examples that map genes associated with affection status, a quantitative trait, and the age of onset of a
hypothetical cancer, respectively. Nonadditive fitness models, population structure, and gene–gene interactions are
simulated. Case-control, sibpair, and large pedigree samples are drawn from the simulated populations and are
examined by a variety of gene-mapping methods.
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Introduction

Because of the high cost of data collection, inaccessibility
of ancestral information, and complexity of real-world
genetic effects, various kinds of computer simulations have
been used to evaluate new gene-mapping methods, test
hypotheses, and study the evolution of genetic features [1–
3]. In addition, genetic epidemiologists routinely use com-
puter-simulated datasets with known disease susceptibility
genes and affection status or trait values to evaluate and
compare statistical genetic methods. One source of such
datasets is the Genetic Analysis Workshop (http://www.
gaworkshop.org).

Two main approaches have been used for such simulations,
backward-time (coalescent) [4] and forward-time. Backward-
time simulations are sample based. Given a sample of
unknown genotype, one identifies the common ancestors of
individuals and coalesces them according to a stochastic
process characterized by evolutionary properties such as
mutation, recombination, and migration. After the most
recent common ancestor (MRCA) of all individuals is found,
the process runs forward in time and assigns genetic
information to individuals on the coalescent tree. This
method is efficient because it only concerns individuals
related to the final sample. It is also flexible in that it can
simulate recombination (through ancestral recombination
graphs [5,6]) and many mutation and migration models.
Despite difficulties in incorporating natural selection into the
coalescent theory, recent advances have allowed simulations
of selection under a coalescent framework [7–10].

Although coalescent-based methods can simulate many
neutral and non-neutral processes with simple selection
models, they cannot yet simulate realistic samples of complex

human diseases. The greatest problem is that coalescent-
based methods only simulate haplotypes (haploid sequences),
so they cannot handle diploid-specific effects such as
nonadditive selection or penetrance models. Second, if we
exclude studies that use neutral markers as disease suscept-
ibility loci (DSL), currently available coalescent methods can
only handle one DSL under constant selection pressure [10].
This limits their ability to model the evolution of complex
human diseases, which, although largely unexplored, is likely
influenced by varying selection pressure on more than one
DSL [11]. Finally, the coalescent simulations are based on a
series of approximations and equilibrium assumptions and
are supposed to work only for certain parameter ranges [12],
such as low recombination and mutation rates.
Forward-time simulations are simpler as an idea. A

forward-time simulation usually starts from an initial
population and follows its evolution generation by gener-
ation, subject to a certain number of genetic or demographic
changes. Population properties can be observed at each
generation, and samples are drawn from the last several
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generations. Because there are no theoretical constraints, this
approach can theoretically simulate arbitrarily complex
evolutionary scenarios as well as complex selection and
penetrance models. Although this method is less efficient
than the coalescent approach, the continuing increase of the
power of computers, and the availability of efficient
computer programs such as easyPOP [13] and simuPOP
[14], have made realistic forward-time simulations possible in
genetics studies [3,15–17].

The effective use of forward-time simulations in sample
generation is, however, deterred by the lack of a suitable
simulation framework. Although many simulations have been
run for different purposes, the simulation scenarios differ
greatly [3,18]. Currently, there are no definite solutions to the
following problems: (i) Simulation length and initialization.
Unlike the coalescent approach, which starts from a single
individual (MRCA), forward-time simulations usually start
from an initial population of moderate size. How to initialize
this population is a surprisingly difficult question. (ii)
Introduction of disease. In the coalescent approach, the age of
the mutant is random, because the age of the MRCA of all
affected individuals is random. This is difficult to achieve
using a forward-time approach. A more serious problem is
that newly introduced disease mutants, especially those under
purifying selection, tend to be lost quickly, and simulations
may have to be repeatedly restarted. (iii) Control of disease allele
frequency. The forward-time approach is directly affected by
genetic drift, making it difficult to control the allele
frequency at the ending generation, which makes a fair
comparison of simulated samples difficult.

In this paper, we will introduce a forward-time simulation
framework that allows us to generate large multi-generation
populations with complex diseases according to specified
demographic and evolutionary properties and allele frequen-
cies at the present generation. Arbitrary study designs,
ascertainment methods, and gene-mapping methods can be
applied to the simulated populations.

We demonstrate the use of these populations using three
examples. In the first example, we apply the Linkage test,
transmission disequilibrium test (TDT) [19], and v2-associa-

tion test to affected sibpair and case-control samples drawn
from simulated populations with different levels of popula-
tion structure. Additive fitness and penetrance models are
used. In this example, gene-mapping methods based on
different study designs are compared directly, which can
rarely be done using other simulation methods. The second
example involves a quantitative trait that is affected by three
nonadditive DSL and an environmental factor. Variance
components [20] and variance regression [21] methods are
applied to sibpair families and large pedigrees. The last
example simulates the evolution of an inheritary cancer with
individual affection status and age of onset affected by three
interacting DSL. Logistic regression and Cox proportional
hazards models [22] are used to analyze samples from two
case-control designs.

Methods

We define a population as a collection of diploid
individuals with the same genotype structure, represented
by the number of chromosomes, number of markers, their
type (e.g., SNP or microsatellite), and positions on the
chromosomes. During evolution, individuals are chosen
randomly, with probabilities that are proportional to their
relative fitness values, to mate and produce offspring that
populate the next generation. Mutation, migration, recombi-
nation, and demographic changes shape the genetic features
of a population. When subpopulations are present, mating
occurs within subpopulations, and exchange of genetic
information between subpopulations can only occur through
migration.
We assume that a genetic disease is caused by mutations at

one or several diallelic DSL. They are located on different
chromosomes and are thus unlinked. (Our algorithm cannot
yet handle linked DSL.) These loci only have wild-type alleles
until one mutant (disease allele) is introduced at each locus.
These disease mutants spread in the population during
evolution, subject to genetic drift and positive or negative
selection pressure, reaching certain allele frequencies at the
present generation. We assume that we know the exact
demographic history (the size of population and number and
sizes of subpopulations at each generation) and the selection
pressure for all genotypes. The selection pressure may vary
during evolution.
To simulate the evolution of this disease, we propose the

following simulation framework: (i) Given current disease
allele frequencies and selection and demographic models,
simulate trajectories of allele frequencies at each DSL using a
backward approach. (ii) Create an initial population and
initialize individuals randomly with several initial haplotypes.
Burn in the population subject to mutation (non-DSL
markers only) and recombination, which will be present
during the whole evolutionary process. (iii) Introduce the
disease alleles to the population by point-mutating disease
loci of different individuals. The generations when mutants
are introduced are determined by the length of allele
frequency trajectories. (iv) Evolve the population according
to the simulated allele frequency trajectories and predeter-
mined demographic features. A typical simulation scenario
will split the population into subpopulations, and evolve
them independently for a number of generations. This can be
followed by a mixing stage, during which migration is
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Author Summary

Complex diseases such as hypertension and diabetes are usually
caused by multiple disease-susceptibility genes, environment
factors, and interactions between them. Simulating populations or
samples with complex diseases is an effective approach to study the
likely genetic architecture of these diseases and to develop more
effective gene-mapping methods. Compared to traditional back-
ward-time (coalescent) methods, population-based, forward-time
simulations are more suitable for this task because they can simulate
almost arbitrary demographic and genetic features. Forward-time
simulations also allow the researcher to perform head-to-head
comparisons among gene-mapping methods based on different
study designs and ascertainment methods. Unfortunately, evolving
a population generation by generation is a random process, so the
fates of disease alleles are unpredictable and there is no effective
way to control the disease allele frequency at the present
generation. In this paper, the authors propose a simulation method
that avoids these problems and makes forward-time population
simulation a practical solution for the simulation of complex
diseases.



allowed. This process allows population differentiation to be
first built up and then attenuated. (v) Save the last several
generations as the resulting population. To facilitate sub-
sequent analyses, random mating does not have to be used
during this sample preparation stage. For example, the
number of offspring per mating event can be increased to
generate more sibpairs.

