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Comparing gene expression profiles over many different conditions has led to insights that were not obvious from
single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct
species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how
variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and
demographic factors, can be used to estimate the level and types of natural selection acting on genes across different
species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and
gene family-specific background rates for 744 core protein families in 30 c-proteobacterial species. We describe the
pattern of fast or slow evolution across species as the ‘‘selective signature’’ of a gene. Selective signatures represent a
profile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures
are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example,
glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in
carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is
organized into functional modules even at the level of natural selection, and thus it may be easier than expected to
understand the complex evolutionary pressures on a cell.
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Introduction

An enormous genetic diversity exists on earth, particularly
in the microbial domains of life - yet how much diversity is
functional, and what are the important adaptations that serve
to partition species into different niches? Adaptive differ-
ences can be identified in genes subject to positive Darwinian
selection - the evolutionary force that causes advantageous
genetic traits to spread in populations, allowing species to
differentiate ecologically. Natural selection acts not just on
individual proteins, but on the complex assemblage of
proteins specified by an organism’s genome. Thus, looking
for natural selection across the entire genome is valuable for
two reasons. First, it allows us to identify systems-level
patterns of adaptation - for example, selection on consecutive
enzymes in a metabolic pathway. Secondly, it provides a built-
in empirical distribution against which outliers (candidates
for selection) can be evaluated. In addition, by simultaneously
considering multiple genomes, we can compare relative
amounts of selection on a gene in different species subject
to different ecological constraints.

Much recent work has focused on genome-wide scans for
positive selection in human [1,2] and other eukaryotic species
(e.g. Drosophila, Plasmodium [3,4]). Many of these scans rely on
skews in polymorphism patterns as selectively favored alleles
become fixed in a population [5]. Most such tests for selection
assume that neutral polymorphism patterns at each locus are
unlinked from the rest of the genome, making selected loci
stand out as regions of reduced variation, or unexpectedly
long haplotypes [6]. It is thus unclear whether any of these
‘diversity-based’ tests (e.g., Tajima’s D [7], Fay & Wu’s H [8])
for positive selection on sexual genomes - which rely on the

assumption that recombination occurs between genomic loci
- will be amenable to bacteria, in which recombination is
decoupled from reproduction, occurring infrequently, and
sometimes across species boundaries (horizontal gene trans-
fer; HGT).
Alternative ‘rate-based’ approaches to detecting positive

selection (in both sexual and asexual species) include finding
genes with high rates of amino acid substitution - relative to
(i) the rate of evolution in other lineages (relative rates), or (ii)
the number of silent substitutions in the gene (nonsynon-
ymous : synonymous substitution ratio; dN/dS) [9]. These
approaches may lack power when positive selection affects a
small number of sites [6,10], and the latter may be
inappropriate as dS becomes saturated with multiple sub-
stitutions on long branches. Both approaches may have
difficulty distinguishing between positive selection (fixation
of beneficial mutations) and relaxed purifying selection (loss
of constraint, fixation of neutral or deleterious mutations, for
example during population bottlenecks). These two types of
selection can, however, be better distinguished by normaliz-
ing out demographic effects, and when polymorphism data is
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available, using independent methods such as the McDonald-
Kreitman (MK) test, which compares the ratio of synonymous
and nonsynonymous substitution rates within and between
groups [11].

In this study, we focus on relative evolutionary rates
because our model system, the c-proteobacteria, span a
considerable evolutionary time period over which synon-
ymous substitution rates are saturated in many branches, and
because polymorphism data from Escherichia coli provide an
independent means to estimate the relative contributions of
positive selection and relaxed negative selection to elevated
evolutionary rates. Nonetheless, we show results from dN/dS
profiling for comparison.

