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Ciliates, although single-celled organisms, contain numerous subcellular structures and pathways usually associated
with metazoans. How this cell biological complexity relates to the evolution of molecular elements is unclear, because
features in these cells have been defined mainly at the morphological level. Among these ciliate features are structures
resembling clathrin-coated, endocytic pits associated with plasma membrane invaginations called parasomal sacs. The
combination of genome-wide sequencing in Tetrahymena thermophila with tools for gene expression and replacement
has allowed us to examine this pathway in detail. Here we demonstrate that parasomal sacs are sites of clathrin-
dependent endocytosis and that AP-2 localizes to these sites. Unexpectedly, endocytosis in Tetrahymena also involves
a protein in the dynamin family, Drp1p (Dynamin-related protein 1). While phylogenetic analysis of AP subunits
indicates a primitive origin for clathrin-mediated endocytosis, similar analysis of dynamin-related proteins suggests,
strikingly, that the recruitment of dynamin-family proteins to the endocytic pathway occurred independently during
the course of the ciliate and metazoan radiations. Consistent with this, our functional analysis suggests that the precise
roles of dynamins in endocytosis, as well as the mechanisms of targeting, differ in metazoans and ciliates.
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Introduction

Endocytosis is conserved in eukaryotes, but the molecular
machinery deployed by cells to internalize plasma membrane
varies according to task, which can range from nutrient
The best understood
mechanism of endocytosis involves clathrin-induced mem-
brane deformation to form nascent vesicles (Figure 1A) [2].
Clathrin can also recruit membrane proteins for internal-

absorption to cell signaling [1].

ization, often via a multimeric adaptor protein (AP) complex,
AP-2 [3]. In metazoans, clathrin-mediated endocytosis (CME)
requires classical dynamin, a member of a family of self-
assembling GTPases. During endocytosis, the GTP-dependent
constriction of an oligomeric dynamin “collar” may induce
fission of vesicles from plasma membrane [4,5]. Additionally,
dynamin recruits effectors, including actin-binding proteins,
which could mediate aspects of vesiculation [6,7].

Processes closely resembling CME have been described in a
small number of eukaryotes outside Metazoa, but it is not
clear that any depend on proteins in the dynamin family
(dynamin-related proteins [DRPs]). In Saccharomyces cerevisiae,
endocytic vesicle formation involves some proteins associated
with CME [8,9], but no endocytic role has been discovered for
AP-2 or any DRP [10,11]. A wide survey of eukaryotes suggests
that the most conserved role for DRPs is in mitochondrial
inheritance, while other family members mediate membrane
remodeling events distinct from endocytosis [12,13]. For
example, while Trypanosoma brucei uses CME for turnover of
surface glycoproteins [14], its single DRP is dedicated to
mitochondrial fission [15]. Another eukaryote deeply diver-
gent from metazoans, the red alga Cyanidioschyzon merolae, has
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two DRPs, one acting in mitochondrial fission and the other
in chloroplast division [16,17].

Classical dynamins are composed of five domains (see Fig-
ure 1B). Three of these are found in all DRPs: a large N-
terminal GTPase domain, a middle domain, and a GTPase
effector domain (GED) [13]. The remaining two domains in
classical dynamin, pleckstrin homology (PH) and proline-rich
domain (PRD), are implicated in targeting to endocytic pits
and in the recruitment of SH3 domain-containing proteins,
respectively, which in turn regulate actin assembly at these
sites [18,19]. These observations are consistent with a recent
expansion of the role of DRPs to include CME, in an
evolutionary step involving the acquisition of PH domains
and PRDs. Classical dynamins are exclusive to Metazoa with
two known exceptions, DRP2A and DRP2B, in Arabidopsis
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Synopsis

The wings of bats and of birds are similar structures with similar
functions but nonetheless evolved independently within these two
different branches of animals. Many examples of this phenomenon,
called convergent evolution, are known at the level of whole
organisms. Here, the authors demonstrate that convergent evolu-
tion has also occurred at the level of individual cells, in a pathway
responsible for taking up membrane from the cell surface. The
authors took advantage of the recent genomic sequencing of
distantly related organisms, and in particular of the single-celled
ciliate Tetrahymena thermophila. In animal cells, one of the proteins
required for membrane uptake is called dynamin. Dynamin is not
required for this function in most nonanimal cells, but the authors
discovered that Tetrahymena is an exception and that it uses a close
relative of dynamin for particle uptake. After reconstructing the
history of dynamin proteins, the authors found that the specific role
in membrane uptake evolved independently in Tetrahymena and in
animals.

thaliana. These nearly identical genes are highly diverged from
other dynamins and may be involved in vesiculation of the
trans-Golgi network [20,21].

These observations support the view that the founding
member of the dynamin family was a DRP required for
maintenance of a mitochondrial endosymbiont [12]. Sub-
sequently, gene duplication and differentiation led to the
acquisition of new functions. We examined the large
radiation of DRPs within ciliates and found that these
proteins encompass a surprising variety of roles. In con-
junction, we performed molecular characterization of CME
in Tetrahymena, along with phylogenetic analysis of compo-
nents in this pathway. This combination provided insight into
the evolution of both endocytosis and dynamin that would
not have been evident by taking either approach alone.

Results

Coat-Mediated Endocytosis Visualized with FM1-43 in
Tetrahymena

As previously noted, electron microscopy of Tetrahymena
and Paramecium thin sections reveals structures, situated near
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Figure 1. Overview of Endocytosis

(A) Schematic diagram of clathrin-coated vesicle formation in metazoans.
AP-2 (red) serves as an adapter. It can interact with receptors destined for
internalization while also recruiting clathrin (green) to the plasma
membrane. Clathrin assembly at those sites drives or facilitates
membrane invagination. Dynamin (blue) assembles at the neck of a
nascent vesicle to promote membrane fission.

(B) Domains of classical dynamin and of DRPs.

DOI: 10.1371/journal.pgen.0010052.g001
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0 minutes

Figure 2. Visualizing Sites of Endocytosis

(A) In Tetrahymena, coated pits (cp) are found near the base of cilia, as
shown in tangential (left) and cross (right) sections. bb, ciliary basal body;
ci, cilia; cv, coated vesicle; mt, mitochondrion; dcv, dense core vesicle.
Bars =200 nm.

(B) Time course of FM1-43 dye uptake. A cell shown immediately after
treatment with 5 uM FM1-43 (0 min) shows rows of fluorescent puncta
at the cell surface. Time-lapse images (10, 14, 18, and 22 min) of a single
cell following 5-min exposure to FM1-43. At the later time points (18 and
22 min), the dye accumulates in what appear as vesicles clustered toward
the cell posterior. The brightfield image shows the cell at the end of the
time course. Bar = 10 pm.