The advantage of this approach is that we control the
disease allele frequencies during evolution while allowing
random introduction of disease mutants. The following
subsections explain details of the method.

Simulating the trajectory of disease allele frequency. The
idea of trajectory simulation has been used by others [10,23]
in the context of coalescent simulations. For example, Wang
and Rannala [23] used an additive selection model and a
forward approach with a normal approximation to the
binomial selection process. This method can handle one
DSL and arbitrary demographic models. Coop and Griffiths
[10] used diffusion approximation and a backward approach
to simulate the trajectory of the allele frequency of a single
locus in a population with a constant size. Our method
extends these methods, and the method described in Slatkin
[24].

We assume that the population size at generation t is Nt.
The locus discussed is diallelic with wildtype allele A and
disease allele a. Relative fitnesses of genotypes AA, Aa, and aa
are 1, 1þ s1, and 1þ s2, respectively. s1 and s2 can assume any
value greater than�1. Allele a is called advantageous if si . 0,
and deleterious if si , 0 (i¼ 1, 2). s1 and s2 can take different
signs, as in the case of balanced selection.

Suppose that disease allele a is introduced to a population
at generation 1 and spreads according to a Wright-Fisher
model with varying population size and a selection model
described above. At generation T, the population is surveyed
and i copies of allele a are found. We are interested in
simulating the trajectory H¼fi0¼0, i1¼1, . . ., iT¼ ig, where it
is the number of copies of allele a at generation t. The length
T of the trajectory is the age of the mutant.

The dynamics of allele frequency xt can be modeled as
follows: Assume that at generation t� 1 there are it � 1 copies
of allele a. Population allele frequency is equal to xt�1 ¼ it�1

2Nt�1
.

Assume that the next generation is formed from an infinite-
sized gene pool. The expected frequency of allele a at
generation t is expressed by

xt9 ¼ xt�1
1þ s2xt�1 þ s1ð1� xt�1Þ

1þ s2x2t�1 þ 2s1xt�1ð1� xt�1Þ
ð1Þ

[24]. Therefore, the probability that there are it copies of
allele a at generation t, given population size Nt, equals

Prðitjit�1Þ ¼
2Nt

it

� �
xt9itð1� xt9Þ2Nt�it : ð2Þ

We use xt9 to denote expected allele frequency as opposed
to the real allele frequency xt ¼ it

2Nt
. The probability of

trajectory H ¼ (i0, i1, . . ., iT) equals

PrðHÞ ¼ Prði0Þ
YT
t¼1

Prðitjit�1Þ: ð3Þ

Forward- and backward-time simulations. Formulas 1 and 2
provide a way to simulate allele frequency trajectories in a

forward-time manner. One may start from a single disease
mutant and simulate allele frequencies at each generation
until generation T. The resulting trajectory will be accepted if
xT is within the designed range, or rejected otherwise.
This algorithm works in principle and is used by programs

such as GeneArtisan [23]. However, it suffers from several
major problems: (i) If T is large, the disease allele is under
strong purifying selection, or the acceptance region is too
narrow, the acceptance probability of a trajectory will be
small. Obtaining one valid trajectory may require millions of
attempts. (ii) This method assumes a fixed T, but T is usually
random. Unbiased samples of the trajectories can only be
simulated if T is chosen randomly from its distribution, which
is usually unknown. If an inappropriate T is chosen, the
simulated trajectories will be biased.
An alternative to the forward-time algorithm is a backward

approach, which was first explored by Slatkin [24] in a
monogenic disease setting. Using this approach, a trajectory
can be generated by a model that assumes i copies of allele a
at t¼T and proceeds backward in time until the allele is lost.
The generation at which the allele is lost becomes generation
0, if there is exactly one copy of allele a at generation 1. This
approach avoids the problems of the forward-time approach.
Note that the quality of a backward-time method should be
evaluated from an importance-sampling perspective [25],
because a backward algorithm may not generate the same
trajectories with the same probabilities as the forward
approach [24].
Reversible trajectories. Equation 2 is a transition proba-

bility of a Markov process. If this process is reversible, we can
simulate a trajectory starting from i alleles, going back in time
until all alleles are lost, and obtain Pr(H¼ fi0¼ 0, i1, . . ., iT¼
ig), with a probability identical to that based on the forward
approach. The reversibility properties of various cases of
Wright-Fisher processes, with or without selection and with
constant or varying population size, have been studied
extensively [24]: (i) The Moran model with selection and
mutation is reversible [26]. In the Moran model, the
probability distribution of times to loss of an allele is the
same as the distribution of allele ages. (ii) The Wright-Fisher
model in a population of constant size is not reversible.
However, because the diffusion limit of the Wright-Fisher
model, a continuous-time approximation to the discrete-time
Markov model, is the same as that for the Moran model, the
Wright-Fisher model is approximately reversible in a con-
stant population [27]. (iii) In the case of constant population
size and an additive advantage selection model, Maruyama
[28] showed that, in the diffusion limit, the distribution of
allele age is invariant to the change of sign of the selection
coefficient.
For these reversible processes, we can simulate a trajectory

by starting from current allele frequency i/2N and evolve it
randomly using xt�19 ¼ xr for case 2 and xt�19 ¼ xt � sxtð1�xtÞ

2ð1�sxtÞ (s2¼
2s1¼ s) for case 3 until the allele is lost. The sign of selection
pressure is reversed for the reversal processes.
Nonadditive alleles and variable population size. For an

allele with a nonadditive effect on fitness, the change of sign
of the selection coefficient is not equivalent with time
reversal. For variable population size, the Markov process
does not have a stationary distribution and thus is not
reversible in the usual sense. Techniques applicable in such
situations have been proposed and tested by Slatkin [24].
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The basic idea is to match the forward process as close as
possible by reversing Formula 2 with an appropriately
inverted Equation 1. This can be achieved by solving the
equation

xt ¼ xt�19
1þ s2xt�19 þ s1ð1� xt�19 Þ

1þ s2x92t�1 þ 2s1xt�19 ð1� xt�19 Þ
ð4Þ

for xt�19 , with it , xt , Nt , and Nt�1 given. Equation 4 is obtained
from Equation 1 by replacing xt� 1 (now unknown) by xt�19 and
replacing xt9 (now known) by its sample value xt. Given Nt�1
and xt�19 , we can then simulate it�1 by

Prðit�1jitÞ ¼
2Nt�1
it�1

� �
xt�19it ð1� xt�19 Þ2Nt�1�it�1 ð5Þ

This process is feasible because Equation 4 is a quadratic
equation that has a unique solution (between 0 and 1) in all
combinations of s1, s2, and xt (proof ignored).

Varying selection pressure. The distribution of it (Equa-
tions 1 and 2) concerns only the selection coefficient at
generation t � 1; thus, it also works in cases of varying
selection pressure. The backward process can also be adapted
to work for varying selection pressure. Given the selection
coefficient si,t�1 at generation t� 1 and the allele frequency xt
at generation t, the expected allele frequency at generation t
� 1 can be obtained by solving Equation 4 with s1 and s2
replaced by s1,t�1 and s2,t�1, respectively. If s1,t�1 and s2,t�1 are
not constant (e.g., depending on the allele frequency xt�1), we
can replace s1 and s2 with s1;t�1ðxt�19 Þ and s2;t�1ðxt�19 Þ. If there is
no easy solution to Equation 4 in the latter case, using s1,t�1(xt)
and s2,t�1(xt) is usually sufficient because xt values in successive
generations do not differ much, and si is usually not sensitive
to small allele frequency changes.

Figure 1 displays sample trajectories of neutral, advanta-
geous, deleterious mutants, and mutants under varying
selection pressure (Figure 1A, 1B, 1C, and 1D, respectively),
using the same exponential growth demographic model. In
the last case, alleles were advantageous 2,000 generations back
and became deleterious afterward. The three curves in each
panel correspond to trajectories with lengths that are the 5%,
50%, and 95% quantiles of the lengths of 100 simulated
trajectories. From these figures, it is evident that allele
frequencies oscillate less when population size becomes
larger. Trajectories under advantageous selection pressure
(Figure 1B) are also smoother than are those under neutral or
purifying selection (Figure 1A and 1C). This is because many
trajectories can naturally reach high allele frequency under
advantageous selection, but alleles under purifying selection
usually need to reach a higher frequency by chance to
compensate for selection and avoid extinction before they
reach the present generation.