The biological factors driving protein evolutionary rates
are complex and widely debated [12–16] (for recent reviews
see [17,18]). In addition, selection may lead to subtle lineage-
specific variation in evolutionary rates. To identify poten-
tially important rate variation from the background of gene
family and genome-specific rates, we factor evolutionary rates
into three components that contribute to the total evolu-
tionary distance (amino acid substitutions per site) as defined
in Equation 1 (where r is the total evolutionary rate, and t is
time):

evolutionary distance ¼ r � t ¼
qðgene familyÞ� bðgenomeÞ � mðgene; genomeÞ � t

ð1Þ

The first and most significant background component (q in
Equation 1) is related to the protein family: for example,
&fj7the ribosomal machinery is known to evolve slowly across
all sequenced microbes, while surface-exposed proteins often
evolve rapidly to avoid predation. The second major
contribution (b in Equation 1) is the background rate of
evolution that results from the ‘molecular clock’ associated
with each lineage, perhaps due to between-species differences
in population size, generation time, constraint on codon
usage, or environmental factors such as UV light exposure
[19]. For example, genes from the intracellular parasites of
the Buchnera genus evolve more rapidly than those in other
Enterobacteria. This may be due to frequent population
bottlenecks, allowing fixation of neutral or slightly delete-
rious alleles, or an increased mutation rate [20,21]. Of
course, q and b are not always independent, and are expected

to interact, resulting in evolutionary rate variation that is
both gene-specific and species-specific (m in Equation 1).
When a gene evolves at the rate predicted by its gene
family and genome, m will be equal to one. However, when m
deviates from one, this may represent natural selection on
different functionality in different genomic/ecological mi-
lieus,
Deviations from the ‘expected’ rate of protein evolution

can be used to detect positive selection and functional
diversification between orthologous proteins [22–24], and the
‘expected’ background is best estimated empirically, by
measuring rates across the entire genome. A recent study
demonstrated global differences in evolutionary rate between
environments [19], but did not attempt to identify patterns of
natural selection on genes in different genomes. The growing
number of organisms with fully sequenced genomes provides
an opportunity to look for patterns of selection on genomes,
and to begin to address a question of fundamental interest:
to what extent does differentiation in core, ‘housekeeping’
genes drive functional divergence between species across the
tree of life? And can we identify genes under selection, and
make predictions about their biological/ecological signifi-
cance?

Results

Using a well-sampled sub-tree of c-proteobacterial ge-
nomes, we detected deviations from the ‘expected’ rate of
evolution (controlling for q and b, as described in the
Methods and Figure S1), by estimating m (Equation 1) for each
of 744 ‘core’ proteins present in single-copy in the majority of
species. Of these protein families, 718 (97%) reject a single
molecular clock for all species (Likelihood ratio test, p ,

0.05), indicating substantial species-specific rate variation
over the long time scales considered here. As recently shown
to be the case among species of fruit flies and fungi [25],
protein-family and genome-wide effects account for most
(80%) of the variation in evolutionary distances among
orthologous proteins in the gammaproteobacteria (Figure 1;
Pearson correlation¼ 0.89, p , 2.2e-16); we used the residual
variation on each branch as an estimate of m, and calculated a
Z-score (ratio of the mean of m to its standard deviation over
bootstrap-resamplings from the sequence data) to assess
confidence in any deviation from m ¼ 1. As expected, m
correlates well with dN (Pearson’s correlation¼0.44, p , 2.2e-
16), and the correlation is improved substantially once dN is
also normalized for protein-family and molecular effects
(Pearson’s correlation ¼ 0.78, p , 2.2e-16). Interestingly, m
correlates less well with normalized dN/dS (Pearson’s corre-
lation ¼ 0.11, p , 2.2e-16), perhaps due to dS becoming
saturated over the long time scales considered, or simply
because dN/dS and relative rates (m) detect different types and
magnitudes of selection, thus predicting different sets of
selected genes.
When relative rates are overlaid onto the species tree [26],

patterns of selection across both genes and species become
apparent. For example, genes involved in flagellar biosyn-
thesis (e.g., flgN, flgA and fliS) are unusually fast-evolving in
species of Enterobacteria, while genes putatively involved in
sulfur oxidation (yheL and yheM) are unusually slow-evolving
in species of Buchnera (Figure 2). As described below, genes
involved in the same biological function (e.g., flagellar
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Author Summary