DOI: 10.1371/journal.pgen.0010052.g002

ciliary basal bodies, that resemble coated pits in mammalian
cells (Figure 2A) [22,23]. We set out to observe the activity of
these structures in live cells. No endocytic cargo molecules in
Tetrahymena are known, but endocytic vesicles in a variety of
species have been vitally stained using the styryl dye FM1-43
[24]. To preclude FM1-43 uptake via phagocytosis at the oral
apparatus, we starved cells for 2 h prior to FM1-43 labeling, a
treatment that temporarily eliminates phagosome formation
via the regression and eventual replacement of the preexist-
ing oral apparatus [25]. Exposing such starved cultures to
FM1-43 led to the immediate appearance of fluorescent
puncta, aligned in rows, near the cell surface (Figure 2, 0 min).
This pattern recalled the known arrangement of ciliary basal
bodies (Figure 3, centrin), with their associated coated pits
(see Figure 2A). To observe the itinerary of the putative
endocytic vesicles, cultures were exposed to dye for 5 min,
and individual cells were observed over time. Ten minutes
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Chc1p-hub-GFP

Figure 3. Analysis of CHC

(A) Cartoon of CHC assembly. The location of the C-terminal hub domain
is indicated.

(B) Expression of truncated CHC (hub) inhibits endocytosis. Wild-type (DAPI-
labeled) and CHC hub-expressing cells were mixed and incubated with
FM1-43. Reduced FM1-43 uptake is detected in the hub-expressing cell.
(Q) Quantification of FM1-43 uptake. FM1-43 uptake was quantified by
analysis of 20 image pairs such as those shown in (B), as described in
Materials and Methods. The fluorescence units are arbitrary (a.u.). WT,
wild-type.

(D) Cells expressing Chclp-hub-GFP (from the MTT1 promoter) were
fixed, permeabilized, and labeled with anti-centrin antibody. The merged
image shows the close proximity of clathrin hub-GFP to basal bodies,
comparable to Figure 2.

Bar=5 pum (B and D).

DOI: 10.1371/journal.pgen.0010052.g003

after exposure to dye, the putative vesicles appeared highly
mobile throughout the cytoplasm (Figure 2, 10 min). Over the
next 20 min, they appeared to coalesce and accumulate in the
posterior of the cell (Figure 2, 14 and 18 min). At the end of
this period, the majority of puncta appeared to have
coalesced (Figure 2, 22 min and brightfield). Therefore,
kinetic analysis of FM1-43 uptake resembled the expected
pattern of an endocytic pathway originating from coated pits
observed near basal bodies and suggested the existence of a
localized endosomal compartment.

Clathrin Is Essential for FM1-43 Uptake

To determine whether FM1-43-labeled vesicles specifically
reflected CME in this system, we identified a single clathrin
heavy chain (CHC) ortholog (CHCI) in the Tetrahymena
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macronuclear genome. CHCI encodes a predicted protein
of 1,710 residues, 40% identical to bovine clathrin. In
mammalian cells, clathrin function can be blocked in a
dominant negative fashion by expressing the C-terminal third
of the protein, called the hub (see Figure 3A) [26]. We cloned
the CHCI hub, placing it under the control of the cadmium-
inducible MTTI promoter, and used this to transform
Tetrahymena [27]. Within 3 h of cadmium addition, FM1-43
uptake was blocked (Figure 3B and 3C). In the absence of
cadmium, internalization of FMI1-43 by these cells was
indistinguishable from that of wild-type. Cadmium addition
itself did not block FM1-43 uptake, in either wild-type cells or
cells in which the CHCI hub was replaced with GRLI, a
constituent of secretory granules [28] (data not shown). These
results suggest that FM1-43 selectively labels vesicles derived
by CME in Tetrahymena.

The Chclp hub, tagged with green fluorescent protein
(GFP), localized at the plasma membrane in an ordered array.
Moreover, dual labeling with an antibody against centrin
demonstrated that it was targeted near basal bodies of cilia
(Figure 3D). This is consistent with the location of coated pits
(see Figure 2A). Taken together, the data support the idea
that uptake of FM1-43 can be directly blocked by the Chclp
hub acting at coated pits.

A Family of Adaptor Proteins in Tetrahymena

Endocytosis in animal cells involves AP-2, one of a family of
heterotetrameric complexes that mediate diverse membrane
trafficking events involving clathrin in many eukaryotes
(Figure 4A) [3]. In Tetrahymena, we identified four paralogs
encoding AP medium subunits (u subunits). Phylogenetic
analysis of p subunits, including Tetrahymena, several meta-
zoans, and Arabidopsis, produced a topology in which subunits
distributed into functional groups across species (Figure 4B).
This tree supports an early diversification of p subunits,
consistent with prior analysis [29,30], and specifically suggests
an origin of adaptor-mediated functions that predates the
split between ancestors of metazoans and ciliates. Of the
Tetrahymena | subunit genes, a single paralog clustered with
the AP-2 family, while two paralogs (APMIA and APMIB)
clustered in the AP-1 family. Interestingly, this organism has
no recognizable subunits of AP-3, a complex found in a
variety of eukaryotes, while the genome does appear to
include genes for AP-4 subunits, a complex found previously
only in a subset of metazoans and plants [29]. Although not
shown, the genome contains the expected large and small AP
subunits that compose each of three heterotetrameric
complexes.

To determine if the phylogenetic classification of the
Tetrahymena subunits was consistent with their sites of action,
we cloned and GFP-tagged APMIA, APMIB, and APM2.
Apm2p-GFP localized near sites of endocytosis in a pattern
similar to that of clathrin (Figure 4C). Uniquely among the
proteins included in this study, Apm2p-GFP labeled two ring
structures in the posterior of the cell, the contractile vacuole
pores, indicating a possibly novel function for this protein.
GFP-tagged Apm1Ap and Apm1Bp both localized to internal
structures in the cell (not shown). The presence of Apm2p-
GFP at sites of CME reinforces the roles suggested by the
molecular conservation in this pathway. We did not inves-
tigate potential effects of APM2 knockdown, because the AP-
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(A) Schematic representation and cellular localization of the heterotetrameric AP complexes. Location of the p subunit is indicated. TGN, trans-Golgi

network.