Trajectories of DSL of polygenic diseases. If the multi-locus
selection of a polygenic disease is modeled by additive or
multiplicative multi-locus models, it is sufficient to simulate
the trajectory of each DSL independently because the
evolution of the DSL will be largely independent [17].

The problem is more complicated when disease loci
interact with each other. In these cases, the fitness value of
an individual at a DSL (X¼A) is influenced by the genotype at
other DSL (Y ¼ (B, C, . . .)). If DSL are unlinked, we can
estimate the proportions of all genotypes as the product of
single-locus genotype frequencies (P(XY) ¼ P(A)P(B)P(C) . . .).

The population average of the fitness at a DSL is then the
weighted average of the fitnesses of all genotypes. For
example,

f ðX ¼ AaÞ ¼
X
g

PðY ¼ gÞf ðX ¼ Aa;Y ¼ gÞ ð6Þ

where f(�) is the fitness value of genotypes. The trajectory of
locus X can then be simulated using the method for
frequency-dependent selection. Our simulation method
cannot yet handle cases with linked loci because P(Y) in
Equation 6 cannot be easily calculated when Y is composed of
more than one DSL.
Population structure and migration. We aim to control the

total disease allele frequencies of DSL at the present
generation. With the presence of subpopulation structure,
it is necessary to divide the total expected number of disease
alleles among subpopulations.
If disease allele frequencies in each subpopulation at the

present generation are not specified, our implementation
allows specification of two ways, even or uneven, of
distributing disease alleles among subpopulations. In the
even case, a multinomial distribution is used to distribute
disease alleles among subpopulations, with probabilities
proportional to subpopulation sizes. This distribution models
the random assignment of disease alleles to subpopulations
and results in roughly equal numbers of disease alleles among
equal-sized subpopulations. In the uneven case, assuming
there are m equal-sized subpopulations, m � 1 random
numbers between 0 and 1 are placed on (0, 1), and the
interval lengths (li) between adjacent points become the
weights at which disease alleles are distributed. This process
models a Poisson process with constraint Rm

i¼1li ¼ 1 so the
differences between li are larger than the multinomial case.
In the case of no migration, we simulate trajectories in each

subpopulation independently. Subpopulations can have
different demographic models and the subpopulation specific
trajectories are simulated in the usual way, with the
restriction that all disease mutants are introduced before a
population split. At the generation when the population
splits, simulated trajectories from each subpopulation are
combined and the process is continued in the single before-
split population.
Migration can be incorporated into this simulation frame-

work. Adjustment of disease allele frequencies is needed at
each generation according to the specified migration model.
However, this complicated process can be ignored if a
symmetric migration model is used on equal-sized subpopu-
lations with an even distribution of disease alleles because
migration will have little impact on the allele frequencies in
the subpopulations.
Demographic models and initialization. Demographic models.

Real human populations have different demographic histor-
ies. Some populations, such as the Scandinavian Saami
isolate, have an approximately constant population size.
Others have experienced recent bottleneck, are composed of
several small tribes with almost no migration, or have
undergone a rapid population expansion [29]. To study the
evolution of human diseases in different populations, differ-
ent demographic models are needed.
An example of a commonly used model [1] is an

exponential growth model in which a population starts to
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expand about 80,000 y ago from a founder population of size
N0 ¼ 104 to its current population of size N1 ¼ 106. If we
assume 20 y per generation, 80,000 y correspond to 4,000
generations. The population size function, in the unit of
generation, is then

NðtÞ ¼ 104 3 e0:00115t;

where rate r is calculated from N(4000)¼ N0 3 e4000r.
N1 in this model is not the effective population size of the

final population because of population expansion [30]. It
cannot match the census population size of the present
human population (6 3 109) or even regional populations
such as that of the United States. However, because the
effective population sizes of real human populations (at the
order of 104) are far below their census sizes because of
population structure and nonrandom mating, N1¼106 should

be able to mimic the genetic diversity of regional popula-
tions. For example, it has been shown that N1¼ 106 suffices in
the study of the evolution of allelic spectra of human diseases
[17].
Initialization. The genotype of the population when the

disease mutant is introduced has a strong impact on the final
sample, if not on the disease locus itself. For example, if
linkage disequilibrium (LD) between adjacent loci is strong
when a disease mutant is introduced, it will tend to dissipate
LD between DSL and their surrounding markers and affect
the mapping of the DSL using LD-based methods.
The coalescent approach does not have this problem.

Because the MRCA is known, all recombination events on the
coalescent tree are explicitly specified and the level of LD is
determined by the age of MRCA and the recombination rate.
The LD level at the generation when the disease mutant is
introduced is determined by time elapsed from the MRCA.

Figure 1. Examples of Simulated Trajectories

Trajectories of simulated allele frequency under different selection models. For each selection model, 100 replicates are simulated and three trajectories
corresponding to the 5%, 50%, and 95% quantiles of the trajectory length are plotted. The selection models are neutral (left top, s1 ¼ s2 ¼ 0),
advantageous (right top, s1¼0.001 and s2¼ 0.002), deleterious (left bottom, s1¼�0.001 and s2¼�0.002) and a mixed-selection model (right bottom) in
which the disease allele is advantageous before 2,000 generations ago (s1¼ 0.001 and s2¼ 0.002) and is under purifying selection in the recent 2,000
generations (s1¼�0.001 and s2¼�0.002). In all cases, the current allele frequency is 10%. The population size is

NðtÞ ¼ 104 3 expð0:000921ðt � 5; 000ÞÞ t � 5; 000
104 t , 5; 000

;

�

such that N(10,000)¼ 106. Note that one of the trajectories in the left bottom panel is longer than 20,000 generations and its allele frequency is more
than 0.5 before generation 10,000.
doi:10.1371/journal.pgen.0030047.g001
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Because the age of MRCA estimated from the coalescent
theory is often in the order of 4N, which is roughly the length
of human history (1,000,000 y) for a population of effective
population size 10,000 [31], simulating such a long period of
time seems unacceptable.

We use a small founder population and a burn-in process
to control the properties of the initial population. At the
beginning of a simulation, a small founder population is
created and is initialized with several haplotypes. The
population, with initial complete LD, will then evolve for a
few thousand generations to allow for the degeneration of LD
between markers.

The length of burn-in is determined by the nature of a
simulation. In one example, the recombination rate between
adjacent markers is 0.0005, which corresponds to roughly
50,000 base pairs. Because the LD between two markers at this
distance is usually moderate on human chromosomes [32], we
burn-in the initial population for 4,000 generations before
another 6,000 generations of evolution time. The level of LD
in the final generation is then approximately (1� 0.0005)10000

¼ 0.0067. This corresponds to r2 ¼ 0.0055 for two loci with a
minor allele frequency of 0.1, a level that is consistent with
empirical and theoretic estimates on most regions of human
chromosomes, in the absence of a substantial population
structure [32]. The burn-in length will be more important for
the simulations of denser markers, when the LD is expected
between adjacent markers and its level is controlled by the
length of evolution.

Random mating with controlled disease allele frequency.
With simulated allele frequency trajectories of the DSL, it is
necessary to develop a method to perform random mating
while controlling the disease allele frequency during evolu-
tion. The rejection sampling algorithm, in which the next
generation is regenerated if its allele frequency does not
match the simulated one, can be used in principle. However,
this algorithm is not efficient for practical use, especially
when more than one DSL is involved.

Controlled random mating has been used in the framework
of coalescence in the case of haploid populations [33,34]. The
algorithm separates generation t � 1 and t into case and
control groups and generates offspring of the case and
control groups at generation t from their counterparts at
generation t� 1.