Natural selection promotes the survival of the fittest individuals
within a species. Over many generations, this may result in the
maintenance of ancestral traits (conservation through purifying
selection), or the emergence of newly beneficial traits (adaptation
through positive selection). At the genetic level, long-term purifying
or positive selection can cause genes to evolve more slowly, or more
rapidly, providing a way to identify these evolutionary forces. While
some genes are subject to consistent purifying or positive selection
in most species, other genes show unexpected levels of selection in
a particular species or group of species—a pattern we refer to as the
‘‘selective signature’’ of the gene. In this work, we demonstrate that
these patterns of natural selection can be mined for information
about gene function and species ecology. In the future, this method
could be applied to any set of related species with fully sequenced
genomes to better understand the genetic basis of ecological
divergence.



biosynthesis or sulfur oxidation) tend to have a similar
‘selective signature’ (pattern of fast or slow evolution across
species). In other words, they evolve in a manner more similar
to each other than to genes of a different function. This

similarity could be due to genes of the same function being
encoded on the same operon (as is the case for flgA/flgN and
yheL/yheM, respectively). Yet fliS, which is encoded on a
different operon than flgA/flgN, has a selective signature

Figure 1. Evolutionary Rate Deviations as Evidence of Natural Selection

Observed branch length is plotted against the branch length predicted from gene-specific (q) and species-specific (b) effects (see Methods). A total of
16,681 points are plotted, corresponding to 744 orthologous proteins present in 16–30 species. Amino acid substitutions per site are shown on a log2
scale. The gray line corresponds to y¼ x.
doi:10.1371/journal.pgen.0040023.g001

Figure 2. Genes of Common Function Have Similar Selective Signatures

Relative rates of evolution are shown for five genes across 30 species. Fast-evolving genes (log2m . 0) are shown as red bars; slow-evolving genes
(log2m , 0) as blue bars; genes absent in a given species are not shown. The time scale for the phylogeny was estimated using a Bayesian relaxed
molecular clock model [52]. Flagellar genes: flgN (COG 3418; Flagellar biosynthesis/type III secretory pathway chaperone), flgA (COG 1261; Flagellar basal
body P-ring biosynthesis protein), fliS (COG 1516; Flagellin-specific chaperone). Sulfur metabolism genes: yheL (COG 2168; Uncharacterized conserved
protein involved in oxidation of intracellular sulfur), yheM (COG 2923; Uncharacterized conserved protein involved in oxidation of intracellular sulfur).
doi:10.1371/journal.pgen.0040023.g002
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similar to as the other flagellar genes (Figure 2), suggesting
selection on gene function.

Selection Acts Coherently at the Level of Function
In addition to the anecdotal cases described above, we

examined more generally whether genes of common function
tend to experience similar regimes of selection. Indeed, in our
overall dataset, pairs of genes sharing the same COG (clusters
of orthologous groups [27]) functional annotation have
significantly more correlated selective signatures (the vector
of m across all species) than pairs with different functions
(Kolmogorov-Smirnov (KS) test, D ¼ 0.12, p , 2.2e-16);
conversely, genes with similar selective signatures are more
likely to share a common function (Figure 3A). This indicates
that selection can act coherently at the level of function, and
across levels of organization larger than single genes. Consid-
ering each functional category in isolation, we find that most
functions (11 of 16 COG function categories, excluding
‘general’ and ‘unknown’ categories) contribute significantly
to this effect. Thus, selective signatures are a surprisingly good
predictor of common function – a feature that could be useful
in the annotation of genes of unknown function, provided
that they have orthologs in several species. Correlation in m is
also a significantly better predictor of function than correla-
tion in dN/dS (Figure 3A), or raw evolutionary distance, and
the predictive power remains strong even after removing
genes used to construct the species tree or genes on the same
operon (Figure S3). When dN/dS is normalized by its median
for each ortholog and genome to produce a ‘relative’ dN/dS
measure, it correlates much better with function, almost equal

to m, highlighting the generality of the empirical multi-species
approach used in this study.
Our dataset of 744 genes is enriched in highly conserved