(B) AP complex p subunit phylogeny. The topology illustrated is the best maximum likelihood (ML) distance for p subunits from A. thaliana (At), D.
melanogaster (Dm), H. sapiens (Hs), and T. thermophila (Tt). Both ML and maximum parsimony (MP) bootstrap support values are shown at each node.
(C) Fixed, permeabilized cells expressing GFP-tagged AP-2 p subunit (Apm2p-GFP) (from the MTTT promoter) were labeled with anti-centrin antibody. The
distribution of Apm2p-GFP is similar to that of the CHC hub (Figure 3), but the former is additionally present at the contractile vacuole pores. Bar=5 um.

DOI: 10.1371/journal.pgen.0010052.9004

2 complex appears unlikely to be required for the receptor-
independent uptake of FM1-43.

A Dynamin-Related Protein Is Required for Clathrin-
Mediated Endocytosis

DRPs have not been clearly demonstrated to participate in
endocytosis except in metazoans, but the presence of an
unusually large number of DRPs in the Tetrahymena genome
prompted us to ask if any might contribute to CME. Drplp
lacks both the PH domain and PRD of classical dynamins. The
GTPase domain of Drplp is 47% identical to human
dynamin-1, while the middle domain and GED are 30% and
27% identical to dynamin-1, respectively. When DRPI-GFP
was expressed in wild-type cells, it nearly co-localized with
centrin, consistent with the location of Chclp hub-GFP just
anterior to basal bodies (Figure 5A). Further examination of
Drplp-GFP localization by immunoelectron microscopy of
cryofixed cells confirmed a close association of Drplp-GFP
with coated pits (Figure 5B). Gold labeling appears adjacent
to the coated pits, but this may not mirror the precise
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distribution of endogenous Drplp at these sites, because
GFP-tagging itself may interfere with the activity of Drplp, as
it does for other dynamin family proteins in other systems.
To study the effect of depleting Drplp from cells, we
targeted the transcriptionally silent, germline nucleus of
Tetrahymena for disruption of DRPI. We thus obtained
heterokaryon strains, which still bore intact copies of DRPI
in the transcriptionally active macronucleus. When mated,
the progeny of these strains lose all intact copies of DRPI as a
consequence of nuclear remodeling [31]. Such progeny were
unable to divide beyond two or three generations, indicating
that the gene was essential for growth. To confirm that the
defect was due to disruption of DRPI, a strain was derived
from the ADRPI cells by rescuing the progeny of hetero-
karyon matings with full-length DRPI tagged with the HA
epitope. Southern analysis of a strain expressing DRPI-HA
confirmed the complete replacement of wild-type DRPI with
the HA-tagged allele (Figure 6). This strain expressed DRPI-
HA at wild-type levels (see Figure 6C) and grew normally.
Importantly, immunofluorescence using an antibody to the
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Drp1p-GFP

Figure 5. Localization of Drp1p

(A) Fixed, permeabilized cells expressing Drp1p-GFP (from the MTT1
promoter) were labeled with anti-centrin antibody. Like CHC and AP-2
subunit, Drp1p-GFP localizes to sites near basal bodies. Bars =5 pm.
(B) Immuno-gold visualization of Drp1p-GFP shows localization to a
coated pit (cp) near a basal body (bb). Bar =200 nm.

DOI: 10.1371/journal.pgen.0010052.g005

HA epitope confirmed the localization of Drplp to endocytic
sites (Figure 7). Co-expression of Apm2p-GFP in this strain
confirmed that Drplp and Apm2p show close, partially
overlapping localization (Figure 7). Drplp and Apm2p are
present either at adjacent zones on the same structure or on
two adjacent structures (see Discussion for further comment
on the localization of AP-2).

To test if DRPI is specifically required for endocytosis, we
rescued the progeny of ADRPI heterokaryons by trans-
forming with an intact DRPI gene that integrated adjacent to
the endogenous MTTI promoter. The resulting strain, lacking
DRPI at its native locus (labeled as DRP1-MTT1 in Figure
6B), depended on cadmium for DRPI expression (Figure 6C)
and for normal growth, consistent with the ADRPI pheno-
type. Removing these cells from cadmium for 16 h resulted in
a dramatic reduction in the uptake of FM1-43 compared to
wild-type cells (Figure 6D and 6F). Importantly, cells could be
maintained, although not dividing, without cadmium for 96 h
and then restored to normal growth by replenishing the
medium with cadmium. This indicates that the endocytosis
phenotype was not the result of a nonreversible, ill effect on
cells depleted of Drplp. Additionally, other subcellular
features such as mitochondria retained a wild-type appear-
ance in electron micrographs of cells depleted of cadmium
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for 16 h (not shown). Inhibition of FM1-43 uptake in
cadmium-depleted cells supports a specific requirement for
DRPI in CME.

Several alleles with single residue substitutions disrupt GTP
turnover and impair dynamin function, in a dominant
negative fashion, in mammalian cells [32]. These were used
to design similar alleles of DRPI, taking advantage of the
conservation of residues in the tripartite GTP-binding motifs.
Tetrahymena were very sensitive to the expression of these
alleles under the inducible MTTI promoter, even in the
absence of cadmium. We did not obtain transformants with a
Drplp-T72F construct (analogous to T65F) in multiple
attempts. However, cells expressing Drplp-K51E (analogous
to K44E) were recovered. In the presence of cadmium, this
strain was impaired for uptake of FM1-43 when compared to
wild-type cells (Figure 6E and 6F). The dominant negative
activity of this allele confirms an endocytic role of Drplp and
is consistent with its activity as a GTPase.

