The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose Response

Cole Johnson¹, Hye Kyong Kweon², Daniel Sheidy¹, Christian A. Shively¹, Dattatreya Mellacheruvu³,⁴, Alexey I. Nesvizhskii³,⁴, Philip C. Andrews²,⁴,⁵, Anuj Kumar¹*

¹Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America, ²Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, ³Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, ⁴Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, ⁵Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America

Abstract

The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

Editor: Scott Erdman, Syracuse, United States of America

Received August 12, 2013; Accepted January 4, 2014; Published March 6, 2014

Copyright: © 2014 Johnson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants 1R01-A1098450-01A1 from the National Institutes of Health and 1-FY11-403 from the March of Dimes (to AK), grant P41-RR18627 from the National Institutes of Health National Research for Proteomics and Pathways (to PCA), and grant R01-GM094231 from the National Institutes of Health (to AIN). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anujk@umich.edu

Introduction

Multiple fungal species exhibit complex morphological changes in response to environmental conditions, generating multicellular forms or structures critical to the respective life cycles of these organisms [1–3]. These morphological transitions have been linked to virulence in several human and plant fungal pathogens, including Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and Ustilago maydis [4–6]. In particular, several lines of study have established that the formation of hyphal filaments is required for virulence in the opportunistic human fungal pathogen C. albicans [7–10]. The budding yeast Saccharomyces cerevisiae also exhibits a morphogenetic transition from its typical form to a filamentous state [11], and the study of this dimorphism in S. cerevisiae has contributed considerably to our understanding of important cell signaling mechanisms, while also providing insight into the molecular basis of fungal pathogenicity [5].

The morphological transition in S. cerevisiae is pronounced: yeast cells undergoing pseudohyphal growth are elongated and remain connected after cytokinesis, forming multicellular chains, or filaments [11–15]. These filaments of connected cells can spread out along the surface of a solid growth substrate as well as invade the substrate [11] and are referred to as pseudohyphae, since they resemble the hyphae of other fungal species but lack the structure of a true hyphal tube [16]. Strains of S. cerevisiae competent to undergo pseudohyphal growth (e.g., the Σ1278b strain used here) initiate this transition in response to conditions of nitrogen limitation and/or glucose limitation [11,17,18]. Consequently, pseudohyphal growth is considered to be an adaptive mechanism, enabling non-motile yeast cells to forage for nutrients when local resources become limited [19]. The morphological changes associated with pseudohyphal growth are driven by a host of altered developmental processes, including a delay in the G2/M cell-cycle transition that produces the elongated cell morphology [20–22], a switch to a unipolar budding pattern [11,20], and increased cell-cell adhesion [11].

At least 700 single gene deletions in the filamentous Σ1278b strain of S. cerevisiae result in pseudohyphal growth phenotypes
Author Summary

Eukaryotic cells respond to nutritional and environmental stress through complex regulatory programs controlling cell metabolism, growth, and morphology. In the budding yeast *Saccharomyces cerevisiae*, conditions of limited nitrogen and/or glucose can initiate a dramatic growth transition wherein the yeast cells form extended multicellular filaments resembling the true hyphal tubes of filamentous fungi. The formation of these pseudohyphal filaments is governed by core regulatory pathways that have been studied for decades; however, the mechanism by which these signaling systems are integrated is less well understood. We find that the protein kinase Sks1p contributes to the integration of signals for nitrogen and/or glucose limitation, resulting in pseudohyphal growth. We implemented a mass spectrometry-based approach to profile phosphorylation events across the proteome dependent upon Sks1p kinase activity, and identified phosphorylation sites important for mitochondrial function and pseudohyphal growth. Our studies place Sks1p in the regulatory context of a well-known pseudohyphal growth signaling pathway. We further find that SKS1 is conserved and required for stress-responsive colony morphology in the principal opportunistic human fungal pathogen *Candida albicans*. Thus, Sks1p is part of the mechanism integrating glucose-responsive cell signaling and pseudohyphal growth, and its function is required for colony morphology linked with virulence in *C. albicans*.

[23,24], and classic studies have established three well-studied signaling pathways as regulators of pseudohyphal differentiation: the mitogen-activated protein kinase (MAPK) pathway, the cAMP-dependent protein kinase A (PKA) pathway, and the sucrose non-fermentable (SNF) pathway. The yeast pseudohyphal growth MAPK pathway consists of the MAPKKK Ste11p, the MAPKK Ste7p, and the MAPK Kss1p [12,13,25–27]. Ste11p is phosphorylated by the p21-activated kinase Ste20p [28], and Kss1p phosphorylates the key heterodimeric transcription factor FLO11 through phosphorylation of T210 in Snf1p [42,43]. Glucose limitation activates the heterotrimeric Snf1p kinase transcription principally through the Ras/PKA pathway [41], and induced hyper-filamentation under conditions of nitrogen limitation. For this work, we constructed homozygous diploid sks1Δ, and sks1-K39R/sks1-K39R mutants in the filamentous *S. cerevisiae* genetic background, with the latter strain containing a site-directed mutation yielding greatly diminished kinase activity. On low-nitrogen (SLAD) media, loss of either the gene or its kinase activity resulted in decreased surface-spread filamentation relative to an isogenic wild-type strain (Figure 1A). The introduction of a centromeric plasmid bearing wild-type SKS1 under transcriptional control of its native promoter was able to rescue the loss of pseudohyphal growth exhibited by the sks1Δ/Δ mutant, while introduction of a similar plasmid bearing the kinase-dead variant (sks1Δ/sks1-K39R) was unable to restore wild-type filamentation (Figure 1B). Overexpression of SKS1 from a high-copy 2μ plasmid induced hyper-filamentation under conditions of nitrogen limitation (Figure 1C).

Results

Sks1p kinase activity is required for pseudohyphal growth

We initially assessed the role of Sks1p in pseudohyphal growth through a series of phenotypic studies analyzing pseudohyphal filamentation in *SKS1* mutants under conditions of nitrogen limitation. For this work, we constructed homozygous diploid sks1Δ, and sks1-K39R/sks1-K39R mutants in the filamentous *S. cerevisiae* genetic background, with the latter strain containing a site-directed mutation yielding greatly diminished kinase activity. On low-nitrogen (SLAD) media, loss of either the gene or its kinase activity resulted in decreased surface-spread filamentation relative to an isogenic wild-type strain (Figure 1A). The introduction of a centromeric plasmid bearing wild-type SKS1 under transcriptional control of its native promoter was able to rescue the loss of pseudohyphal growth exhibited by the sks1Δ/Δ mutant, while introduction of a similar plasmid bearing the kinase-dead variant (sks1Δ/sks1-K39R) was unable to restore wild-type filamentation (Figure 1B). Overexpression of SKS1 from a high-copy 2μ plasmid induced hyper-filamentation under conditions of nitrogen limitation (Figure 1C).