‘housekeeping’ genes (median dN/dS¼ 0.047, with 70% of dN/
dS values (within 1 standard deviation on a log2 scale) ranging
from 0.005 to 0.26). Despite this uniformly low range of dN/
dS, the subtle rate variation captured by selective signatures
is able to identify co-dependencies between genes of related
functions. We explicitly tested the ability to detect co-
dependencies between genes by simulating codon data for
30 species under 36 different models of evolution, half of
which allowed dN/dS to vary on different branches, chosen at
random. All models allowed dN/dS to vary among sites.
However, for any site, dN/dS was only allowed to range within
1 standard deviation of the mean of the observed data (0.005
to 0.26). For each of the 36 models, 5 replicate datasets were
generated, and we treated replicates as genes with known
evolutionary co-dependence. We computed m for each of the
resulting 180 simulated genes, and found that in models with
branch variation in dN/dS, replicates of the same model had
significantly more correlated m across species than expected
(KS test versus all models, D ¼ 0.58, p , 2.2e-16; Figure 3B).
Thus, when at least some branch variation is present, selective
signatures are able to uncover genes with similar evolutionary
patterns, even amidst a strong background of purifying
selection.

Patterns of Selection Reflect Ecology
The relationship between selective signatures and gene

function is borne out in several genomes in our study. For
example, evolution of flagellar proteins appears to be most

Figure 3. Selection Acts Coherently on Cellular Functions

(A) Correlations in m, dN/dS, and relative dN/dS (normalized as described in Methods) were obtained for the 109,405 gene-pairs with a COG functional
category annotation (16 categories, excluding ‘‘general’’ or ‘‘unknown’’ function). Of these pairs, 10,377 have the same COG function, accounting for a
proportion of ;0.09 of the total (plotted as a solid gray line). Pairs were binned according to correlation-percentile in groups of ten percentile points
except for the last three (90%–95%, 95%–99%, 99%–100%). Shown is the fraction with common function in each bin. To avoid potential bias, percentiles
were calculated separately for genes present in different numbers of species (15 bins ranging from 16 to 30 species).
(B) Gene families under the same model of evolution have highly correlated selective signatures. Correlations in m were obtained for all pairs of
simulated gene families, with or without branch variation in dN/dS, and with dN/dS chosen randomly from within 61 standard deviation of the mean of
the observed dN/dS values (range: 0.005–0.26). The distribution of correlations is shown for pairs of gene families with branch variation in dN/dS and
that are replicates of the same evolutionary model (light blue). The distribution of all pairwise correlations—including gene families with or without
branch variation, and pairs from the same or different models—is also shown (gray).
doi:10.1371/journal.pgen.0040023.g003
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rapid in some species of Enterobacteria, perhaps reflecting
evolutionary ‘arms races’ with hosts or predators. In contrast,
ion transport/metabolism proteins, especially those involving
sulfur, are slowest evolving in Buchnera aphidicola APS (Table
S3A and S3B), indicating the importance of these proteins in
the lifestyle of this intracellular symbiont.