DRP1 Is Not Closely Related to Classical Endocytic
Dynamin

Because DRPs have not previously been clearly identified
with roles in endocytosis, we included DRPI in phylogenetic
analyses to determine if it would associate with classical
endocytic dynamins or instead with other classes of DRPs.
Phylogenetic comparisons of dynamin and DRPs have
revealed a general distribution of proteins according to
function, e.g.,, mitochondrial fission versus vesicle scission
[15,33,34]. To determine if this extended to ciliates, we
included seven additional DRPs in the Tetrahymena genome
and nine from a second available ciliate genome, that of
Paramecium tetraurelia, together with dynamin and DRPs from
other eukaryotes. We initially focused our analysis on
unambiguously aligned regions in the GTPase domain,
middle domain, and GED common to all dynamins and
DRPs. (For domain boundary definitions, see Materials and
Methods and Figure S1.) The phylogeny generally confirmed a
clustering of proteins according to function, as expected
(Figure 8). This was especially clear for the classical endocytic
dynamins in metazoans and for DRPs implicated in mito-
chondrial fission across a broad swath of species, including
some likely to play this role in ciliates. The localization of T.
thermophila Drp7p to subcortical mitochondria is consistent
with observations of mitochondrial DRP localization in yeast
and mammals, supporting its inclusion in the mitochondrial
cluster (Figure S2) [12]. In striking contrast, other DRPs from
ciliates did not partition into known functional clades but
instead appeared to associate among themselves. In partic-
ular, DRPI is more closely related to other ciliate DRPs than
it is to classical metazoan dynamins. Importantly, this
conclusion does not depend on the absence of a PRD or PH
domain in DRPI, because only universally conserved regions
of the protein were included in the analysis, nor does it
depend on any assumption about the function of the
ancestral DRP. This conclusion was also strongly supported
in a phylogeny derived by Bayesian analysis of these proteins
(Figure S3) and by both maximum likelihood and parsimony-
based phylogenies derived by comparison of the GTPase
domain, middle domain, or GED alone (not shown). This
strongly argues that Drplp specialized as an endocytic
protein after progenitors of ciliates branched from other
eukaryotes. Rather than reflecting shared ancestry, the
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(A) The DRPT locus, with strategy for NEO3 disruption and HA epitope tagging, both via homologous recombination.

(B) Southern blot of wild-type (WT) and drp1-1:neo3 lines rescued with DRP1 integrated at the MTT1 locus (DRP1-MTT1) or DRP1 tagged with HA (DRP1-HA).
(C) Northern blots of wild-type (WT) and rescued (DRP1-MTT1) lines. Analysis of DRP1-MTT1 maintained with (4) or without () cadmium for 16 h
demonstrates that transcript expression is cadmium-dependent. The expression of DRP1-HA, at the endogenous locus, is comparable to wild-type. The

band near 1 kb serves as a loading control.

(D) FM1-43 uptake depends on Drp1p. DRP1-MTTI1cells were maintained in cadmium-free medium for 16 h and mixed with wild-type (DAPI labeled) as

described in text.

(E) Impaired uptake of FM1-43 in cells expressing, from the MTT1 promoter, the K57E allele of DRP1.
(F) Quantitative comparison of FM1-43 uptake, shown in arbitrary fluorescence units (a.u.).

Bar =10 um (D and E).
DOI: 10.1371/journal.pgen.0010052.9006

similarity between the roles of Drplp and classical dynamins
is likely to have arisen via functional convergence within this
protein family.

Unique Features of DRP1-Mediated Endocytosis

Classical dynamin can recruit mediators of actin assembly
via its C-terminal PRD, and actin assembly appears to be
important for endocytosis in some, but not all, animal cells
[35]. Actin assembly also appears to be essential for
endocytosis in a variety of unicellular organisms [36,37].

@ PLoS Genetics | www.plosgenetics.org

Tetrahymena Drplp is missing the PRD but could associate
with actin via a PRD-independent mechanism [38]. We first
asked whether actin assembly was indeed required for
endocytosis in this lineage, by measuring FM1-43 uptake
following treatment with chemical inhibitors of actin
assembly. Tetrahymena treated for 30 min with cytochalasin
B (cytB; 25 uM) showed no inhibition of FM1-43 uptake
compared to wild-type cells (Figure 9A and 9B). To confirm

that this concentration of cytB blocked a bona fide actin-
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Apm2p-GFP

Figure 7. Dual Localization of Drp1p-HA and Apm2p-GFP

Cells expressing Drp1p-HA at the wild-type locus were transformed to
express Apm2p-GFP driven by the MTTT promoter. Fixed, permeabilized
cells were immunolabeled with anti-HA antibody. The merged image
(bottom) indicates that the two proteins are present in adjacent, partially
overlapping puncta. Bar =5 pm.

DOI: 10.1371/journal.pgen.0010052.g007

dependent process, we monitored uptake of ink particles via
phagosome formation. As previously reported [39], inhibition
of actin assembly by cytB blocked the release of nascent
phagosomes from the oral apparatus and prevented the
accumulation of phagosomes in the cytoplasm (Figure 9C).
Similarly, FM1-43 uptake, but not phagosome formation,
appeared normal in cells treated for 5 min with the actin
inhibitor latrunculin A (10 uM; data not shown). The results
suggest that CME in Tetrahymena is less dependent on actin
assembly than is phagocytosis.
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Localization of Drp1p Depends on a Novel Motif

If classical dynamin and Drplp are independently adapted
to roles in endocytosis, the mechanisms of targeting to
endocytic sites may be different. That the mechanisms are
different is suggested by the sequence differences between
the two proteins. The PH domain of classical dynamin binds
phosphatidylinositol-4,5-P5 at the plasma membrane, which
contributes to its localization [18,40]. At the position of the
PH domain, Tetrahymena Drplp has a short stretch of 28
residues with no recognizable motif. To ask which regions of
Drplp are important for localization, we created full-length
chimeras between DRPI and a paralog whose product showed
a different subcellular localization. An ideal partner for
chimera construction was found after GFP-tagging one of the
seven additional Tetrahymena DRPs. Drp6p-GFP localized at
the nuclear envelope in a pattern easily distinguished from
Drplp-GFP (Figure 10A and 10B). These paralogs share 50%
and 30% identity between the GTPase and middle domains,
respectively, but none between the more C-terminal domains.
Only one other dynamin (MxB, in humans) has previously
been reported at the nuclear envelope [41].

We exchanged the coding sequence for several domains
between DRPI and DRP6 to create a series of chimeras, whose
localization is shown in Figure 10C and stability is demon-
strated in Figure 10D. Neither GTPase domain altered the
localization of the remaining three domains (Figure 10D,
6111 and 1666). Exchanging the domain just C-terminal to
the middle domain, in contrast, was highly informative. We
named this domain the Drp targeting determinant (DTD). A
chimera in which a Drp6p backbone contained the DTD of
Drplp (Figure 10D, 6616) was targeted to endocytic sites.
Some of the chimera, however, was diffusely distributed in
the cytoplasm, suggesting that targeting determinants also lay
in other domains. We therefore tested chimeras in which
both the DTD and GED were exchanged. Chimeras contain-
ing the DTD and GED of Drplp strongly localized to coated
pits (Figure 10D, 6611). The Drplp GED was necessary for full
targeting, but not sufficient, because exchanging just the GED
between Drplp and Drp6p resulted in only diffuse cytoplas-
mic localization (Figure 10D, 6661 and 1116). Similarly,
although the combined DTD and GED were sufficient to
define targeting in the context of the full-length protein, a
construct consisting of just the Drplp DTD and GED, linked
to GFP, localized diffusely in the cytoplasm (Figure 10D,
xx11). This may be explained if efficient localization requires
oligomer assembly, for which at least three dynamin domains
are required [42].