Identification of the Sks1p signaling network

To determine the molecular basis of Sks1p kinase regulation of pseudohyphal growth, we analyzed the Sks1p kinase signaling network by quantitative phosphoproteomics. Our approach was straightforward; we implemented a mass spectrometry-based method utilizing stable isotope labeling of amino acids in cell culture (SILAC) to identify proteins differentially phosphorylated upon loss of Sks1p kinase activity [46,47]. As outlined in Figure 2A, a strain that was wild-type with respect to *SKS1* and an otherwise isogenic strain carrying the *sks1-K39R* allele in the filamentous *S. cerevisiae* background were made auxotrophic for arginine and lysine; the wild-type and *sks1*-deleted strains were subsequently grown in triplicate for five cell doublings in media containing unlabeled or labeled arginine and lysine, respectively, in the presence of butanol to induce pseudohyphal growth. Prepared proteins from both sets of samples were enriched for phosphopeptides, and differences in phosphopeptide abundance between the wild-type and kinase-dead samples were determined by mass spectrometry.

By this approach, we profiled 903 phosphorylation sites across the yeast proteome, identifying 114 phosphopeptides differentially abundant upon enrichment from the *sks1*-deleted strain relative to wild-type (Figure 2B). These peptides correspond to 91 proteins in total, encompassing phosphorylation events directly and indirectly dependent upon the presence of Sks1p kinase activity. Interestingly, by comparing the phosphorylation sites determined in this study against *S. cerevisiae* phosphorylation sites reported in public databases, we identified 39 new phosphorylation sites in the yeast proteome. Table 1 presents novel phosphorylation sites in peptides differentially abundant upon phosphorypeptide enrichment from the *sks1*-deleted strain relative to wild type. A listing of phosphopeptides is presented in Dataset S1,
and the full mass spectrometry dataset can be accessed at ProteomeXchange (dataset identifier PXD000414).

Sks1p signaling network connectivity

The set of Sks1p-dependent phosphoproteins identified in this study is statistically enriched (p-value of \(10^{-2}\)) for the cellular pathway enabling glycolysis and gluconeogenesis (Figure 3A), as defined in the KEGG database; the glycolysis and gluconeogenesis pathway is annotated in KEGG as sce00010. To gain a better understanding of the means through which Sks1p-dependent glucose signaling impacts additional cell processes and pathways, we used the glycolysis/gluconeogenesis pathway as a starting point for the construction of an interaction network. In brief, reported genetic and physical interactions with components of the KEGG glycolysis/gluconeogenesis pathway were incorporated and expanded until Sks1p was included in the network as well as MAPK signaling and cell cycle pathways known to be required for wild-type pseudohyphal growth. The resulting interaction network structure indicates two points. First, the clusters of genes enriched in MAPK signaling and cell cycle control exhibit a greater number of genetic and physical interactions between each other than with the cluster of genes enriched for glycolysis/gluconeogenesis; this is evident visually from the dark blue lines in Figure 3A indicating increased interaction density connecting the MAPK- and cell cycle-enriched clusters. Second, the network distance of Sks1p to proteins exhibiting Sks1p-dependent phosphorylation in the glycolysis/gluconeogenesis-enriched cluster is typically small and establishes a stronger interconnection between Sks1p and this cluster than with clusters enriched for MAPK signaling and cell cycle regulation. This result is consistent with the observed enrichment for the KEGG glycolysis/gluconeogenesis pathway in the set of proteins exhibiting Sks1p-dependent phosphorylation. The interactions used to construct this network are presented in Dataset S2.

Figure 2. Quantitative phosphoproteomic analysis of the Sks1p signaling network in the filamentous S.1278b genetic background.

A) Schematic overview of major steps in the SILAC-based mass spectrometric analysis of Sks1p signaling; strain auxotrophies are indicated in the control and kinase-dead strains. B) A listing of proteins exhibiting decreased or increased phosphopeptide abundance after enrichment from a strain carrying the sks1-K39R kinase-dead allele relative to a strain carrying wild-type SKS1.

Figure 1. Phenotypic analysis of SKS1 mutants. A) Homozygous diploid sks1Δ/Δ deletion mutants and sks1-K39R/sks1-K39R kinase-dead mutants exhibit a loss of surface-spread filamentation relative to a wild-type strain under identical growth conditions of nitrogen limitation (SLAD); uracil was added to complement an auxotrophy in the background strain. B) Addition of a centromeric plasmid bearing wild-type SKS1 to the sks1Δ/Δ mutant restores pseudohyphal growth, while addition of the same plasmid bearing the kinase-dead sks1-K39R allele fails to restore surface-spread filamentation. C) Overexpression of SKS1 with its native promoter from a high-copy 2μ plasmid induces exaggerated surface-spread filamentation in a wild-type strain on nitrogen-limiting SLAD medium. The degree of observed pseudohyphal filamentation is indicated below each image, with the “--” indicating an absence of filamentation and “+++” indicating the strongest observed pseudohyphal growth. Scale bar, 2 mm.

doi:10.1371/journal.pgen.1004183.g001
Phenotypic analysis of Sks1p-dependent phosphorylation sites