A deep-sea bacterium that lives at the periphery of
hydrothermal vents, Idiomarina loihiensis, presents a partic-
ularly interesting case study. Having lost many genes essential
for sugar metabolism, it relies instead on amino acids as its
primary source of energy and carbon [28]. Consistent with
disuse of sugar metabolism, we find that glycolysis genes, as
well as an upstream phosphotransferase system component
(COG2190) have some of the highest values of m in the
Idiomarina genome, suggesting relaxed negative selection on
this pathway (Figure 4). Moreover, carbohydrate transporters
and key glycolytic enzymes in the pentose phosphate and
Entner-Doudoroff pathways have been lost in Idiomarina, and
two of these relatively rapidly evolving enzymes have been
lost (COG166 and COG2190) in Colwellia, the most closely
related sister-taxon of Idiomarina in our study. Taken
together, these results suggest the relaxation of purifying
(negative) selection on this pathway resulting from the disuse
of sugars as a carbon source. By contrast, the relatively rapid
evolution of amino acid metabolic enzymes in Idiomarina
might reflect adaptation to growth on amino acids, partic-
ularly phenylalanine (Figure 4). Further supporting the idea
of a species-specific adaptation in Idiomarina, none of the
rapidly evolving phenylalanine metabolism genes are also
rapidly evolving in Colwellia, nor have they been lost in this
sister species. The 7 glycolysis genes and 3 phenylalanine
biosynthesis genes were also analyzed in PAML [29,30], using

models allowing dN/dS to vary among sites and branches, or
branches only (Table S4). In the branch-only models, none of
these genes had significantly high average dN/dS in Idiomarina,
but the branch-site models found evidence for a few sites in
each gene with unusually high dN/dS in Idiomarina. While
selective signatures cannot distinguish positive from relaxed
negative selection on these genes, the known ecology and
genome dynamics suggest positive selection on phenylalanine
metabolism and relaxed negative selection on sugar metab-
olism. Although the true patterns of selection may be more
complex, our results paint a broad picture of how the
Idiomarina core metabolism has been optimized for a diet of
amino acids rather than sugars, and lay a path for more
targeted follow-up studies.

Contributions of Purifying and Positive Darwinian
Selection
For the cases above, we used biological intuition to

discriminate the roles of positive and negative selection on
gene evolutionary rates. In general though, natural selection
may act to accelerate changes in a protein’s sequence (positive
selection; m . 1) or to slow down and constrain its rate of
change (negative selection; m , 1). Alternatively, when
negative selection is relaxed, the apparent rate of evolution
may increase due to fixation of slightly deleterious mutations
(relaxed negative selection; m . 1). Because these scenarios
cannot be distinguished by relative rates methods alone, we
employed an independent test for selection (the McDonald-
Kreitman (MK) test [11]) using polymorphism data from 473
genes from 24 fully sequenced E. coli strains, with Salmonella
enterica as an outgroup. In the MK test, rather than normal-
izing according to a sample of distantly related species (as in