Interestingly, targeting of the reciprocal chimeras (Drp6p
determinants in a Drplp context) was significantly less
efficient, and both the Drp6p DTD and GED were required
for nuclear targeting (Figure 10D, 1166).

Discussion

The molecular mechanisms underlying eukaryotic mem-
brane traffic are likely to have an ancient origin because
components of these pathways are conserved across multiple
lineages. For example, phylogenetic analysis of syntaxins, a
family of SNARE proteins involved in vesicle fusion,
supported an early origin for the functional diversification
of these paralogs, which implies a set of primitively differ-
entiated pathways in membrane traffic [43,44]. Nonetheless,
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conclusions based on phylogenetics without accompanying
functional data are limited, and potentially misleading,
because genes within families can evolve new roles in
individual lineages. The great majority of functional studies
of membrane traffic have been performed in either animal
cells or budding yeast. Because the fungal lineage diverged
relatively recently from that of animals, when compared to
many other eukaryotic lineages, the oft-cited interval “from
yeast to humans” represents a surprisingly small sampling of
the potential molecular variation among existing organisms
[45]. Fortunately, an increasing number of species are
associated with extensive genomic data and tools for gene
manipulation, allowing functional analysis of genes within
highly conserved families. We have used the combination of
tools available in Tetrahymena to analyze the molecular
machinery at endocytic structures called parasomal sacs.

Clathrin-Mediated Endocytosis in Tetrahymena

Our analysis demonstrates that parasomal sacs are sites of
clathrin-dependent membrane internalization. FM1-43 up-
take was blocked by inducible expression of a domain of
Tetrahymena clathrin, equivalent to the dominant negative hub
domain of mammalian clathrin. In animal cells, this domain
does not itself localize to coated pits [46], but the equivalent
Tetrahymena domain localized to endocytic sites, suggesting
that some mechanisms used for clathrin localization may
differ. However, clathrin recruitment in 7Tetrahymena, as in
animal cells, is likely to involve the AP-2 complex, because the
p subunit localized to the region of endocytic sites.
Phylogenetic analysis of AP complexes, from Tetrahymena to
humans, indicates that gene duplication and pathway-specific
differentiation within this family predated the divergence of
ciliates from higher eukaryotes.

Surprisingly, CME in Tetrahymena requires a DRP, Drplp,
which also localizes to endocytic sites. The function of
dynamin in endocytosis was first recognized in Drosophila
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[47], but no comparable direct role has previously been
demonstrated in any unicellular organism, nor for any DRP.
The discovery of Drplp’s role in endocytosis in Tetrahymena
therefore raises both evolutionary and mechanistic questions.

Evolution of Dynamin-Related Proteins

The most widely conserved role for DRPs is in mitochon-
drial maintenance, and a DRP with that function has
therefore been proposed as a possible founder of the
dynamin family [15]. The association with endocytosis in
metazoans may have involved subsequent gene duplication
and neofunctionalization in that lineage. The endocytic
function of Drplp in Tetrahymena raises the possibility that
endocytosis was a more ancestral function for dynamins,
which was retained in metazoans and ciliates but lost in
representatives from at least three other lineages, i.e., Fungi,
trypanosomes, and red algae. This scenario was not, however,
supported by our extensive phylogenetic analysis. Classical
metazoan dynamins associate in a clade distinct from Drplp.
This was true whether the whole proteins, or individual
domains, were compared, which argues against the idea that
clustering may reflect lineage-specific partial gene conver-
sion. Similarly, Drplp was more related to a cornucopia of
DRPs in both ciliates and Plasmodium, than to any metazoan
protein. This clustering according to lineage, rather than
according to function, suggests that dynamins independently
underwent duplication and neofunctionalization in the
Alveolates, a family including ciliates and Plasmodium. We
therefore hypothesize that the functional similarity between
classical dynamins and Drplp reflects independent innova-
tions, within the same protein family, in two distant lineages.
Many DRPs may be fundamentally similar in their mechanism
of action, namely, membrane deformation upon protein self-
assembly, so one important class of innovations may be
accounted for simply by mutation-induced changes in
subcellular targeting.
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Figure 9. Comparison of the Actin-Dependence of Endocytosis versus Phagocytosis

(A) Cells treated with cytB (25 uM, 30 min) were mixed with untreated cells and incubated with FM1-43 (5 min, no cytB). Prior to mixing, cells not
treated with cytB were incubated for 10 min with DAPI, to label the nuclei. All cells showed equivalent FM1-43 uptake.

(B) Quantitative comparison of FM1-43 uptake, in arbitrary fluorescence units (a.u.). The first set of bars represents pairs (n = 4) of cells as described in
(A). The second set of bars represents pairs (n = 20) of cells in which cytB was also included during the 5-min incubation with FM1-43, to rule out
potential reversal of inhibition during drug washout. Exposure to cytB for 5 min did not itself inhibit FM1-43 uptake. This is shown in the third set of
bars, representing pairs (n = 20) of cells incubated for 5 min in FM1-43 or FM1-43 plus cytB.

(C) Under the same conditions as (A), cytB treatment inhibited india ink uptake via phagocytosis from the oral apparatus. Treated cells show a single ink-
containing vacuole (arrow), while untreated cells (DAPI labeled) always contain several.

Bars = 10 um.
DOI: 10.1371/journal.pgen.0010052.g009

Our discovery may not represent a unique example in the
evolution of the dynamin family. Both T. thermophila Drp6p
and Homo sapiens MxB are targeted to nuclear pores, but the
functional relationship between the two proteins remains to
be investigated. Moreover, the phylogenetic relationship is
also ambiguous, because both are at the ends of long branches
in a relatively bare region of the tree where some important
branch nodes have intermediate bootstrap values. However,
the phylogeny may become more robust as more protist
genomes are sequenced. Future analysis may therefore reveal
that Drp6p and MxB were independently recruited to play
similar roles. Another potential example comes from VPSI, a
S. cerevisiae DRP involved in vacuolar protein sorting, which is
phylogenetically linked with mitochondrial DRPs (see Figure
8). However, interpreting the phylogeny of VPSI is compli-
cated because both it and mammalian DLPI, a “mitochon-
drial” DRP, also function in peroxisomal division [48-50].
Additionally, no mammalian dynamin or DRP has been
clearly demonstrated to be functionally equivalent to VPSI.
In this case, therefore, the issue of functional convergence is
unresolved.