As a first step towards identifying the phosphorylation events responsible for the filamentation defect observed in *sksl-K39R*, we screened a panel of yeast proteins exhibiting Sks1p-dependent phosphorylation for phenotypes similar to those of genes whose deletion affects pseudohyphal growth. Genes were selected by cross-referencing the list of phosphoproteins identified by our mass spectrometry study with genes identified as having pseudohyphal growth phenotypes [23,24]. For this analysis, we prioritized genes with a role in glucose signaling. Homozygous diploid gene deletions were generated and screened for surface-spread filamentation under conditions of nitrogen limitation (SLAD medium) and nitrogen/glucose limitation (SLALD medium). Wild-type strains were assayed for fitness in SLAD and SLALD media, and each mutant exhibited a fitness defect relative to wild-type (Figure 4C and D), indicating that the mutated residues are necessary for optimal response to nitrogen and nitrogen/glucose limitation. Growth and growth rates for these strains in synthetic complete (SC) media are provided in Tables S5 and S6.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Phosphosite</th>
<th>Localization Probability*</th>
<th>Abundance *sksl-K39R#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu2</td>
<td>ASDSQDDDIRSASTT(p)NLDR</td>
<td>0.78</td>
<td>0.50</td>
</tr>
<tr>
<td>Cdc16</td>
<td>N5(p)MGFTSTIP(p)LRKSVSRO</td>
<td>0.95</td>
<td>0.091</td>
</tr>
<tr>
<td>Dna2</td>
<td>HQLQEVFQGQR5ip(p)R</td>
<td>1.0</td>
<td>0.14</td>
</tr>
<tr>
<td>Dse4</td>
<td>V5ip(p)AASHPLSVPK</td>
<td>0.96</td>
<td>1.5</td>
</tr>
<tr>
<td>Est2</td>
<td>LFNVNASip(p)R</td>
<td>1.0</td>
<td>0.52</td>
</tr>
<tr>
<td>Ire5</td>
<td>DNSNSDDDEH(p)SKRR</td>
<td>0.99</td>
<td>0.15</td>
</tr>
<tr>
<td>Lsm4</td>
<td>RPSip(p)QNR</td>
<td>0.99</td>
<td>1.5</td>
</tr>
<tr>
<td>Mds3</td>
<td>N5(p)Sip(p)KAVROEGR</td>
<td>1.0</td>
<td>0.27</td>
</tr>
<tr>
<td>Nth2</td>
<td>ALPQLEMLGGLVACT(p)EKSR</td>
<td>0.97</td>
<td>0.33</td>
</tr>
<tr>
<td>Nup157</td>
<td>MY5ip(p)TPLKR</td>
<td>0.99</td>
<td>0.30</td>
</tr>
<tr>
<td>Pal1</td>
<td>RGGDT(p)QDAIK</td>
<td>1.0</td>
<td>0.31</td>
</tr>
<tr>
<td>Pat1</td>
<td>DLSip(p)PEQER</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Ras2</td>
<td>QAINVEEAFY(p)T(p)LARLVR</td>
<td>1.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Rfc5</td>
<td>NIRLIMVCD(p)MSPIAPIK</td>
<td>0.99</td>
<td>8.1</td>
</tr>
<tr>
<td>Sas10</td>
<td>SI(p)VRAY(p)Sip(p)GGQOS(p)GVYEGETGIK</td>
<td>0.99</td>
<td>0.51</td>
</tr>
<tr>
<td>Ygr250c</td>
<td>RGNLSSDDDSQTS(p)DNSSK</td>
<td>0.77</td>
<td>1.8</td>
</tr>
<tr>
<td>Ylr177w</td>
<td>RNTQPVLNHPAAAPT(p)NDAGLAVVDIK</td>
<td>0.87</td>
<td>0.43</td>
</tr>
</tbody>
</table>

*Phosphosites indicating a localization probability of \(p \geq 0.75 \).

#Phosphopeptide abundance as *sksl-K39R*/WT ratio.

doi:10.1371/journal.pgen.1004183.t001

Pda1p residues Y309 and S313 are necessary for pseudohyphal differentiation and respiratory growth

Of the point mutants assayed above, strains with mutations in *PDA1* exhibited pseudohyphal growth defects on low-nitrogen medium, with a much less acute growth defect in SC media. As indicated in Figure 5A and B, two distinct point mutations in *PDA1*, the *Y309A* and *S313A* alleles, yield a dramatic fitness defect and loss of pseudohyphal differentiation in nitrogen-limiting conditions. Pda1p is a subunit of the mitochondrial pyruvate dehydrogenase complex involved in the conversion of pyruvate to acetyl-CoA [54]. Cells lacking *PDA1* demonstrate diminished growth on glucose from a respiratory deficiency due to mitochondrial DNA loss [55]. We found no noticeable difference in protein levels for either single point-mutant (*Y309A* and *S313A*) or the double mutant (*Y309A-S313A*), indicating that the observed phenotypes were not due to instability of Pda1p. Interestingly, when each mutant was...
screened on glycerol-containing media that forced respiratory growth, the S313A mutant grew as well as wild-type, while the Y309A mutant exhibited a phenotype analogous to the pda1Δ/Δ mutant [55] (Figure 5D). The double Y309A-S313A mutant shared the respiratory deficiency of the Y309A mutant. We also investigated whether the mutation of these residues altered mitochondrial structure or mitochondrial DNA. By live-cell DAPI staining, no abnormal mitochondrial DNA phenotypes were observed between the wild-type strain, the pda1Δ/Δ mutant, or any of the site-directed mutants (Figure 5E, lower). However, staining with the membrane-potential-dependent dye MitoTracker illustrates dramatic differences in mitochondrial membrane potential or structure between these mutants and wild-type (Figure 5E, middle). The wild-type and pda1-S313A strains exhibit similar mitochondrial staining, while the pda1Δ, pda1-Y309A, and pda1-Y309A-S313A mutants all demonstrate a mitochondrial membrane phenotype. Collectively, both the Y309A and S313A mutations result in the abolishment of pseudohyphal growth in conditions of low nitrogen, and the Y309A mutation also yields phenotypes indicative of impaired respiration.

Epistasis analysis of Sks1p with respect to glucose signaling and pseudohyphal growth

The studies presented here support a role for Sks1p in enabling wild-type glucose signaling and pseudohyphal growth; however, the molecular context and genetic relationships of SKS1 with respect to the corresponding signaling pathways is unclear. Consequently, we performed epistasis experiments examining the phenotypic consequences of over-expressing SKS1 in diploid S. cerevisiae strains deficient for components of both glucose signaling pathways and pseudohyphal signaling networks (Figure 6A and B). Here, we examined whether SKS1 could act as a high-copy suppressor of mutations in cAMP signaling (gpr1Δ/Δ, ras2Δ/Δ, and tpk2Δ/Δ), MAPK signaling (ste20Δ/Δ), or Snf1p signaling (snf1Δ/Δ). Each of these mutations generates a yeast strain deficient in pseudohyphal differentiation under conditions of limiting nitrogen. We found that over-expression of SKS1 was able to suppress the gpr1Δ/Δ phenotype (Figure 6C). Interestingly, a ras2Δ/Δ mutant also demonstrated a moderate phenotypic rescue from overexpression of SKS1; however, SKS1 overexpression did not restore pseudohyphal growth in a tpk2Δ/Δ mutant, indicating that SKS1 acts downstream of GPR1 and RAS2 but upstream of or at the level of TPK2 (Figure 6D). Overexpression of SKS1 in the gpr1Δ/Δ and ras2Δ/Δ backgrounds did not result in filamentation on media with normal levels of nitrogen. SKS1 did not suppress mutations in STE20 or SNF1. Consistent with this STE20 result, the sks1Δ/Δ mutant exhibited no loss of pseudohyphal MAPK signaling under conditions of nitrogen limitation (data not shown), as assessed using a Prad(TEC1)-lacZ reporter system that is specifically responsive to the MAPK signaling components.

Figure 3. Network connectivity of Sks1p kinase signaling. A) Network connectivity map constructed by expanding connections involving Sks1p-dependent phosphoproteins through genetic and physical interactions from KEGG, BioGrid, and GeneMania. Clusters of proteins enriched for the indicated KEGG signaling pathways are shown. Numbered proteins identify Sks1p and a subset of proteins exhibiting Sks1p-dependent phosphorylation by mass spectrometry (shaded red) within the context of the larger connected network. As indicated, the KEGG glycolysis/glucogenesis pathway was enriched in the subset of Sks1p-dependent phosphoproteins identified by mass spectrometry. Proteins within the network clustered around B) the KEGG glycolysis/glucogenesis pathway and C) the KEGG cell cycle and meiosis pathways are highlighted.

doi:10.1371/journal.pgen.1004183.g003
required for filamentous growth [26]. We also tested whether deletion of SKS1 could affect the hyper-filamentous phenotype of strains deleted for PDE1, which encodes a phosphodiesterase that degrades cAMP [56], and strains deleted of GPB1, which encodes a Gβ-subunit of the Gpa2p heterotrimeric G protein [57]. In each case, the double deletion mutants remained hyperfilamentous, indicating no clear genetic relationship between SKS1 and these genes.