Figure 4. Rapidly Evolving Pathways in I. loihiensis

Simplified schematic of glycolysis and phenylalanine metabolism in I. loihiensis. Metabolic intermediates are denoted by white circles; enzymes by
arrows. ‘‘Fast-evolving’’ enzymes, depicted as red arrows, are defined as those with m in the top 10% of genes in the I. loihiensis genome. The names of
genes encoding fast-evolving enzymes are shown, highlighted in light blue or orange, respectively for glycolysis or phenylalanine metabolism.
Nonfunctional pathways (those with many key enzymes or transporters missing) are shown in gray. Of the ‘‘present’’ enzymes shown in black, only one
is slow-evolving (m , 1) in Idiomarina: COG 191, encoding the enzyme fructose bisphosphate aldolase, which interconverts F1,6P and GA3P.
Abbreviations for metabolic intermediates: PEP, phoshphenolpyruvate; E4P, erythrose-4-phosphate; DAHP, 7P-2-dehydro-3-deoxy-arabinoheptonate;
DHQ, 3-dehydroquinate; DHS, 3-dehydroshikimate; prCat, protocatechuate; shik, shikimate; shik-3P, shikimate-3-phosphate; CVPS, 5-O-(1-carboxyvinyl)-
3-phosphoshikimate; chor, chorismate; prePh, prephenate; phPy, phenylpyruvate; Phe, phenylalanine; G6P, glucose-6-phosphate; F6P, fructose-6-
phosphate; F1,6P, fructose-1,6-bisphosphate; GA3P, glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone phosphate; G1,3P, glyerate-1,3-bisphospate;
G3P, glycerate-3-phosphate; G2P, glycerate-2-phosphate. COG and EC numbers of fast-evolving genes: AroB: COG337, EC4.2.3.4; AroQ: COG757,
EC4.2.1.10; AroE: COG169, EC1.1.1.25; PheA: COG77, EC4.2.1.51; Pgi: COG166, EC5.3.1.9; Fbp: COG158, EC3.1.3.11; Pfk: COG205, EC2.7.1.11; TpiA: COG149,
EC5.3.1.1; Eno: COG148, EC4.2.1.11.
doi:10.1371/journal.pgen.0040023.g004
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the selective signatures approach), we normalize according to
the expected dN/dS from a within-species polymorphism
sample. Specifically, the ratio of synonymous (S) and non-
synonymous (NS) changes at polymorphic sites (within the 24
strains) is compared to the ratio at (nonpolymorphic)
divergent sites (comparing E. coli to S. enterica). The Fixation
Index is calculated as FI¼ (divergent NS/S)/(polymorphic NS/S)
[3]. Under neutral evolution, FI is expected to equal 1; under
positive selection it may exceed 1, and under negative
selection it may be less than 1. We compared the FI values
of the 473 genes to their corresponding selective signatures (m)
in E. coli and found a significant positive correlation (Pearson’s
correlation¼0.23, p¼6.5e-7). Although relaxation of negative
selection on the branch leading to S. enterica could result in
high values of FI, at least some of the genes with the highest
values of FI are expected to be under positive selection [31].
This demonstrates that relative rate acceleration is often
associated with positive selection, and deceleration with
purifying selection (for a complete list of selected genes
identified by both methods, see Table S5). The correlation
between m and FI is striking because, although the same set of
gene families were used to calculate relative rates and the FI,
the former used protein sequence while the latter used DNA,
and the alignments were performed independently using
different sets of species. These results imply that many genes
have experienced positive selection since the divergence of E.
coli and Salmonella, despite low overall values of dN/dS.

When the distributions of FI values are compared between
genes with fast (m . 2) versus slow (m , 0.5) relative rates
(Figure 5A), the difference is very clear. Fast-evolving genes
have significantly higher FI values than slow-evolving genes

(one-sided KS test; D ¼ 0.43, p ¼ 4.1e-6). The fast and slow
subsets are also both significantly different from the mid-
range (0.5 , m , 2) subset of genes (one-sided KS tests: D ¼
0.17; p ¼ 0.04, and D ¼ 0.30; p ¼ 2.7e-5, respectively for fast
and slow). Moreover, the distribution of FI values for fast-
evolving genes has a broad shoulder with mean slightly less
than 1, and a sharper peak with mean greater than 1 (note the
log2 scale in the figure). The simplest interpretation of these
results is that increased relative rate reflects both relaxed
negative selection and positive selection. Interestingly, the
two hypothesized distributions appear to contain a similar
number of genes, suggesting that positive selection is about as
common as relaxed negative selection as a cause for
acceleration of evolutionary rate. This result is largely in
agreement with the previous finding that ;50% of amino
acid substitutions between E. coli and S. enterica were fixed by
positive selection [31], with the remaining substitutions due
to genetic drift, perhaps resulting from relaxed negative
selection or hitchhiking with positively selected mutations
(discussed below).
Unusually slowly evolving genes (m , 0.5), on the other

hand, show greater levels of negative selection (low FI) than
normal genes (0.5 , m , 2). While these results may seem
unsurprising at first, it is important to note that our
evolutionary rates have been normalized for gene family-
specific effects, thus even the fastest evolving genes (in terms
of ‘raw’ rate) will appear ‘slow-evolving’ (m , 1) in about half
of the genomes. Conversely, the slowest evolving genes (e.g.,
the ribosomal machinery) will appear to be ‘fast-evolving’ (m
. 1) in about half of the genomes.
To further investigate the role of negative selection, we