An unresolved issue, not accounted for in the phylogenetic
analysis, is the existence of classical dynamins with PRDs and
PH domains in Arabidopsis. However, their relationship to
metazoan dynamins is currently ambiguous, because the plant
proteins are strikingly diverged in sequence, including within
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the otherwise strictly conserved catalytic GTPase motifs, and
their roles are not yet clear [21]. Another informative lineage
may be that of Dictyostelium discoideum, where disruption of a
DRP gene resulted in pleiotropic defects in organelle
morphology, cytokinesis, and endocytosis [51].

Mechanism of Dynamin Function in Endocytosis

The role of Drplp in endocytosis was also unexpected
because the Tetrahymena protein lacks two domains important
for the activity of classical dynamin. The absence of a PRD in
Drplp suggested that Drplp’s function does not depend
upon actin recruitment. While essential for endocytosis in S.
cerevisiae, actin appears to have a less critical role in animal
cells [35], although recent work suggests some role for actin at
several stages of vesicle formation [52]. In Tetrahymena, neither
cytB nor latrunculin A, at levels that completely blocked
phagocytosis, had a discernible effect upon FM1-43 internal-
ization. We note, however, that this organism appears to
encode at least four actin genes, whose sequences are highly
divergent for such an otherwise highly conserved protein
(unpublished data). Therefore, we cannot rule out that some
actin isoforms, resistant to these agents, may be involved.

Also missing in Drp1p, but present in classical dynamins, is
the PH domain. To determine how Drplp is targeted in its
absence, we characterized additional Tetrahymena DRP family
members to identify a paralog suitable for constructing
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Figure 10. Analysis of Drp1p Targeting by Chimera Analysis
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(A) Compiled stack of confocal sections through fixed cell expressing Drp6p-GFP (driven by the MTT1 promoter) shows localization at the nuclear

envelope. Bar = 10 pm.

(B) Immuno-gold visualization of Drp6p-GFP shows localization in clusters on the cytoplasmic face of the nuclear envelope (ne). Regions of
heterochromatin within the macronucleus (mac) are indicated (¥). Bar = 200 nm.

(C) Domain comparison of Drp1p and Drp6p and diagrams of Drp-GFP chimeras (expressed under the MTT1 promoter) indicating localization.
Numbered images at right show localization patterns observed in cells expressing chimeric proteins. Bar = 10 pm. nd, not detected.

(D) Western blot of total cell lysates from Drp-GFP cells confirms stability of full-length chimeras.

DOI: 10.1371/journal.pgen.0010052.g010

informative chimeras. The Tetrahymena genome contains eight
DRP genes, an unusually large number when compared to
other unicellular organisms. Similarly, the genome of Para-
mectum appears to contain nine DRP genes. The apparent
lineage-specific expansion of this gene family may reflect the
elaborate endomembrane system of ciliates [53]. To our
surprise, a GFP-tagged DRP in Tetrahymena, Drp6p, targeted
to the nuclear envelope. This distinct localization combined
with structural similarity provided us with a partner for
chimera analysis.

Analysis of a set of DRPI-DRP6 chimeras demonstrated

that localization depended on the two C-terminal domains of

the protein. The more important was the DTD, because this
domain by itself gave partial localization. Based on its
location in the primary sequence, the DTD is likely to occupy
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the same position as the PH domain in classical dynamin, also
involved in localization. The DTD shows no sequence
similarity to a PH domain, however. It is unlikely to represent
a functional PH domain diverged to the point of being
unrecognizable, because highly conserved PH domains are
easily recognized in other Tetrahymena genes (unpublished
data). These observations are consistent with the hypothesis
of independent innovation of ciliate and metazoan endocytic
dynamins but are challenging to reconcile with a model based
on shared derivation and multiple losses in other lineages.
Our results on targeting determinants are similar, but not
identical, to those from a similar domain-swapping approach
in a study of dynamin-2 and a mitochondrial DRP, DLPI, in
mammalian cells [54]. In that study, DLP1 targeting required
determinants in the C-terminal domains but also in the
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middle domain. Because the middle domain is involved in
self-assembly, this requirement suggested that localization
involves motifs whose affinity is too low, in the monomeric
state, for effective targeting. Consistent with this idea, we
found that the DTDs and GEDs of Drplp were targeted to
endocytic sites only in the context of the holo-protein.
However, and unlike DLP1, targeting was efficient even if the
middle domain came from Drp6p. One possibility is that the
chimera containing the Drp6p middle domain in a Drplp
backbone undergoes efficient self-assembly, in a way that is
not possible for the corresponding domains in DLPI and
dynamin-2. This difference in interchangeability is not,
however, supported by the sequences themselves, because
Drplp and Drpbp appear more unrelated than DLPI and
dynamin-2. A second possibility is that Drplp targeting does
not require self-assembly. This issue, as well as the mechanism
of targeting, will be clarified in future studies.

Parasomal Sacs and Ciliate Physiology

Our results suggest that CME in Tetrahymena is essential,
and future work may identify the physiological cargoes in this
pathway. The proximity of parasomal sacs to basal bodies,
and the presence of AP-2, suggests the possibility that these
sites are adapted for uptake of sensory receptors on cilia,
either for turnover or for signaling from endosomes [55].
Complete inhibition of visible FM1-43 uptake, in cells
expressing clathrin dominant negative constructs, is consis-
tent with the idea that no compensatory pathways of clathrin-
independent internalization exist at these sites or elsewhere
on the cell surface, although we cannot rule out the
possibility of dominant negative inhibition of a parallel
pathway that utilizes some common machinery.

In conclusion, our study reveals unexpected relationships,
both molecular and evolutionary, between endocytosis in
ciliates and animals. This includes the sharing of some features
that are absent in fungi, even though the fungal and animal
lineages are much more closely related than either is to ciliates
[45]. The tools available in Tetrahymena [56] should facilitate
the discovery and analysis of regulatory features of the
endocytic pathway mediated by clathrin and Drplp. Whether
convergent evolution of function has occurred within the
dynamin family, and how frequently, may be further illumi-
nated by analysis of the large family of DRPs in ciliates.

Materials and Methods

Tetrahymena strains and culture conditions. Wild-type B2086,
CU427, and CU428.1 strains of T. thermophila were provided by Peter
Bruns (Cornell University). Strain B¥VI was provided by Sally Allen
(University of Michigan). Unless stated otherwise, cells were grown at
30 °C in SPP medium (1% proteose peptone, 0.2% dextrose, 0.1%
yeast extract, 0.009% ferric EDTA). For conjugation, cells of different
mating types growing in log-phase were washed, starved (16-20 h at
30 °C), and mixed in DMC, a one-tenth dilution of Dryl’s (1.7 mM
sodium citrate, 1 mM NaHyPO,4, 1 mM NayHPO, 1.5 mM CaCly)
supplemented with an additional 0.1 mM MgCls and 0.5 mM CaCls.