The above works for a haploid population with one DSL
because of the independent segregation of wild-type and
disease alleles. However, it does not work for a diploid
population in which the wild-type and disease alleles
cosegregate as heterozygotes. For a diploid population, we
propose the use of an approximate algorithm. This algorithm
splits the random mating process into two stages: (i) A reject-
sampling method is applied so that only individuals with
disease alleles are accepted until we obtain enough disease
alleles to fit the simulated frequency trajectory, and (ii) only
individuals with no disease allele are accepted; they fill the
rest of the offspring generation.

Cosegregation of multiple loci because of selection against
multiple DSL complicates the problem even more. It is
difficult, and sometimes impossible, to satisfy allele frequency
requirements at all DSL. Rather than one of several more
complicated algorithms, we choose a simple extension to the
diploid algorithm. During the first stage of this algorithm, we
accept individuals that have any of the needed disease alleles

until the frequency requirements at all DSL are met. The
second stage proceeds as usual. An obvious problem with this
algorithm is that at the end of the first stage, disease alleles at
some DSL are accepted even if the allele frequency require-
ments at these DSL have been met. This will result in, on the
average, more disease alleles at all DSL. The impact of this
problem is generally negligible and is discussed in the
Discussion section (see examples in Table 1).
In forward-time simulations, one mating event can produce

more than one offspring. Because the relationship between
offspring of the same family is important for gene-mapping
methods, family structure is preserved whenever possible. In
the implementation of all the algorithms described above,
acceptances and rejections are family based. Namely, the
whole family is accepted or rejected, depending on its
contribution to the number of disease alleles.
As a summary of all the described steps, Figure 2 plots a

typical simulation, in which three DSL contribute to a
polygenic disease. Disease mutants are introduced around
5,000 generations into the past, subject to advantageous
selection pressure with fitness 1, 1.0001, or 1.0002 for
genotypes AA, Aa, or aa, respectively (where a is the disease
allele), and reach their present allele frequency 0.01, 0.02, and
0.03. The demographic model involves exponential popula-
tion growth, population split and mixing.
Examples. Unlike other simulation methods that produce

samples of certain formats, our simulation method yields
large multigeneration populations with designed disease
allele frequencies. Affection status, quantitative traits, and
other properties such as age, age of onset, and stage of disease
can be attached to individuals according to individual
genotype and environmental factors. Multiple samples of
different formats can be drawn from these populations. This
allows for analyses of the whole population and comparisons
between not only samples but also study designs and
ascertainment methods.
We demonstrate the use of such simulations using three

examples. In all examples, we use a fitness model that is
independent of individual affection status or trait values and
bypass modeling penetrance in our simulations. This is
because our simulations follow the allelic composition of a
population, which is the result of mutation, selection, and
genetic drift. The affection status or trait value is assumed to
reflect the same underlying genotype as fitness, and its impact
on the allelic composition of the next generation is
represented by fitness. For example, if individuals with
genotype AA, Aa, or aa are affected with a probability of 0,
0.2, or 0.8 and affected individuals have a probability of 0.5 to
be removed or not produce offspring, we can replace this
two-step penetrance/selection model with an equivalent
selection model that works directly on the genotype, namely
a selection model that has a fitness of 1, 0.9, or 0.6 for
genotypes AA, Aa, or aa, respectively.
Another commonly used strategy is to increase the number

of offspring per mating event during the sample-preparation
stage. For example, we change the number of offspring to two
in Examples 1 and 2. This is because the probability of getting
one full sibship is 1/N2 (N is population or subpopulation size)
using the usual random mating scheme, which makes it
impossible to sample pedigrees with multiple offspring in the
resulting population. The impact of this change is discussed
in the Discussion section.
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We use various gene-mapping methods to map DSL in the
examples. These methods are chosen for convenience and
popularity rather than their suitability for the analyzed
datasets. None of the gene-mapping methods used in
Example 1 considers the fact that all DSL have undergone
positive selection. Because the mapping results are used for
demonstration and comparison purposes, the p-values are
not adjusted for potential multiple testing problems.

Example 1: The impact of population structure on the power of gene-
mapping methods. In this example, each individual has four
chromosomes that each have 20 SNP markers. The markers
are spread evenly over all chromosomes, with 1, 2, or 3 DSL
placed at the center of the first 1, 2, or 3 chromosomes
(between markers 10 and 11). The SNP markers are mutated
using a two-allele Jukes-Cantor [35] mutation model. Note
that back mutation is allowed and has the same mutation rate
as forward mutation. This is different from the infinite-site
mutation models frequently assumed in coalescent simula-
tions.

Physical locations of markers are not explicitly specified
and are roughly determined by recombination rates between
adjacent markers. We use r ¼ 0.0005 in this example, which
corresponds to 0.05 centiMorgan (around 50,000 base pairs)
between adjacent markers and approximately 1 centiMorgan
for the whole chromosome (using Haldane’s mapping
function � 1

2 lnð1� 2hÞ, where h ¼ 19 3 0.0005). Recombina-
tion is uniform on the chromosomes, and the recombination
rate between DSL and its adjacent marker is half of the value
between markers because it is halfway between SNP 10 and
11.

An additive fitness model is used. That is, fitness at the DSL
with genotype NN, NS, or SS is 1, 1þ s/2, or 1þ s, respectively,

where s¼ 0.001 is the selection coefficient. The overall fitness
value is obtained using a multiplicative model [2,36]. The
affection status of each individual is assigned according to a
heterogeneity model [36] superimposed on an additive model
at each DSL. Namely, the penetrance at a DSL with NN, NS, or
SS is 0, d/2, or d, respectively, and the overall penetrance is
determined by

1�
Y
i

ð1� diÞ;

where di is the penetrance value at locus i. We use di¼ 0.5 for
all DSL.
Our simulations increase the initial population from N0 ¼

104 to N1 ¼ 2 3 105 in 5,000 generations, after 5,000 burn-in
generations. Disease mutants are introduced between 3,500
and 4,000 generations ago and reach disease allele frequen-
cies 0.05 at the present generation. Most simulated trajecto-
ries fall in this age range, and we exclude trajectories with
younger or older mutants to minimize differences between
simulated populations.
We simulate three demographic models: no population

structure, population structure with even distribution of
disease alleles among subpopulations, and population struc-
ture with uneven distribution of disease alleles among
subpopulations. In the latter two cases, the populations are
split into ten subpopulations at 2,000 generations ago. The
level of population differentiation is measured by FST,
calculated using the method introduced by Weir and
Cockerham [37].
We draw affected sibpair, as well as case control samples

from the present generation. The affected sibpair samples
consist of 200 families with two affected offspring and their

Figure 2. Illustration of the Evolutionary Scenario

Illustration of the evolutionary scenario of a simulation with three DSL. Demographic model (left axis): The population starts at size 10,000 and begins to
grow exponentially at generation 4,000. The population is split into five equal-sized subpopulations at generation 7,500 (with subpopulations separated
with solid lines) and reaches size 2 3 105 at generation 10,000. Migration is allowed from generation 9,500 to 10,000 (with subpopulations separated by
dashed lines). Disease allele frequencies (right axis): The DSL are under advantageous selection pressure, with fitnesses of 1, 1.0001, and 1.0002 for
genotypes AA, Aa, and aa, respectively, where a is the disease susceptibility allele. The present disease allele frequencies are 0.01, 0.02, and 0.03,
respectively. The trajectories simulated backward in time are plotted in solid lines with different colors. The trajectories obtained during forward-time
controlled random mating are plotted as dotted lines, which are indistinguishable from the simulated trajectories.
doi:10.1371/journal.pgen.0030047.g002
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parents. The case control samples consist of 400 cases and 400
controls. We assume that we cannot observe the DSL directly
so the disease loci are removed from the samples.

Two popular family-based gene-mapping methods, TDT
[19] and Linkage methods, are applied to affected sibpair
samples. The v2 association test is applied to case-control
samples. Power is calculated as the proportion of tests with a
p-value of �0.05 at markers 11 (right next to the DSL) and 16
on each chromosome with a DSL; The type-I error is
calculated as the proportion of tests with a p-value of �0.05
at marker 11 on chromosomes without DSL. We use the
single-locus TDT method in GeneHunter [38,39] for the TDT
analyses and the multi-locus nonparametric method in
Merlin [40] for the Linkage analyses. This method invokes a
procedure described by Kong and Cox [41] to allow for
adjustment for incomplete information.