Figure 4. Phenotypic analysis of homozygous diploid mutants corresponding to a subset of Sks1p-dependent phosphoproteins identified by mass spectrometry. A) The indicated homozygous diploid deletion mutants exhibit surface-spread pseudohyphal filamentation phenotypes on SLAD and SLALD medium relative to a wild-type strain. The degree of observed pseudohyphal growth is indicated, with the “−” corresponding to an absence of filamentation and “+++” indicating the strongest observed pseudohyphal growth. Scale bars representing 2 mm are indicated. The pda1Δ/Δ strain formed slightly smaller colonies than wild type, and npr3Δ/Δ mutants formed markedly small colonies. B) Amino acid sequences identifying Sks1p-dependent phosphorylation sites selected for further phenotypic analysis. The ratio indicates abundance upon phosphopeptide enrichment from the sks1-K39R mutant relative to wild-type. All homozygous diploid integrated point mutants demonstrated a significant fitness defect compared to wild-type when grown in liquid media under nitrogen-limiting (SLAD) or nitrogen- and glucose-limiting (SLALD) conditions as indicated by C) the long-term cell titer and D) growth curves for each condition. Full values for the growth curves shown here are provided in Supplementary Tables S3 through S6. doi:10.1371/journal.pgen.1004183.g004
Mss11p and Rgt1p are required for wild-type SKS1 transcription

In complement to our analysis of Sks1p kinase activity, we also investigated whether known transcriptional regulators of pseudo-hyphal development influenced the expression of SKS1. Analysis of SKS1 transcription via quantitative real-time (qRT) PCR identified several results, as follows. First, SKS1 mRNA levels were responsive to nitrogen and glucose limitation in wild-type S. cerevisiae of the filamentous S1278b background. SKS1 transcript levels increased by nearly 180% under conditions of nitrogen limitation coupled with glucose limitation (SLALD medium) (Figure 7A). A comparison of SKS1 transcript levels between mutants deleted for known transcriptional regulators of pseudo-hyphal differentiation (flo8Δ/Δ, mfg1Δ/Δ, mga1Δ/Δ, mss11Δ/Δ, phd1Δ/Δ, phd1Δ/Δ, and tec1Δ/Δ) and wild-type S. cerevisiae found that the transcription factor Mss11p, involved in glucose signaling, invasive growth, and starch degradation, as well as Flo8p, the well-known filamentous growth transcriptional activator, exhibited minor decreases in SKS1 mRNA levels under the indicated extracellular conditions (Figure 7B). The flo8Δ/Δ mutant displayed an approximate 30% reduction in SKS1 transcript levels relative to a wild-type strain in both standard and low nitrogen/glucose SLALD media. Mss11p demonstrated a reduction in SKS1 mRNA levels of nearly 65%, but only in standard media promoting vegetative growth. We also examined the SKS1 transcriptional response in a diploid strain deleted for RGT1, encoding a glucose-responsive transcriptional regulator known to repress the expression of many HXT genes [58,59]. Compared to the wild-type control, the sgt1Δ/Δ mutant demonstrated a marked increase in SKS1 transcript abundance under conditions of low nitrogen coupled with glucose limitation (Figure 7B).

The SKS1 ortholog SHA3 is required for wild-type colony morphology in Candida albicans

Candida albicans is both a successful commensal and pathogen of humans, sharing with S. cerevisiae the ability to undergo minor decreases in SKS1 mRNA levels under the indicated extracellular conditions (Figure 7B). The flo8Δ/Δ mutant displayed an approximate 30% reduction in SKS1 transcript levels relative to a wild-type strain in both standard and low nitrogen/glucose SLALD media. Mss11p demonstrated a reduction in SKS1 mRNA levels of nearly 65%, but only in standard media promoting vegetative growth. We also examined the SKS1 transcriptional response in a diploid strain deleted for RGT1, encoding a glucose-responsive transcriptional regulator known to repress the expression of many HXT genes [58,59]. Compared to the wild-type control, the sgt1Δ/Δ mutant demonstrated a marked increase in SKS1 transcript abundance under conditions of low nitrogen coupled with glucose limitation (Figure 7B).
morphological transitions in response to appropriate environmental cues [7,60–62]. The importance of this morphological differentiation is underscored by the fact that hyphal development is required for virulence in *C. albicans*. The *S. cerevisiae* SKS1 gene is conserved in *C. albicans*, and considering the strong conservation of pathway structure between these organisms, we hypothesized that the SKS1 ortholog in *C. albicans* may serve a similar function in integrating environmental cues to regulate fungal morphology. To test this hypothesis, we generated a heterozygous deletion of the SKS1 ortholog SHA3 in the *C. albicans* strain BWP17. SHA3 shares approximately 33% sequence identity with SKS1 and also encodes a kinase involved in glucose transport and glucose-responsive signaling [63] (Figure 8A). On Spider growth medium in which mannitol is the carbon source, the *C. albicans* SHA3 heterozygous mutant displayed a decrease in colony wrinkling relative to an isogenic wild-type strain (Figure 8B). Consistent with this result, Uhl et al. [64] found that a heterozygous mutant containing a transposon insertion upstream of SHA3 in its promoter region exhibited decreased hyphal growth on Spider medium. In liquid culture, cell morphology is wild type in the SHA3 heterozygous deletion mutant (Figure 8C), but the mutant does exhibit a statistically significant decrease in biofilm formation on Spider medium (Figure 8D). The ratio of biofilm formation on Spider media versus control RPMI buffer also indicates an approximately three-fold decrease in the *sha3*Δ/*sha3*Δ strain relative to wild type. Since the heterozygous *sha3* mutant exhibits a phenotype on Spider medium, we examined if colony morphology was affected on media containing other carbon sources. As indicated in

![Diagram](image_url)

Figure 6. SKS1 is epistatic with components of the nutrient-responsive cAMP-dependent/PKA pathway. A) Schematic of the core yeast glucose sensing components. B) Diagram of core signaling components of yeast pseudohyphal differentiation in response to nitrogen stress. C) Overexpression of SKS1 from its native promoter on a 2µ plasmid restores the pseudohyphal growth phenotype of both a gpr1Δ/Δ and ras2Δ/Δ mutant strain in the S1278b background. Scale bar, 2 mm. D) SKS1 overexpression does not restore pseudohyphal growth in homoygous diploid strains deleted of the PAK Ste20p upstream of the filamentous growth MAPK pathway, the PKA catalytic subunit Tpk2p, or the AMP kinase Snf1p under low nitrogen and low nitrogen/glucose conditions. The double deletion mutants gpb1Δ/Δ ska3Δ/Δ and pde1Δ/Δ ska3Δ/Δ exhibit pseudohyphal growth phenotypes that resemble gpb1Δ/Δ and pde1Δ/Δ, respectively, in SLAD and SLALD media.