CHC hub, AP p subunits, and dynamin-related genes. A single,
CHC homolog (CHC1) was identified from whole genome sequence of
Tetrahymena macronuclear DNA (preliminary sequence data were
obtained from The Institute for Genomic Research Web site at http://
www.tigr.org). Using primers designed from genomic sequence, the 3’
portion of the gene encoding the hub fragment was amplified by PCR
using a ¢DNA library from growing Tetrahymena [57]. AP-1 p subunit
(APMI1A), AP-2 p subunit (APM2), and a dynamin-related (DRPI)
homolog were identified from ESTs (unpublished data) and full-
length clones were amplified by PCR. An additional AP-1 p subunit
gene (APMI1B), a putative AP-4 p subunit homolog (APM4), and seven

@ PLoS Genetics | www.plosgenetics.org

Dynamin-Dependent Endocytosis in Tetrahymena

additional DRP genes (DRP2 through DRPS) were identified from
genome sequence. Full-length DRP6 was amplified from genomic
DNA. All PCRs were performed with Pfu-Ultra Taq polymerase
(Stratagene, La Jolla, California, United States). Products were cloned
into pCRII (Invitrogen, Carlsbad, California, United States) and
sequenced to confirm accuracy.

Phylogenetic analysis. Dynamin domains were defined using the
NCBI Conserved Domains database (http://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml) and were aligned using ClustalW (http:/
www.ebi.ac.uk/clustalw/), as were AP p subunit sequences. Unambig-
uously aligned regions of sequence were identified by eye and used
for analysis. Protein maximum likelihood analysis was done using
PROML (Phylip 3.6; Joe Felsenstein, University of Washington). The
topology shown is the best tree generated by PROML. Bootstrapping
analysis by maximum likelihood and maximum parsimony using
PROTPARS was performed with 100 datasets. All alignments are
available upon request.

Construction of DRPI germline knockout strains. The neo3 cassette
[27] was ligated into a genomic clone of DRPI at EcoRI sites to
generate the drpl:neo3 construct (see Figure HA). B2086 and CU428
cells were mixed for 2.5 h and transformed with linearized drpl:meo3
by biolistic particle bombardment to target DRPI in the micronucleus
by homologous recombination. Knockout heterokaryon strains with
disrupted DRPI in the micronucleus and wild-type copies of DRPI in
the somatic macronucleus were isolated as described [58]. Subsequent
matings of the germline knockout strains resulted in drug-resistant
progeny with disrupted DRPI in both nuclei.

Construction and expression of transgenes. Two constructs were
designed to rescue the progeny of DRPI germline knockout matings.
A DRPI-HA construct was built by ligating the HA epitope sequence
into Pmel and Xhol sites upstream of a modified DRPI genomic
clone. The DRPI-MTTI construct was built by replacing the MTT1I
gene with a cDNA clone of DRPI in a plasmid containing the MTT1
locus [27]. Knockout heterokaryons were mixed for 24 h and
transformed with these linearized constructs by biolistic bombard-
ment. Drug-resistant clones were recovered and, in the case of the
DRPI-MTTI-expressing cells, maintained in 1 pg/ml cadmium. An
additional strain was derived from the DRPI-HA line, by trans-
forming it biolistically with the APM2-GFP fusion. For this trans-
formation, the APM2-GFP fusion was engineered into a vector (nCV-
B) that permits selection with Blasticidin (60 pg/ml) [59].

Other monomeric eGFP (GFP) fusions and dominant negative
DRPI alleles resided in a modified version of the rDNA expression
vector pVGF (Meng-Chao Yao, FHCRC, Seattle, Washington, United
States). Genes were inserted downstream of the inducible MTTI
promoter and GFP with a ligation into Xhol and Apal sites. APMIA,
APMI1B, APM2, DRPI, DRP6, and the hub portion of CHCI were each
amplified by PCR with flanking Xhol and Apal sites. Chimeras
between DRPI and DRP6 were assembled by an overlap PCR strategy
[60] with domain borders defined by the NCBI Conserved Domains
database and refined by eye to match between DRPI and DRP6. The
dominant negative alleles DRPI-K51E and DRPI-T72F were gener-
ated by site-directed mutagenesis PCR (Stratagene) and ligated into
pVGF via Pmel and Apal sites that excluded GFP from the constructs.
B2086 and CU428 cells were mixed for 10 h and transformed with
plasmid by electroporation [61]. To bring transgenes into expression,
cells were treated with 1 ug/ml cadmium for 12 to 16 h, unless
otherwise noted. A complete description of the strains used in this
study is found in Table S1.

Uptake assays. All assays were performed with log-phase growing
cells starved for 2 h in DMC. Cells were treated with 5 pM FM1-43
(Molecular Probes, Eugene, Oregon, United States) and placed under
coverslips for immediate viewing. For time-course assays, cells were
treated with FM1-43 for 5 min, washed three times in DMC, and
immobilized using a rotocompressor (made by Warren Ringlien,
Carleton College, Northfield, Minnesota, United States) for observa-
tion over a time course.

FM1-43 uptake comparisons between strains were performed by
treating CU428 with 200 ng/ml DAPI in DMC for 5 min. Cells were
washed and mixed with an equal number of cells expressing either the
CHCI hub fragment or the K51E allele of DRPI after 3 h in 1 ug/ml
cadmium. The same mixing protocol was used for cells treated with
25 uM cytB for 30 min or 10 uM latrunculin A for 5 min, or DRPI-
MTTI cells maintained without cadmium for 16 h. All cell mixtures
were treated with 10 pM FM1-43 for 5 min, washed three times, and
photographed after 10 min. For experiments with cytB, the drug was
also included during the FM1-43 incubation in some trials.

To quantify uptake, 20 representative images per experiment were
analyzed on a Macintosh computer using NIH Image 1.63 (http://rsb.
info.nih.gov/nih-image/). The images chosen were those in which both
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a control cell and an experimental cell were captured in a single
frame. Mean density measurements from each set of cells were
averaged for comparison. To assess phagocytic uptake in cytB-treated
cells, 0.1% India ink was substituted for FM1-43.