Example 2: Mapping a quantitative trait using small or large
pedigrees. Individuals in this example have four chromosomes,
with three DSL located at the center of the first three
chromosomes. There are 20 SNP markers on each chromo-
some, with the same mutation model and uniform recombi-
nation rate in the first example. The recombination rate is r¼
0.005, which corresponds to chromosomes of 10 centiMorgan
in length.

Different selection models are used at each DSL. The
heterozygotes (Aa) at the first DSL are advantageous with s1¼
0.005, whereas its homozygotes (aa) are deleterious with s2 ¼
�0.001. This models a DSL with a heterozygous advantage.
The second DSL is advantageous, but only in the form of
homozygotes (s1¼ 0 and s2¼ 0.05). The third DSL is peculiar
in that its heterozygotes are deleterious and its homozygotes
are advantageous (s1 ¼�0.001 and s2 ¼ 0.1). A multiplicative
multi-locus fitness model is used. The allele frequencies of all
three DSL are 0.20 at the present population. With a

demographic model that a population of size N0 ¼ 104

increased exponentially to N1 ¼ 5 3105 in 5,000 generations
after 5,000 generations of burning-in, mutants at the three
DSL are, on average, 1,600, 3,400, and 4,000 generations old,
respectively. Note that it is difficult to simulate DSL under
purifying selection with this demographic model and such
high present disease allele frequencies.
A quantitative trait is affected by these three DSL, and its

value is determined by

Y ¼ N X1;
1
2

� �
þ N X2;

1
2

� �
þ N X3;

1
2

� �
þ N 0;

1
2

� �

where Xi is the number of mutants (0, 1, or 2) at the ith DSL
and N(a, b) is a normal distribution with mean a and standard
deviation b. In this model, all mutants have the same impact on
the quantitative trait, regardless of single-locus fitness models.
The last three generations are saved as the final population.

We draw small and large pedigrees from the final populations
and form samples of size 800. Sibpair samples consist of 200
random sibpairs and their parents. Large pedigree samples
consist of three generation pedigrees of at least eight
individuals. These pedigrees have two grandparents, parents,
spouses, and children. We apply variance components [20]
and variance regression [21] methods to these samples. Merlin
[40] and Merlin-regress [21] are used for the analyses. We
estimate power and type-I error in the same way as in the first
example, using p-values from one half a v2 distribution [21].
Example 3: Age of onset of a hypothetical cancer caused by three

interacting DSL. Examples 1 and 2 do not adequately reflect the
complexity of the evolution of complex human diseases,
which usually involves interaction between DSL. In this
example, a hypothetical cancer is caused by three DSL A, B,
and C and an environmental factor. None of the DSL are

Table 1. Theoretical versus Simulated Population Statistics

d ¼ di f1, f2, f3, f4, f5 P11 P12 P22 f 19 K KS kS

Theoretical 0.2 0.01,0.01,0.01,0.01,0.01 0.785 0.213 0.002 0.109 0.010 0.059 5.911

Simulated 0.2 0.010,0.010,0.010,0.010,0.010 0.784 0.214 0.002 0.109 0.010 0.060 6.051

Theoretical 0.8 0.01,0.01,0.01,0.01,0.01 0.787 0.211 0.002 0.107 0.039 0.229 5.808

Simulated 0.8 0.010,0.010,0.010,0.010,0.010 0.785 0.213 0.002 0.109 0.039 0.234 6.023

Theoretical 0.5 0.05,0.05,0.05,0.05,0.05 0.731 0.257 0.012 0.140 0.119 0.221 1.863

Simulated 0.5 0.050,0.050,0.050,0.050,0.050 0.725 0.263 0.012 0.143 0.116 0.237 2.049

Theoretical 0.8 0.05,0.05,0.05,0.05,0.05 0.736 0.252 0.011 0.137 0.185 0.336 1.818

Simulated 0.8 0.050,0.050,0.050,0.050,0.050 0.726 0.262 0.012 0.143 0.177 0.351 1.987

Theoretical 0.5 0.25,0.25,0.25,0.25,0.25 0.478 0.431 0.091 0.306 0.487 0.530 1.087

Simulated 0.5 0.251,0.251,0.253,0.253,0.251 0.472 0.435 0.093 0.310 0.476 0.532 1.119

Theoretical 0.2 0.5,0.5,0.5,0.5,0.5 0.210 0.500 0.290 0.540 0.410 0.423 1.032

Simulated 0.2 0.502,0.501,0.508,0.508,0.501 0.208 0.500 0.292 0.542 0.409 0.427 1.043

Theoretical 0.8 0.5,0.5,0.5,0.5,0.5 0.236 0.500 0.264 0.514 0.922 0.927 1.005

Simulated 0.8 0.501,0.501,0.508,0.508,0.501 0.232 0.500 0.268 0.518 0.911 0.918 1.008

Theoretical 0.2 0.01,0.02,0.03,0.04,0.05 0.916 0.083 0.001 0.042 0.030 0.076 2.570

Simulated 0.2 0.010,0.020,0.030,0.040,0.050 0.915 0.084 0.001 0.043 0.030 0.085 2.863

Theoretical 0.5 0.1,0.2,0.3,0.4,0.5 0.777 0.209 0.014 0.118 0.564 0.595 1.054

Simulated 0.5 0.101,0.201,0.318,0.401,0.501 0.774 0.212 0.014 0.120 0.556 0.597 1.075

Theoretical 0.8 0.01,0.02,0.1,0.2,0.3 0.969 0.030 0.000 0.015 0.427 0.520 1.218

Simulated 0.8 0.010,0.020,0.123,0.201,0.300 0.968 0.031 0.000 0.016 0.417 0.529 1.270

Expected and observed population statistics for various settings of d (penetrance, the same for all DSL) and fi (allele frequency at DSL i), I¼ 1, 2, . . ., 5. The statistics are: P11¼ Pr((N, N) at
DSL1jaffected); P12¼Pr((N, S) or (S, N) at DSL1jaffected); P22¼Pr((S, S) at DSL1jaffected); fi9 sample disease allele frequency at DSL 1; K, disease prevalence; KS¼ E(XsjXp¼ 1: the probability
of a sibling of an affected proband is affected; and kS¼ K S risk ratio for a sibling of an affected proband to be affected compared with population prevalence. The observed values are
averages of 250 replicates for each case.
doi:10.1371/journal.pgen.0030047.t001
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deleterious on their own, and they can be protective in some
cases. Cases with a higher risk of cancer occur when
homozygotes or heterozygotes of a disease allele at DSL A
are accompanied by at least one disease allele at DSL B or
DSL C. However, the wild-type homozygote on DSL A confers
a selective advantage, without regard to the genotype of DSL
B and C. The fitnesses of all genotypes at these DSL are given
in Table 2.

The genotype structure (chromosomes, markers, and
location of DSL) and the demographic model are identical
to that of Example 2, but the final population size is larger,
with N1¼106. The present allele frequencies of the three DSL
are 0.3, 0.1, and 0.05 respectively. The average ages of the
mutants are 4,700, 4,000, and 800 generations, respectively.
Unlike in Examples 1 and 2, we continue to use random
mating with one offspring per mating event in the sample
preparation stage.

We simulate the age of onset of this cancer for each
individual in the present population using a proportional
hazards model. The base hazard function is defined as h0(t)¼
0.0001t, where t is age. Corresponding to the selection model,
the individual hazard function hi(t) is proportional to the base
hazard function

hiðtÞ
h0ðtÞ

¼ expðbXþ eiÞ;

where

expðbXÞ ¼

20 X ¼ Aa or aa;Bb or bb;Cc or cc
3 X ¼ Aa or aa;Bb;CC
6 X ¼ Aa or aa; bb;CC
4 X ¼ Aa or aa;BB;Cc or cc
1 otherwise;

8>>>><
>>>>:

ð7Þ

and ei ; N(0, 1).We assign a random year of birth to
individuals so that the population age distribution is uniform
between 0 and 70 y, which roughly corresponds to the age
distribution of the population of North America [42].
Individuals with an age of onset older than their age are
considered unaffected. We do not model the survival time of
affected individuals, and all affected individuals are assumed
to be ascertainable, with a known age of onset.