doi:10.1371/journal.pgen.1004183.g006
phosphoproteomic response of \textit{S. cerevisiae} to the systematic deletion of protein kinases and phosphatases. Trade-offs exist in considering the relative advantages of both label-free and labeling strategies. Label-free methods have been shown to identify a larger number of proteins than label-based methods; however, SILAC-based strategies typically enable better quantification and identification of differentially abundant proteins, while also providing greater reproducibility across samples [70]. It is important to bear in mind that both label-free and SILAC-based interventional phosphoproteomic methods identify direct and indirect phosphorylation events; consequently, the studies here are intended to identify the broad scope of cell processes and pathways encompassed within the Sks1p signaling network.

Notably, the study by Bodenmiller and colleagues did address the Sks1p signaling network in a non-filamentous strain under vegetative growth conditions, and approximately 30% of the proteins detected in this analysis were also identified by label-free methods in that work. Further, the overlap between the datasets is striking, in that nine proteins exhibiting Sks1p-dependent phosphorylation in a non-filamentous strain under vegetative conditions were also identified as being differentially phosphorylated in our analysis of \textit{skl1}::K39R in a filamentous strain under conditions inducing pseudohyphal growth; these phosphoproteins include Cdc37p, Crp1p, Fyv8p, Hxt1p, Mhr1p, Mtc1p, Pda1p, Pil1p, Prz2p, Rck2p, Zuo1p, and Ymr196w. The proteins Hxt1p, Rck2p, and Pil1p are stress-responsive, and Mhr1p, Pil1p, and Pda1p have been reported to localize to mitochondria, highlighting important processes and functions required for wild-type glucose signaling and pseudohyphal growth.

The dependence of Pda1p phosphorylation upon Sks1p and phenotypic analysis of Pda1p Y309A and S313A mutants underscores that wild-type mitochondrial membrane structure and function is interconnected with Sks1p kinase signaling. Interestingly, signaling pathways that regulate filamentation, cAMP-PKA signaling, and genetic screens of pseudohyphal deficient mutants have identified genes required for mitochondrial function [17,23,74]. The S313 residue of Pda1p is a known phosphorylation site, and phosphorylation of S313 inhibits Pda1p activity \textit{in vitro} [75,76]. Further, Oliveira et al. [77] report that the S313A mutant exhibits increased flux through pyruvate dehydrogenase during growth in a non-filamentous strain. As reported here, a filamentous strain containing the S313A mutation is able to grow on medium with glycerol as the sole carbon source. Interestingly, however, both the Pda1p S313 and Y309 residues are required for pseudohyphal growth. Sks1p is a Ser/Thr kinase; consequently, phosphorylation of S313 inhibits Pda1p activity \textit{in vivo} [75,76].

We observed increased glucose uptake in the SKS1 mutant, consistent with Sks1p regulation of glucose transporters GPR1 and RAS2. In a non-filamentous strain, these transporters are required to fuel filamentous growth, and their expression is regulated by Sks1p [78]. In our analysis, Sks1p-dependent phosphorylation of GPR1 and RAS2 was identified, suggesting a role for Sks1p in glucose transport during filamentous growth. Further, Hxt1p, Mhr1p, and Mtc1p are known to be regulated by Sks1p [78], and our analysis confirms their phosphorylation in the SKS1 mutant. These findings support the role of Sks1p in regulating glucose metabolism during pseudohyphal growth.

The S313 residue of Pda1p is a known phosphorylation site, and phosphorylation of S313 inhibits Pda1p activity \textit{in vitro} [75,76]. Further, Oliveira et al. [77] report that the S313A mutant exhibits increased flux through pyruvate dehydrogenase during growth in a non-filamentous strain. As reported here, a filamentous strain containing the S313A mutation is able to grow on medium with glycerol as the sole carbon source. Interestingly, however, both the Pda1p S313 and Y309 residues are required for pseudohyphal growth. Sks1p is a Ser/Thr kinase; consequently, phosphorylation of S313 inhibits Pda1p activity \textit{in vivo} [75,76].

We observed increased glucose uptake in the SKS1 mutant, consistent with Sks1p regulation of glucose transporters GPR1 and RAS2. In a non-filamentous strain, these transporters are required to fuel filamentous growth, and their expression is regulated by Sks1p [78]. In our analysis, Sks1p-dependent phosphorylation of GPR1 and RAS2 was identified, suggesting a role for Sks1p in glucose transport during filamentous growth. Further, Hxt1p, Mhr1p, and Mtc1p are known to be regulated by Sks1p [78], and our analysis confirms their phosphorylation in the SKS1 mutant. These findings support the role of Sks1p in regulating glucose metabolism during pseudohyphal growth.
promoter sequence, which titrates Rgt1p [78, 79]. In addition to possessing binding sites for Rgt1p, the SKS1 promoter is reportedly bound by Mss11p and Flo8p [24, 80], although we observe that the relative individual contributions of these transcription factors to the establishment of SKS1 mRNA levels is modest under conditions of nitrogen limitation and nitrogen/glucose limitation. Considered collectively, transcriptional regulation of SKS1 likely results from the combinatorial contributions of numerous transcription factors. Under conditions of glucose limitation, Rgt1p actively binds target promoters to repress transcription of glucose-induced genes, and the observed increase in SKS1 transcript levels upon RGT1 deletion under low-glucose conditions is consistent with this observation. However, SKS1 mRNA levels increase upon growth in SLALD media, indicating that Rgt1p cannot be predominantly responsible for the establishment of overall SKS1 transcript levels. Additional factors, including Mss11p and Flo8p, must contribute to this transcriptional control as well, presenting a more complex picture of SKS1 transcriptional control.

Coupling findings from this study with previous work, we suggest that Sks1p mediates cellular response to glucose limitation and nitrogen limitation by signaling through Gpr1p and the cAMP-PKA pathway. In this study, we demonstrate that SKS1 is a high-copy suppressor of pseudohyphal-deficient gpr1Δ/Δ and ras2Δ/Δ mutants. Both Gpr1p and Ras2 are components of the cAMP-dependent PKA pathway. Gpr1p is a nutrient sensor that activates cAMP in response to low-levels of extracellular glucose [81] and regulates pseudohyphal differentiation in S. cerevisiae [82].

