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New advances in medicine often raise

challenges, and none more so than those

involving the manipulation of human

oocytes and embryos. Issues around clin-

ical need and ethical considerations must

be taken into account, as well as the safety

of the proposed technique. The discussion

around the proposed mitochondrial re-

placement techniques to prevent the

transmission of mitochondrial DNA dis-

ease has perhaps raised more challenges

than most [1].

Mitochondrial DNA diseases are both

common and, in their severest forms,

devastating [2]. There are limited treat-

ments available for these patients, and

those that are successful are focused on

treating complications such as epilepsy

and cardiac disease [3]. Mitochondrial

DNA diseases are transmitted maternally,

and for families carrying these mutations,

a major, and justifiable, desire is to have

unaffected children. For some women,

preimplantation or prenatal diagnosis

may be helpful [4,5], but for other women,

these techniques will not result in disease-

free offspring and the only options avail-

able are either oocyte donation or mito-

chondrial replacement at the oocyte or

zygote stage. The need for this technique

for these families is well established, as are

the experimental methods that are re-

quired for mitochondrial replacement [6–

8]. The major scientific concerns for those

of us working in the field revolve around

safety and efficacy.

In the United Kingdom, the Human

Fertilisation and Embryology Authority

(HFEA) recently considered the safety

issues after extensive expert and public

consultation [9]. This independent group of

scientists reviewed all the evidence and

concluded that mitochondrial replacement

techniques have the potential to be used for

patients with mitochondrial DNA disease,

although further experiments are required

before introduction into clinical practice, to

provide further reassurance with respect to

efficiency and safety. Recently [10], it has

been suggested that the possibility of a

harmful interaction between the mitochon-

drial and nuclear genomes has not been

given due weight. Should we therefore stop

further clinical developments in this area

with immediate effect?

The authors raise an interesting evolu-

tionary argument that the human mito-

chondrial genome co-evolves with the

nuclear genome in females, raising the

possibility of a conflict with the paternal

nuclear genome. They suggest Leber’s

hereditary optic neuropathy (LHON) and

male infertility could be potential exam-

ples of this in humans [10]. Firstly, LHON

is not a male-limited disease as they

suggest [11]. The disorder affects ,10%

of women carrying specific mtDNA mu-

tations, and although there is increased

penetrance in males, strenuous efforts

have failed to identify a nuclear modifier

gene to date, and the increased penetrance

in men could simply reflect the absence of

oestrogens [12]. As regards male infertility,

there is no convincing evidence in man

that inherited variants of mtDNA are at all

relevant in the general population [13,14].

Indeed it is interesting that even in male

patients with pathogenic mitochondrial

DNA mutations, such as LHON, reduced

fertility has not been reported to be a

major clinical feature.

The studies in macaques are also highly

relevant to the risks proposed in humans

associated with mitochondrial replace-

ment. There are now multiple reports of

the health status of the offspring born after

mitochondrial replacement, and all have

shown no difference between these off-

spring and controls [6,7,15]. As highlight-

ed in the reports, the macaques used for

these experiments were not, as suggested

by the authors of the recent commentary

[10], highly genetically related, but some

were from divergent subspecies with

extensive differences in the rhesus ma-

caque genome [6]. Thus, the experiments

using the animal model closest to man

have not shown any adverse effects from

mitochondrial transfer.

Some studies in laboratory mice have

proposed a nuclear DNA–mitochondrial

DNA interaction, but there are others

that have reported no defect despite the

use of very divergent genomes [16–18]. It

is important to recognise that these

studies, and those in invertebrates, have

been performed on highly inbred species

(often inbred over thousands of genera-

tions) and the relevance to human

populations must be questioned. Most

human populations are outbred with
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considerable mixing of the genome over

recent generations. In these populations

the mixing of alleles will inevitably dilute

the effect of potentially harmful nuclear

DNA-mitochondrial DNA interactions.

There has never been any direct evidence

of a ‘‘mismatch’’ between the two in

humans—either on an evolutionary scale

or in the context of disease. This is even

the case for couples from divergent

haplogroups, where potential nuclear-

mitochondrial mismatches are at their

most extreme. Thus, from the mitochon-

drial DNA perspective, any mitochondrial

transfer experiment is just recapitulating

what is happening every day all around

the world—and without any known

adverse effects.

Whilst we accept that any new tech-

nique is associated with risk, we think

the lack of any reliable evidence of

mitochondrial-nuclear interaction as a

cause of disease in human outbred popu-

lations provides the necessary reassurance

to proceed. The recent studies in ma-

caques after mitochondrial replacement

are also supportive that the possible

harmful interactions are unlikely to occur

in man [6,7]. Human preimplantation

embryos and embryonic stem cells gener-

ated with ‘‘unmatched’’ mtDNA replace-

ment demonstrated normal development

and differentiation potential [7,8]. As

suggested by the HFEA [9], it is possible

to match mitochondrial haplotype be-

tween the mother and the mitochondrial

donor to avoid any concern, even though

the evidence says it should not be needed.

We do not believe this important devel-

opment should be delayed—for families

carrying mtDNA mutations, the clock is

ticking, and the desire to have children

free of mitochondrial DNA disease is

entirely justified. Ultimately, we believe

those that carry mitochondrial DNA

mutations must be fully informed of the

potential risks, and that they will decide

which option to take.
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