Immunocytochemistry and fluorescence microscopy. Cells were
fixed and prepared as described previously [62] but with incubations
performed at room temperature. Basal bodies were visualized using a
1:1,000 dilution of monoclonal antibody 20H5, recognizing centrin
(provided by Jeff Salisbury, Mayo Clinic, Rochester, Minnesota, United
States), followed by 1% (vlv) Texas red-conjugated goat anti-mouse
antibody (Jackson ImmunoResearch, West Grove, Pennsylvania,
United States). Similarly, Drplp-HA was visualized using a 1:1,000
dilution of monoclonal HA.11 (Covance, Princeton, New Jersey,
United States). For two-color labeling, GFP fluorescence was enhanced
by including 0.5% (v/v) rabbit anti-GFP primary antibodies (Molecular
Probes), followed by 1% (v/v) fluorescein-conjugated anti-rabbit
antibody (Jackson ImmunoResearch). This also guaranteed detection
of the entire pool of GFP-labeled protein. Samples were viewed under
a Zeiss (Thornwood, New York, United States) Axiovert microscope
interfaced with a Zeiss LSM 510 confocal laser system and software.
Endocytic uptake assays were observed using a Zeiss Axioplan 2
microscope interfaced with a Zeiss Axiocam and Axiovision software.

Cryofixation and immunoelectron microscopy. Cells were grown in
SPP with 150 mM mannitol and 2 pg/ml CdCly. After cells were
collected via centrifugation, they were washed with SPP and
mannitol, and a few microliters of the cell pellet/slurry were
transferred to an aluminum planchette (Type A) with a 100-um-deep
well (engineering office of M. Wohlwend, Senwald, Switzerland) and
sandwiched with the flat side of a Type B aluminum planchette,
coated with hexadecene [63]. Cells were cryofixed in a BAL-TEC
(Balzers, Switzerland) HPM-010 high-pressure freezer and then
freeze-substituted in 0.25% glutaraldehyde and 0.1% uranyl acetate
in acetone. Embedding was as described by Giddings [63] except that
isopropyl alcohol was used in place of methanol to maintain the
sample at —45 °C for polymerization of the HM20.

Embedded cells were serially sectioned (50-60 nm) and put on
formvar-coated nickel grids. Some sections were immunolabeled with
a polyclonal anti-GFP antibody diluted 1:200 in a blocking solution of
1% nonfat dry milk in PBST and 15 nm of colloidal gold-conjugated
secondary antibodies (Ted Pella, Redding, California, United States).
Samples were stained with 2% uranyl acetate in 70% methanol/30%
water for 5 min and lead citrate for 4 min. The sections were viewed
on a Philips (Eindhoven, Netherlands) CM10 electron microscope
operating at 80 kV. Images were captured with a Gatan (Pleasanton,
California, United States) digital camera and viewed with the Digital
Micrograph Software package (Gatan).

Blotting. For Southern analysis, genomic DNA was prepared from
CU428-, DRPI-MTTI-, and DRPI-HA-expressing cells and detected
with a probe corresponding to the 5" EcoRI restriction fragment of
DRPI. Northern blotting of total RNA extracted from CU428- and
DRPI-MTTI-expressing cells maintained with and without cadmium,
and DRPI-HA- expressing cells was performed following standard
techniques [64] using a DRPI riboprobe. A cross-reactive band near 1
kb serves as a loading control. For Western analysis, whole-cell lysates
were prepared as described previously [62]. GFP-tagged chimeras of
Drplp and Drp6p were detected using 0.125% (v/v) rabbit anti-GFP
primary antibodies (Molecular Probes), followed by 0.1% (viv) AP-
conjugated anti-rabbit antibody (Jackson ImmunoResearch).

Supporting Information

Figure S1. Alignment of DRPs from Tetrahymena with Dynamin-1 (H.
sapiens)

The peptide sequence alignment was generated using ClustalX and
highlights residues that are completely conserved (¥), strongly
conserved (:), and weakly conserved (.). The color coding indicates
which residues are small/hydrophobic (blue), acidic (purple), basic
(red), hydroxyl/amine (green), glycines (brown), and prolines (yellow).
Also indicated are domain boundaries defined using the NCBI
Conserved Domains database, the strictly conserved catalytic motifs
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in the GTPase domain, and the residues where substitutions
generated dominant negative alleles of DRPI (arrowheads).

Found at DOIL: 10.1371/journal.pgen.0010052.sg001 (1.4 MB DOC).

Figure S2. Expression of DRP4-GFP and DRP7-GFP

(A) Confocal sections of a live cell expressing DRP7-GFP (under the
MTTI1 promoter) are shown at the cortex, i.e., just beneath the cell
surface (left), and at the middle of the cell (middle). Most GFP signal is
at the cortex.

(B) A confocal section from the middle of a live cell expressing DRP4-
GFP (under the MTTI promoter) showing that punctate GFP
fluorescence is distributed throughout the cytoplasm (right). Bar=5um.
(C) DRP7-GFP-expressing cells were incubated for 60 min in 50 nM
MitoTracker Red CMXRos (Molecular Probes). Shown is a cortical
confocal section of a living cell, revealing association of Drp7p-GFP
with mitochondria. Bars =5 pm.

Found at DOIL 10.1371/journal.pgen.0010052.sg002 (2.3 MB EPS).

Figure S3. Phylogenetic Tree of Dynamin and DRPs from a Bayesian
Approach

The alignment used for maximum likelihood and maximum
parsimony analysis in Figure 6 was subjected to Bayesian-based tree
construction using MrBayes v3.0 [65]. After the burn-in phase, every
100th sample of 1 X 10° generations was considered. The resulting
50% majority rule consensus tree is shown with percent posterior
probabilities indicated at each node.

Found at DOT: 10.1371/journal.pgen.0010052.sg003 (168 KB EPS).

Table S1. Strains Used in This Study
Found at DOL 10.1371/journal.pgen.0010052.5t001 (32 KB DOC).

Accession Numbers

The Tetrahymena and Paramecium genes discussed in this paper have
been submitted to GenBank (http://www.ncbinlm.nih.gov/Genbank/)
under the following accession numbers: Tetrahymena APMIA
(DQ219841), APM1B (DQ219842), APM2 (DQ219843), CHC1__hub
(DQ219844), DRP1 (DQ219845), DRP4 (DQ219846), DRP6
(DQ219847), and DRP7 (DQ219848); and Paramecium DRPAI1
(CR856028), DRPA2 (CR856027), DRPB1 (CR856026), DRPB2
(CR856025), DRPC1 (CR856024), DRPC2 (CR856023), DRPD
(CR856022), DRPE (CR856021), and DRPF (CR856020).
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