Overexpression of SKS1 failed to restore pseudohyphal growth in a strain deleted for TPk2. Tk2p is one of three catalytic subunits of PKA; TPk2 is required for pseudohyphal growth, and its function is required for the phosphorylation of Flo8p and additional key signaling events necessary for pseudohyphal differentiation [32, 83]. Thus, Sks1p may contribute to the regulation of Tpk2p or may be regulated indirectly by Tpk1p or Tpk3p. Sks1p has not been identified as a phosphoprotein, and any such mechanisms of Sks1p regulation have not been identified to date.

Pseudohyphal growth in S. cerevisiae is an excellent model of related processes of filamentous development in the principal opportunistic human fungal pathogen Candida albicans. In C. albicans, a variety of culture conditions, including growth on Spider medium with mannitol as a carbon source, results in the establishment of pseudohyphal growth genes play related processes of filamentous development in the principal opportunistic human fungal pathogen Candida albicans. In C. albicans, a variety of culture conditions, including growth on Spider medium with mannitol as a carbon source, results in the establishment of pseudohyphal growth genes play important roles in C. albicans hyphal development, and we find that the SKS1 ortholog SHA3 is required for wild-type colony morphology in C. albicans on Spider medium. The cAMP-PKA pathway is required for hyphal development and virulence in C. albicans, exhibiting structural similarity to the orthologous pathway in S. cerevisiae. Notably, GPR1 is conserved, and Ras1p in C. albicans contributes to the production of cAMP through adenylate cyclase in response to various stimuli [84]. The PKA catalytic subunits Tpk1p and Tpk2p have been identified in C. albicans, and it will be interesting to determine whether the functional relationship between SHA3 and this cAMP-PKA pathway is similar to that which we observe in S. cerevisiae.
Materials and Methods

Yeast strains, plasmids, and growth conditions

The strains used in this study are listed in Table S1 and are isogenic derivatives of the Σ278b strain [11,85]. All strains were generated from the MATα haploid strain Y825 (ura3-52 leu2Δ) and the MATα haploid strain HLY337 (ura3-52 trp1-1). Standard yeast media and microbiological techniques were used [86]. Briefly, standard growth media consisted of YPD (1% yeast extract, 2% peptone, 3% glycerol) or Synthetic Complete (SC) (0.67% yeast nitrogen base (YNB) without amino acids, 2% glucose, and 0.2% of the appropriate amino acid drop-out mix). Nitrogen deprivation and filamentous phenotypes were assayed using Synthetic Low Ammonium Dextrose (SLAD) medium (0.17% YNB without amino acids, 2% glucose, 50 μM ammonium sulfate and supplemented with appropriate amino acids) and Synthetic Low Ammonium Low Dextrose (SLALD) medium (0.17% YNB without amino acids, 0.05% glucose, 50 μM ammonium sulfate and supplemented with appropriate amino acids) [11,87,88]. Respiratory competency was assayed using YPG (1% yeast extract, 2% peptone, 3% glycerol). For plates, autoclaved 2% agar was added to the media. To promote budding, a 1% yeast extract, 2% peptone, 2% glucose) or Synthetic Complete (SC) media unless otherwise noted. Hyphal growth was induced in C. albicans vegetative growth, 80 μg/mL of uridine was added to all media unless otherwise noted. Hyphal growth was induced in C. albicans via growth in Spider medium and/or 10% serum-containing medium for the indicated times at 37°C [89].

Plasmids used in this study are listed in Table S2. Plasmids pFIRE-lacZ and pSKS1-K39R-vYFP were constructed as described [26,45]. To overexpress SKS1, the SKS1 open reading frame was amplified from genomic DNA and cloned into Xmal-XbaI-digested p426GPD [90]. The GPD promoter was then replaced with the ADH1 promoter amplified from genomic DNA and cloned into SacI-XmaI-digested p426-GPD-SKS1 to generate plasmid pCK020.

Yeast gene deletions and site-directed mutagenesis

Gene deletion mutants were constructed in strains Y825 and HLY337 using a one-step PCR-based gene-disruption strategy [91,92] with the G418 resistance cassette from plasmid pFA6a-KanMX6 [93]. Integrated point mutations were generated using the one-step site-directed mutagenesis strategy described in Zheng et al. [94]. After confirming the haploid mutants via PCR and site-directed mutants via sequencing, the strains were allowed to mate on YPD+G418 plates for approximately 20 hours at 30°C. Mated cells were then streaked on SC-Trp-Leu plates to select for Y825×HLY337 diploids. All yeast transformations were performed according to standard lithium acetate-mediated protocols [95–97].

Surface-spread filamentation assays

Defects in surface spread filamentation were assessed as described [98]. In brief, yeast strains were grown overnight and were subsequently diluted to an OD600 of approximately 0.2 in fresh media. Cells were grown for at least two doublings, to an OD600 of approximately 0.6–1.0. Approximately 1 mL of each cell culture was transferred to a microcentrifuge tube, where the cultures were washed twice with sterile water before suspending in 1 mL sterile water and serially diluting such that the density of plating was approximately 10^2–10^5 cells per plate; high-density plating has been shown to decrease the rate at which cells transition to the filamentous form [99]. Diluted cultures were then spread on SLAD and/or SLALD plates supplemented with appropriate amino acids and incubated at 30°C for 3 or more days. Cells were imaged using a Photometrics CoolSnapES2 digital camera mounted on a Nikon Eclipse 80i upright microscope. Colony morphology was imaged using a 4× objective, while cellular morphology was imaged with a 100× oil-immersion objective.

Peptide sample preparation and phosphopeptide enrichment

S. cerevisiae Y825 control and sks1-K39R mutant cells were isotypically labeled with medium (Lys-4/Arg-8) amino acids during cell culture (SILAC). Cell cultures were lyzed by bead beating in lysis buffer; the lysis buffer was composed of 50 mM tris buffer (pH 8.2), 8 M urea, and protease inhibitors (Roche) and phosphatase inhibitors (50 mM NaF, 50 mM beta-glycerophosphate, 1 mM sodium vanadate, 10 mM sodium pyrophosphate, 1 mM phenylmethylsulfonyl fluoride). Frozen cells were suspended in 400 μl lysis buffer and were lysed by applying three cycles of bead beating (for one minute each) with a 2-minute rest on ice between cycles. Supernatants containing protein extract were recovered by centrifugation at 14,000 g for 10 minutes, and protein concentrations were measured by Bradford assay. Equal amounts of protein from three SILAC-labeled cells were combined, treated for disulfide reduction and alkylation, and digested with TMPK-treated trypsin (Worthington Biochemical Corp., Lakewood, NJ) at a trypsin:protein ratio of 1:10 at 37°C overnight.