Two kinds of case-control samples are sampled from the
population to detect DSL responsible for the disease or the
early onset of the disease. The first type of samples use
affected individuals as cases and unaffected individuals aged
�50 y as controls. The second type of samples use affected
individuals aged ,40 y as cases and affected individuals aged
�40 y as controls. Logistic regression and Cox proportional
hazards models [22], with different interaction terms, are

applied to the samples. We use statistical package R to
perform the analyses.
Electronic resources. The trajectory simulation algorithm

and controlled mating schemes are implemented in simuPOP
[14]. A simuPOP script simuComplexDisease.py that imple-
ments the simulation scenario is distributed with simuPOP,
under the GPL license. The number of markers and
population size is only limited by available physical RAM,
and execution time increases roughly linearly with an
increasing number of markers and population size. A
simulation such as that shown in the first example (104 initial
population size, 2 3 105 final population size, exponential
population growth, 60 markers on three chromosomes, 104

generations) requires approximately 45 min to complete on a
workstation with a 2.8G Hz Xeon processor and 2Gb of RAM.
We used PC clusters to perform all simulations. Note that a
Message Passing Interface version of simuPOP is being
developed to take advantage of multi-core and cluster
machines, and will allow faster simulations of a large number
of markers, as generated by genome-wide association studies.

Results

Validation of Simulations
Theoretical estimates for the distribution of the absorption

time of a mutant are available for some simple cases [43].
Because the trajectories of mutants that are neutral or under
additive selection pressure in a constant population are
reversible, we simulate 1,000 trajectories of such processes
backward in time, subject to varying selection pressure (�0.01
� s � 0.01), and compare the mean trajectory length with the
theoretical estimates of the fixation time of the forward-time
processes. The length of theoretical and simulated trajecto-
ries match well (Figure 3). Note that when starting allele
frequency ,0.5, deleterious mutants have longer trajectories
than neutral mutants because such mutants are advantageous
in a forward-time process and are more likely to be fixed than
extinct.
We validate the controlled random mating scheme of our

simulations using many different genetic and demographic
models. The controlled random mating processes follow
simulated trajectories of disease allele frequencies well and
reach designed disease allele frequencies. Figure 2 shows one
such simulation, where pre-simulated trajectories using a
backward approach and recorded frequency trajectories
during forward-time simulation are indistinguishable, indi-
cating perfect matches between trajectories.
A nonrandom selection of families may cause dispropor-

tionate representation of families with certain configurations
of disease alleles. For example, families with multiple disease
alleles may be favored because of their higher probabilities of
selection. Also, higher allele frequencies at the DSL tend to
yield higher than expected allele frequencies because of an
increased level of cosegregation at the end of the first stage of
controlled random mating. To determine the impact of these
potential problems on the statistics of the resulting popula-
tion, such as sibling recurrence risk ratio, the theoretical and
simulated statistics for 2,500 simulated populations (250
replicate for each case) are evaluated and listed in Table 1.
The controlled random mating algorithm works, even in cases
with high disease allele frequencies. For example, a less than
1% deviation of allele frequencies is observed for the cases

Table 2. Fitness of Genotypes for Example 3

AA Aa aa

CC Cc cc CC Cc cc CC Cc cc

BB 1 1.06 1 1.0025 0.999 0.999 1.0025 0.999 0.999

Bb 1.005 1.06 1.005 0.999 0.9 0.9 0.999 0.9 0.9

bb 1.005 1.06 1.005 0.998 0.9 0.9 0.998 0.9 0.9

doi:10.1371/journal.pgen.0030047.t002
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with five DSL with 50% disease alleles. Note that many of the
theoretical estimates in Table 1 are extensions of the two-
DSL cases in [44]. Their mathematical derivations are
presented in the supplementary data file (Dataset S1).

Example 1: The Impact of Population Structure on the
Power of Gene-Mapping Methods

The selection and penetrance models we use place equal
weight on all DSL. Because most affected individuals have
only one mutant (Table 1), these multi-locus models
effectively diversify the causal gene of a disease compared
with the corresponding single locus model.

We simulate 1,000 replicates for each of the nine cases (1, 2,
and 3 DSL, in 3 demographic models). The average FST for
populations with population structure is 0.974, with little

difference between cases with even and uneven distribution
of disease alleles at the present generation. The powers and
type-I errors of the three gene-mapping methods are listed in
Table 3.
It is evident that all methods have good power for cases

with one DSL and no population structure, but the power
decreases with an increasing number of DSL. Among three
gene-mapping methods, the Linkage method performs best.
It not only detects 100% of all DSL in the one-DSL cases, but
also maintains good power when the number of DSL
increases, and at markers further away from the DSL. For
example, the power of the Linkage method is almost
unchanged when the number of DSL increases from one to
two, while the power of TDT and association tests decreases
approximately 25%. In the meantime, the Linkage method
has the best power at marker 16 compared with the TDT and
association tests for cases with one or two DSL. The clear
advantages of the Linkage method may reflect the fact that
linkage is maintained over longer physical distances than
association, but may also be due to our choice of single-locus
TDT and association tests. In this example, we assume a
moderately dense marker map with marker 11 at about 25
kbp from the DSL. This density does not provide a high level
of linkage disequilibrium that is needed by the TDT method
to outperform the Linkage method.
The TDT and Linkage methods keep reasonable type-I

errors in all scenarios, including cases with population
structure. The type-I errors for association tests are close to
the nominal level for cases without population structure and
cases with population structure but equal disease allele
frequencies among subpopulations (the even case). For cases
with uneven disease allele frequencies, the association
method yields highly inflated type-I errors. This is a well-
known defect of association studies [45–47] and the fact that
equal disease allele frequencies among subpopulations
restore correct type-I error confirms the results that the
effects of population structure can be eliminated by carefully
matching cases and controls according to self-reported
ancestry and geographical origin [48,49].
If spurious associations are well controlled, case-control

association tests are slightly more powerful than TDT

Figure 3. Validation of Trajectory Lengths

Mean, 5%, and 95% quantile of the length of trajectories of a mutant
under different selection pressure. The mutant starts at allele frequency
0.1, evolves backward in time in a constant population with size N ¼
5,000, and is subjected to constant selection pressure with a selection
coefficient s of �0.001 to 0.001, until it is lost or fixed. The red smooth
curve represents theoretical estimates of the mean number of
generations before this mutant is lost or fixed. Note that the simulated
trajectories that are fixed or have more than one mutant at generation 1
are also accepted, in accordance with the theoretical estimates.
doi:10.1371/journal.pgen.0030047.g003

Table 3. Power and Type-I Errors of the Gene-Mapping Methods Used in Example 1

Number

of DSL

Population

Structure

TDT Test (%) Linkage Test (%) Association Test (%)

Power at

Marker 11

Power at

Marker 16

Type-I

Error

Power at

Marker 11

Power at

Marker 16

Type-I

Error

Power at

Marker 11

Power at

Marker 16

Type-I

Error

One DSL 1 Subpop 78.4 22.5 5.85 100.0 100.0 4.95 78.2 20.4 4.65

10 Even 67.6 20.5 5.39 100.0 100.0 4.49 72.0 17.0 4.68

10 Uneven 69.0 16.5 3.61 100.0 100.0 3.61 75.4 38.1 31.76

Two DSL 1 Subpop 52.0 11.8 4.90 98.1 98.0 4.61 55.5 8.6 6.30

10 Even 41.6 8.9 5.81 97.9 97.7 3.56 45.5 8.4 6.26

10 Uneven 43.6 8.8 4.30 93.8 93.7 4.17 53.6 24.2 21.18

Three DSL 1 Subpop 34.6 8.4 6.10 67.2 66.4 4.40 37.6 7.3 5.06

10 Even 26.0 6.1 5.09 66.9 66.3 5.37 31.6 8.0 6.99

10 Uneven 25.8 8.2 4.33 56.4 55.5 3.98 40.8 18.9 18.18

Power and type-I errors for TDT, Linkage, and case-control association tests for populations with one, two, or three DSL, with or without population structure, with even or uneven
distribution of disease alleles at the present generation. Markers 11, 16 refer to the first and fourth markers to the right of DSL on chromosomes with DSL, Power is calculated as the
proportion of tests with a p-value of �0.05 at these two markers, averaged over markers at the same location on chromosomes with a DSL. Type-I error is calculated as the proportion of
tests with a p-value of �0.05 at marker 11 on the chromosomes without DSL. The result for each case is based on 1,000 replicates.
doi:10.1371/journal.pgen.0030047.t003
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method. Note that this comparison is based on the same
sample size (800) but different sample types (200 affected
sibpair families versus 800 unrelated individuals).