Peptide mixtures were desalted with C18 (Waters) and separated into 12 strong cation exchange (SCX) fractions on a PolySulfoethyl A column (PolyLC, 150×4 mm) over a 48 minute salt gradient with two mobile phases: 100% solvent A (5 mM KH2PO4, 30% acetonitrile, pH 2.7) for 5 minutes, a linear gradient of 0–40% solvent B (250 mM KH2PO4, 30% acetonitrile, pH 2.7) in the following 35 min, a stiff increase of 40–100% B in 5 min, and flushing with 100% B for 5 min. Collected SCX fractions were desalted with C18 (Waters) and subjected to selective phosphopeptide enrichment using ZrO2 (Glygen, 50 μm i.d. resin) under acidic conditions in the presence of 2,5-dihydroxybenzoic acid [100,101]. Phosphopeptides selectively bound on ZrO2 were eluted with 4% NH4OH. The ZrO2 eluate of enriched phosphopeptides and the flow-through of each SCX fraction were analyzed by nanoLC-tandem mass spectrometry (MSMS).

Mass spectrometric analysis and SILAC quantification

NanoLC-MSMS experiments were performed on a hybrid type mass spectrometer (Thermo, LTQ-Orbitrap XL) coupled to a nanoLC system (Eksigent, 2D nanoLC). Samples were separated on a custom capillary column (150 mm x 75 μm, 3 μm Sepax PC18) using a 120 min linear aqueous gradient (9–90% acetonitrile, 0.01% formic acid) delivered at 250 nL/min. The eluent was introduced on-line to the LTQ-Orbitrap via an electrospray device (Advion, TriVersa NanoMate) in positive ion mode.

The LTQ-Orbitrap was operated in a data-dependent mode alternating a full MS scan (300–1700 m/z at 60,000 resolution power at 400 m/z) in the Orbitrap analyzer and collision-induced dissociation scans (CID-MSMS) for the 7 most abundant ions with signal intensity above 500 from the previous MS scan in LTQ. Recurring precursor ions were dynamically excluded for 30 sec by applying charge-state monitoring, ions with 1 or unassigned charge states were rejected to increase the fraction of ions producing useful fragmentation. Lock mass ([(Si(CH3)2O)4]+, m/z = 445.120029) was used for internal calibration. Each sample was analyzed by two LC-MS experiments. Raw LC-MS data file sets were processed, database searched, and quantified using MaxQuant (ver 1.0.13.8) [102] and the Mascot search engine together. Mascot database searches were performed against a
composite database of forward and reverse sequences of verified yeast open reading frames from the Saccharomyces Genome Database. Variable modifications were allowed for oxidation (M) and phosphorylations (STY), as well as a fixed modification of carbamidomethylation (C). Peptide, protein, and phosphorylation site identifications were filtered at a false discovery rate of 5%. The MaxQuant normalized M/L (medium/light) ratios with significance B scores less than 0.05 were considered statistically significant. 10,688 peptides were identified, corresponding to 552 distinct proteins.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [103] with the dataset identifier PXD000414.

Identification of previously unreported phosphorylation sites and network analysis
A network scaffold was constructed was constructed using interactions from the publicly available Kyoto Encyclopedia of Genes and Genomes (KEGG), GeneMania and BioGrid databases [104–106]. KEGG xml files for the glycolysis/gluconeogenesis (accession sce00010), cell cycle (accession sce04111), meiosis (accession sce04113) and MAPK signalling pathways (accession sce04011) were downloaded and parsed using an in-house program to create a network. The genes in the resulting network were then uploaded to GeneMania in order to retrieve additional genetic and physical interactions. Finally, the interactions for SKS1 were downloaded from BioGrid and appended to the network.

Differentially phosphorylated proteins, identified by their differentially abundant phosphopeptides upon enrichment, were first filtered using the significance of the medium/light isotope ratios; we implemented a significance (A) cut off at or below 0.05. The resulting protein list was mapped on to the network scaffold using Cytoscape [107]. The network was clustered by node attributes to reflect the pathways from which the genes originated. As expected, the network consisted of three groups/sub-networks (glycolysis/gluconeogenesis, cell cycle/meiosis, and MAPK signaling sub-networks).

Assays for fitness and respiratory deficiency
Yeast strains were inoculated in 5 mL SC and incubated overnight at 30°C with constant shaking (250 rpm). Cell cultures were subsequently diluted in 6 mL of SC, SLAD, and SLALD to an OD600 of approximately 0.1 and incubated at 30°C with constant shaking (250 rpm) for approximately 15 hours. OD600 measurements were collected approximately every 3 hours from the time of dilution. Full growth curve datasets for the analysis of mutants in SLAD and SLALD media are provided in Tables S3 and S4, respectively. Assays for respiratory deficiency were implemented as follows. Single colonies were inoculated in 5 mL YPD media and incubated with continuous agitation overnight. Cell cultures were diluted to an OD600 of approximately 0.5 in fresh YPD media and grown at 30°C with shaking for at least two doublings, to an OD600 of approximately 1.0. Each yeast cell culture was then adjusted to an identical OD600 and serially diluted 10⁻¹, 10⁻², 10⁻³, and 10⁻⁴, respectively. Subsequently, 5 µL of each diluted yeast culture was spotted onto YPD and YPG plates and incubated at 30°C for three to five days.

RNA preparation and qRT-PCR analysis
Yeast strains were inoculated in 5 mL SC and incubated overnight at 30°C with constant shaking (250 rpm). Cell cultures were diluted to an OD600 of approximately 0.3 in fresh SC, SLAD, and SLALD media and grown at 30°C with shaking for 4 hours. Afterward, cell cultures were collected by centrifugation at 3000 g for 5 minutes; the supernatant was removed, and cell pellets were flash frozen in a dry ice/ethanol bath. Total RNA was extracted using the Ribopure Yeast Kit (Ambion) following the manufacturer’s protocol. First-strand cDNA synthesis was performed using the Superscript II Reverse Transcriptase Kit (Invitrogen) with 2 µg of total RNA as template and Oligo d(T)12-18 as primers according to the manufacturer’s protocol. Quantitative real-time assays were performed in triplicate with a Mastercycler E Realplex4 S (Eppendorf) using SYBR Green I dye-based detection (Life Technologies). Each reaction contained 10 µL SYBR Green PCR Master Mix (Life Technologies), 0.2 µM of the appropriate primers, and 120 ng of cdNA template in a total volume of 20 µL. The real time PCR reactions were performed at 95°C for 5 minutes followed by 40 cycles of 30 seconds at 95°C, 30 seconds at 60°C, and a final step at 72°C for 30 seconds. Relative differences in RNA levels were normalized against ACT1 levels using the delta delta Ct method [108].

Western analysis
Yeast strains were analyzed by Western blotting according to standard protocols [109]. For Western analysis, 10 µL of protein sample were separated via SDS-PAGE and transferred to Immunoblot PVDF (Bio-Rad) using standard methods. Protein detection was carried out using antibodies against Hemagglutinin (HA) (1:2000; Abcam) in TBS+0.1% Tween20 and 5% milk. After immunodetection of Hemagglutinin, the membrane was stripped using Stripping Buffer (62.5 mM Tris pH 6.8, 100 mM β-mercaptoethanol, and 2% SDS) at 65°C for 30 minutes with occasional agitation. Normalization of loading was achieved by probing the original membrane with antibodies against yeast 3-phosphoglycerate kinase Pgk1p (1:5000; Invitrogen) in the buffer conditions used previously.

Observation of mitochondrial morphology
Mitochondrial morphology was scored using MitoTracker CMXR (Molecular Probes) for labeling the mitochondrial membrane and 4′,6-diamidino-2-phenylindole (DAPI) for labeling mitochondrial DNA. MitoTracker was added to 1 mL aliquots of each cell culture to a final concentration of 0.5 µM, and the samples were incubated at 30°C for 30 minutes similar to Nunari et al. [110]. 3 µL of stained culture was then mixed with 3 µL of DAPI mounting media (9.25 mM p-Phenylendiamine (Sigma), 0.18 µM DAPI (Sigma), in glycerol) on a glass slide [111–113]. The cell suspension was then covered with a glass coverslip and imaged using a Photometrics CoolSnapES2 digital camera mounted on a Nikon Eclipse 80i upright microscope.

Phenotypic analysis of C. albicans sha3Δ/SHA3
Construction of the heterozygous C. albicans sha3Δ/CISH1/SHA3 and homozygous sha3Δ:CISH1/SHA3 ΔARG4 deletion mutants was performed using the transformation methods described in Walther et al. [114]. Wild-type and mutant colonies were grown overnight at 30°C in 3 mL YPD or SC media minus the appropriate amino acids and supplemented with uridine. To assess colony morphology, cell cultures were diluted to an OD600 of approximately 0.25 in fresh YPD+uri and grown at 30°C with shaking for at least two doublings, to an OD600 of approximately 0.6–1.0. 5 µL of each culture was spotted onto YPD+uri, YPD+uri+10% serum, and Spider plates. After drying on the bench, YPD+uri plates were
incubated at 30°C and YPD+uri+10% serum and Spider plates were incubated at 37°C for 3–5 days.

For the study and measurement of C. albicans biofilm development, we used a metabolic 2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay as described in Pierce et al. [115] with slight modifications. Briefly, triplicate cell cultures were grown overnight at 30°C in SC media. The cultures were centrifuged, washed twice with 1× PBS and then resuspended in pre-warmed (37°C) medium (RPMI 1640-MOPS or Spider) at a final concentration of OD520 = 0.38, a cell concentration that was demonstrated to correlate with optimum biofilm formation [116]. Subsequently, 100 μL of each culture was added in triplicate to a 96-well plate. The plate was then incubated at 37°C with shaking (100 rpm) for 24 hours. After 24 hours, the wells were washed 3 times with 1× PBS, and 100 μL of pre-warmed SC media was added to each well followed by shaking (100 rpm) at 37°C for an additional 8 hours. Post incubation, the media was removed and the XTT assay performed as described [115].

Supporting Information

Dataset S1 Listing of phosphopeptides identified in this study by SILAC-based quantitative phosphoproteomics. Each phosphopeptide sequence is presented; “ph” indicates the predicted site of phosphorylation. The corresponding protein for each peptide is presented, with standard and systematic yeast names. The normalized ratio of M/L isotope is indicated along with the significance. Phosphopeptides identified multiple times are presented as such with their respective M/L ratios and significance measures.

(XLSX)

Dataset S2 Listing of genetic and physical interactions used to construct the Sks1p signaling connectivity network. Each binary interaction is represented in a row; the source of the interaction data (e.g., KEGG, GeneMania, BioGrid) is indicated. Standard protein names are used as available.

(XLSX)

References

Table S1 Strains used in this study.

(PDF)

Table S2 Plasmids used in this study.

(PDF)

Table S3 Growth curve datasets for the analysis of S. cerevisiae strains in low-nitrogen (SLAD) media. Cell growth is approximated by optical density readings at a wavelength of 660 nm. Optical density measurements are presented as the average of triplicate experiments.

(PDF)

Table S4 Growth curve datasets for the analysis of S. cerevisiae strains in low-nitrogen/low-glucose (SLALD) media. Cell growth is approximated by optical density readings at a wavelength of 660 nm. Optical density measurements are presented as the average of triplicate experiments.

(PDF)

Table S5 Growth curve datasets for the analysis of S. cerevisiae strains in SC media. Measurements of optical density and cell growth were as above.

(PDF)

Table S6 Average growth rates of S. cerevisiae strains in SC, SLAD, and SLALD media, with optical density measurements as above.

(PDF)

Acknowledgments

We thank Mark Johnston, Kobi Simpson, Jason E. Gestwicki, and Daniel J. Klionsky for reagents and/or helpful discussions regarding this manuscript.

Author Contributions

Conceived and designed the experiments: CJ HKK DM AIN PCA AK. Performed the experiments: CJ HKK DS CAS DM. Analyzed the data: CJ HKK DS CAS PCA AK. Contributed reagents/materials/analysis tools: CAS DS. Wrote the paper: CJ DM HKK PCA AK.

YIL042c and YOR090c encode the kinase and phosphatase of the
Snf1/Snf1p kinase signaling network. Mol Cell Biol 28: 79–90.

44. Yang Z, Bisson LF (1996) The SKS1 protein kinase is a multicopy suppressor of

42. Hong SP, Leiper FC, Woods A, Carling D, Carlson M (2003) Activation of
the SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of

38. Rupp S, Summers E, Lo HJ, Madhani H, Fink GR (1999) MAP kinase and

Concerted induction of the glycogen synthase and glycogen phosphorylase

36. Rupp S, Summers E, Lo HJ, Madhani H, Fink GR (1999) MAP kinase and

between the HOG and pheromone response MAPK pathways in Saccharo-

Characterization of Saccharomyces cerevisiae mutants lacking the E1 alpha subunit of the pyruvate dehydrogenase complex. FEBS 209: 697–705.

31. Elion EA, Brill JA, Fink GR (1991) FUS3 represses CLN1 and CLN2 and in
coenzyme with Kss1p prevents signal transduction. Proc Natl Acad Sci USA 88: 9392–9396.

29. Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling

tion of the Gpa2p, a potential mitogen-activated protein or extracellular signal-

activation of the Gpa2p alpha subunit of the pyruvate dehydrogenase complex. FEBS 209: 697–705.

26. Madhani HD, Styles CA, Fink GR (1997) MAP kinases with distinct inhibitory

activation of constitutive Ste7 promotes Ssk1-mediated invasive growth but

tion of Ste20p, a potential mitogen-activated protein or extracellular signal-

20. Elion EA, Brill JA, Fink GR (1991) Fus3 regulates CLN1 and CLN2 and in
coenzyme with Kss1p prevents signal transduction. Proc Natl Acad Sci USA 88: 9392–9396.
required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32: 1002–1012.