Example 2: Mapping a Quantitative Trait Using Small or
Large Pedigrees

Table 4 lists the powers and type-I errors of variance
components [20] and variance regression [21] methods in
mapping the quantitative trait from samples consisting of
sibpair families or large pedigrees, based on 3,000 replicates.

The variance components method is more powerful than
the variance regression method for both types of samples.
Both methods have much better power in detecting DSL
associated with the quantitative trait using samples of large
pedigrees than samples of sibpair families. This indicates that
large pedigrees provide greater power per genotyped
individual than small pedigrees [50]. Further analyses can be
performed to determine the answers to other questions such
as how many large pedigrees are needed to achieve the same
power as studies using 200 sibpair families.

Both methods have similar power in detecting all three DSL,
although there is some evidence that DSL 2 is harder to map
than others. This reflects the fact that three DSL have the same
present disease allele frequencies and disease alleles at these
DSL have the same impact on the quantitative trait. If we
compare the power in detecting DSL from markers further
away than marker 11, the power at marker 16 of both methods
is similarly lower than at marker 11. This indicates that these
two methods respond similarly to the reduction of linkage
with increasing physical distance along the chromosome.

Finally, both methods have type-I errors close to a nominal
level of 0.05. It would be interesting to distort the distribution
of the quantitative trait and evaluate the impact of non-
normality (or transformation methods) on the power of both
methods because the variance components method is more
sensitive to non-normality than is the variance regression
method [21,51].

Example 3: Age of Onset of a Hypothetical Cancer Caused
by Three Interacting DSL

We simulate 2,000 replicates of the population and
simulate age of onset and year of birth for each individual.
For a typical population, the population prevalence of the
five groups of individuals, as in Equation 7, are 0.94%, 8.28%,
0.46%, 4.02%, and 86.28%, respectively, and the average age
of onset, conditioning on affection status before age 75, are
27.0, 40.9, 36.7, 39.7, and 45.7 y, respectively. The percentage

of unaffected individuals (i.e., those with age of onset .75) in
these groups are 6.3%, 43.0%, 26.9%, 35.8%, and 69.8%.
The first type of samples consists of cases with 400 affected

individuals and 400 unaffected individuals older than 50 y.
The population haplotype frequencies of the five groups of
individuals (Equation 7), among cases and controls, are (3.8%
and 0.1%), (15.2% and 6.1%), (1.2% and 0.2%), (8.6% and
2.5%), and (71.1% and 91.1%). We apply logistic regression to
regress affection status on DSL and an unrelated marker,
using Model 1: Affection ;Marker þ DSL1 þ DSL2 þ DSL3,
Model 2: Affection ; Marker þ DSL1*DSL2*DSL3, and
Model 3: Affection ; Marker þ DSL1:DSL2 þ DSL1:DSL3 þ
DSL1:DSL2:DSL3, which represent models with independent
DSL, all possible interactions, and true interaction items,
respectively. We use notations from R in which ‘‘þ’’ stands for
additivity, ‘‘:’’ for interaction, and ‘‘*’’ for all interaction
terms. We then apply Cox proportional hazards model using
similar models but with the affection status replaced by the
survival function estimated from age of onset and affection
status. Here, we consider the onset of disease as terminal
event and use age of onset as the survival time for affected
individuals, and use age as right-censored survival time for
unaffected individuals.
For the second type of samples, the cases are 800 affected

individuals with early age of onset (,40 y), and the controls
are 800 affected individuals with an age of onset �40 y. The
population haplotype frequencies of the five groups of
individuals (Equation 7), in the case and control groups,
respectively, are 6.0% and 3.2%; 16.4% and 14.9%; 1.4% and
1.2%; 10.1% and 8.2%; and 66.0% and 72.6%. We apply
logistic regression with the same set of models as the first
design.
The power and type-I error, estimated as the percentage of

replicates that yield a p-value of �0.05 for each dependent
item, are presented in Table 5. We first noticed that the type-I
errors of all the models, estimated using an unrelated marker,
are close to the nominal level 0.05, which is reassuring.
Although none of the disease alleles contributes alone to the
onset of the disease, the marginal effects can be detected
using models that assume independent DSL (Model 1). These
marginal effects are stronger than interacting effects (Model
3), although this may be because there are three genotype
states at each DSL and nine states at two interacting DSL. If
we regress on all possible interacting items (Model 2), both
marginal and interaction effects are reduced. This calls for
the use of variable selection procedures to identify significant
effects.

Table 4. Power and Type-I Error for Example 2

DSL VC (Sibs) VC (Large Pedigrees) Regression (Sibs) Regression (Large Pedigrees)

Power at

Marker 11

Power at

Marker 16

Power at

Marker 11

Power at

Marker 16

Power at

Marker 11

Power at

Marker 16

Power at

Marker 11

Power at

Marker 16

DSL1 21.8 19.3 43.2 38.7 17.6 16.4 38.5 35.3

DSL2 24.6 20.7 40.2 36.0 18.2 16.6 35.2 31.3

DSL3 23.2 20.5 43.4 38.9 19.8 18.2 37.5 35.2

Unrelated 4.8 4.4 4.4 4.5 4.4 4.6 4.8 4.6

Power and type-I errors for variance components and variance regression methods using sibpairs or large pedigrees.
doi:10.1371/journal.pgen.0030047.t004

PLoS Genetics | www.plosgenetics.org March 2007 | Volume 3 | Issue 3 | e470417

Forward-Time Simulation Framework



The use of age of onset (and age for the unaffected
individuals) and survival analyses generally increases the
power of detecting these DSL. This may be because survival
analyses make use of more information than does logistic
regression. The analyses for early age of onset show similar
patterns of significance. Because the allele frequency differ-
ences are smaller for this design, the power of all models is
lower, even with a doubled sample size.

Discussion

We propose a forward-time simulation framework to
simulate the evolution of complex human diseases and
generate large virtual populations from which various types
of samples can be drawn and analyzed. For example, we can
map genes associated with a disease using both family-based
sibpair samples and individual-based case-control samples, or
even a combination of the two, and compare the perform-
ance of different gene-mapping methods. Our approach
provides maximum flexibility at the cost of computing time,
although we believe that in a time when computing power is
getting less and less expensive, the benefits of this approach
can easily outweigh the need for faster but more specialized
sample generators (e.g., SimPed [52] or SIMLA [53]) or write
specialized simulation procedures. Another benefit of this
approach is that it allows us to study the impact of past
demographic and genetic features on the mapping of a
disease.

There are some limitations to our methods. Although the
backward trajectory simulation algorithm can handle muta-
tion, selection, subpopulation structure, migration, popula-
tion size changes, and simple gene–gene interaction, it cannot
yet simulate trajectories of linked DSL. This is because this
algorithm assumes independent allelic segregation for both
the estimation of the fitness of genotype at a single DSL
(Equation 6) and the prediction of allele frequency at the
previous generation (Equation 4). If linked DSL are to be
modeled, one can resort to the traditional forward-time
simulation method [18], in which the disease alleles are
manually brought to designed disease allele frequencies using
strong positive selection and then allowed to evolve freely
until the present generation. If the population size is large at
the end of the mutant-introduction stage, the disease allele
frequencies may not deviate too much from the designed

frequencies at the present generation. It is possible to
combine these two approaches and add free-evolving DSL
to our simulation framework. This can be the topic of further
study.
The assumption that all mutants are derived from a single

ancestral mutant can be problematic as well. For example, it
is possible that a mutant has a high mutation rate and is
subject to strong purifying selection. It may appear and
disappear in the population more than once and has a
nonnegligible impact on the evolutionary process. Because
our backward trajectory simulation algorithm always obtains
xt�19 from xt ¼ 0, our current method cannot model this
process. A related problem is that we cannot simulate
multiple mutants of different origins and multiple alleles at
the same DSL.
Although our approach can control the allele frequencies

of DSL at the present generation, it cannot control the allele
frequencies of other markers, which are maintained by
mutation and genetic drift. For a long enough simulation,
many markers will become extinct or fixed (even when
mutations can bring some of them back to life), and we have
little control over the distribution of marker allele frequen-
cies in the present generation. Simulations in our examples
have very few (,0.01%) monomorphic markers due to rapid
population expansion. These uninformative markers are
ignored if they are tested for disease association. If the
control of marker allele frequencies is important, one can
start with a population with known marker allele frequencies
and try to maintain the frequencies with rapid population
growth or short evolution time. Resampling-based methods
such as HAP-SAMPLE (F.A. Wright, H. Huang, X. Guan, K.
Gamiel, C. Jeffries, et al., unpublished data) can also be used,
although they assume no selection at the DSL.
The controlled random mating algorithm may not handle

extremely high allele frequencies well, especially in the cases of
multiple DSL. Because we accept families with disease alleles at
anyDSL that do notmeet the allele frequency requirement, two
problems may arise: (i) Disease alleles at other DSL will be
accepted, even if their expected allele frequencies have been
reached. Because high disease allele frequencies increase the
likelihood of cosegregation of disease alleles, this problem is
more pronounced in such cases. (ii) If the sum of all to-be-
reached allele frequencies is larger than 1 (e.g., five DSL with
25% disease allele frequency), it is possible that some of the

Table 5. Power and Type-I Error for Example 3

Unlinked DSL1 DSL2 DSL3 DSL1:DSL2 DSL1:DSL3 DSL2:DSL3 DSL1:DSL2:DSL3

Affection;0þ1þ2þ3 4.5 68.4 95.0 88.3

Affection;0þ1*2*3 4.9 4.9 1.3 1.7 2.2 2.8 0.4 0.8

Affection;0þ1:2þ1:3þ1:2:3 4.8 34.3 31.4 95.4

Survival;0þ1þ2þ3 5.1 88.8 99.2 97.4

Survival;0þ1*2*3 5.0 29.8 7.5 9.2 19.4 20.3 8.2 16.4

Survival;0þ1:2þ1:3þ1:2:3 4.9 30.5 19.0 98.4

Early onset;0þ1þ2þ3 5.3 19.3 49.0 52.0

Early onset;0þ1*2*3 5.0 7.9 4.5 5.2 5.3 6.0 4.7 5.5

Early onset;0þ1:2þ1:3þ1:2:3 4.8 10.9 7.5 43.1

Power and type-I errors of logistic regression of affection survival analyses using the Cox proportional hazards model on age of onset and logistic regression of early age of onset. Three
models are analyzed with an unrelated marker (0, for type-I error) and three DSL (1, 2, and 3, for power at each DSL and some interaction terms). The results are based on 2,000 replicates.
doi:10.1371/journal.pgen.0030047.t005
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allele frequency requirements cannot be met when the
offspring generation is filled.

Fortunately, the above problems rarely occur in reality. In
extreme cases (Table 1) of five DSL at 50% each, only a few
DSL of all replicates reach �51% allele frequency and there is
no noticeable distortion of population statistics.

Proper use of this simulation framework also calls for
careful selection of demographic and genetic models.
Although hypothetical diseases can be simulated and studied,
it might be more useful to simulate real diseases. In these
cases, we should collect as much information as possible,
including the demographic distribution of the disease alleles,
the demographic history of the studied population, the
possible number of DSL, past selective episodes, and the
estimated ages of the mutants.

Despite heated debates [54,55], it is widely believed that the
human population has continued to expand since the origin of
modern humans 100,000–250,000 y ago [56,57], with an
estimated initial effective population size between 700 [57]
and 10,000 [56]. The expansion of modern humans was
accompanied by migrations to other parts of the world and
mostly happened separately in subpopulations. The ‘‘out of
Africa’’ migration to Eurasia happened approximately 45,000–
55,000 y (2,000–2,500 generations) ago, although some believe
there were brief migration episodes before that [54,58]. This
migration process can be modeled by a sequential colonization
process in which a subpopulation only migrates to its adjacent
subpopulations [59,60]. After subpopulations settle down, their
sizes usually expand quickly and can largely be modeled by an
exponential population growth model, with a few exceptions.
For example, the Finland population is a good example of a
recent and quickly expanded population, and the Saami
population in northern Fenno-Scandinavia can be used to
study small populations of constant size [29].

Depending on the nature of simulations, we can choose
different demographic models to simulate the demographies
of different populations. If little is known about the
demographic feature of a disease, we can assume a general
model, which is largely the one we used in our examples. The
key parameters are an initial population size of approx-
imately 5,000, final population size �5 3 105, �4,000 burn-in
generations, and �4,000 evolution time, with the population
split occurring approximately 2,000 generations ago if
population structure is to be modeled.

A genetic model for the DSL depends on the current
disease allele frequency and the demographic model used.
From a simulation point of view, although there are
trajectories for any demographic and genetic settings, the
trajectory simulation algorithm will fail to generate an
unlikely trajectory after 1,000 attempts. For example, it is
difficult to simulate trajectories with strong purifying
selection and high present disease allele frequency without
the help of demographic features such as a bottleneck. This
problem is more severe for multiple interacting DSL because
their fitnesses are frequency dependent and can oscillate
between purifying or advantageous. As a matter of fact, all
three DSL in Example 3 can be under purifying selection, and
it is unlikely to simulate higher disease allele frequencies (e.g.,
50%, 40%, or 40%) under the fitness model presented in
Table 2.

Although known mutants for various diseases are generally
young (less than 170 generations for mutation C282Y on
human HFE allele [61,62] and many others [63]), their
abundance may be an artifact of ascertainment bias because
younger mutants are easier to map. Moreover, special
hypotheses, such as small population size caused by popula-
tion structure and the existence of population bottleneck, are
often needed to explain these young alleles. Using our
simulation framework, the high allele frequency can be
simulated by population expansion after a bottleneck [56],
by positive selection pressure of constant intensity [62,64], or
other mechanisms such as antagonistic pleiotropy (alleles
have a selective advantage before reproduction age, followed
by selective disadvantage in later life [65]), changing selection
pressure due to environmental or social changes [11], or a
heterozygote advantage. Although hitchhiking (a disease
allele tightly linked to another locus that is under positive
selection) is a possibility, our simulation framework cannot
simulate it because it involves linked DSL. Note that
demographic features are less important for younger mutants
(e.g., under strong positive selection) than older ones.
The power, and perhaps the weakness, of our method lies

in the modeling of the evolutionary history of complex
human diseases. If we assume that DSL are neutral so the
evolutionary history has little impact on the mapping of the
disease, simulating the whole evolutionary history may be
cumbersome and unnecessary. However, we believe that past
demographic and genetic features have a strong impact on
the genetic composition of the present human population,
and the modeling of the evolutionary history of complex
human diseases would help develop more powerful gene-
mapping methods. For example, one can study the impact of
age of the population admixture on the power of admixture
mapping [66], or the impact of advantageous selection, which
can cause transmission distortion [67], on the gene-mapping
methods used in Example 1.

Supporting Information

Dataset S1. Forward-Time Simulations of Human Populations with
Complex Diseases

Found at doi:10.1371/journal.pgen.0030047.sd001 (152 KB DOC).
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