Figure 5. Evidence for Positive and Negative Natural Selection

(A) Comparison of relative rates (m) and Fixation Index. Histograms show the frequency (probability density) distribution of FI values for fast-evolving (m
. 2; dark red; n¼69) and slow-evolving (m , 0.5; light blue; n¼63) genes. Bins are labelled with the FI value corresponding to their midpoint, on a log2
scale. FI was calculated by counting fixed and polymorphic substitutions at synonymous and nonsynonymous sites, in a sample of 473 COGs (all present
in the relatives rates dataset, and consistent with the species tree topology according to the K-H test, as described in the Methods) in 24 E. coli strains,
using S. enterica as an outgroup.
(B) Purifying selection and gene deletions. Fast-evolvers (or slow-evolvers) were defined as those genes evolving four times faster (or slower) than
expected (m . 4.0 or m , 0.25, respectively, for fast and slow, with a Z-score . 1.0). For the fast and slow sets of genes, we counted the number with
lost orthologs in the closest sister clade in the species tree. When the sister clade contains multiple species, loss indicates the gene was absent from all
species in the clade. Frequency of loss among the fast and slow sets was significantly different than the average over all other genes: higher in the fast-
evolving set (Fisher’s exact test: Odds Ratio ¼ 3.1, p ¼ 2.4e-7), and lower in the slow-evolving set (Fisher’s exact test: Odds Ratio¼ 0.55, p ¼ 0.01).
(C) Evidence for genetic hitchhiking. A binomial test was used to determine whether fast (or slow) evolving genes tend to be clustered in the genome
near other fast (or slow) evolving genes across all 30 species combined (m . 1 or m , 1, respectively, for fast and slow, with a Z-score . 1.0). Log p-
values are plotted for pairs separated by distance-windows of 0–5 genes, 6–20 genes, 21–100 genes, 101–200 genes, and 201–300 genes (points shown
indicate the maximum separation). The gray line represents p ¼ 0.05.
doi:10.1371/journal.pgen.0040023.g005
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used gene deletions within a clade as evidence of relaxed
negative selection, with the expectation that genes under
relaxed selective constraint are lost more frequently. Con-
sistent with a significant role for negative selection in
constraining rate variation, genes evolving much more slowly
than expected (m , 0.25) were less likely to have undergone
deletion in a sister clade (Figure 5B). Conversely, genes
evolving much faster than expected (m . 4.0) were more likely
to have lost their ortholog in a sister clade, pointing toward
relaxed negative selection.

Evidence for Genetic Hitchhiking in Bacteria
In sexually recombining organisms, positively selected

mutations are thought to sweep rapidly through the pop-
ulation, lowering effective population size and decreasing the
effectiveness of negative selection at linked loci. When sweeps
occur faster than recombination can separate the beneficial
allele from ‘hitchhikers’, clusters of rapidly evolving genes (i.e.,
one gene under positive selection, and linked genes under
relaxed negative selection) can arise [6]. Perhaps unexpectedly
for an asexual species, selective sweeps and genetic hitchhik-
ing between linked (;30 kb apart), but not unlinked loci, have
been documented in E. coli [32]. Theoretically, there exist
regimes of selection and recombination in prokaryotes that
would be able to produce a pattern of genetic hitchhiking [33].
Early work on variation across ;1700 strains of E. coli showed
genetic linkage between loci separated by ;45 kb [34] - an
estimate largely supported by recent whole-genome scans,
which find recombinational segments of up to 100 kb [35]. To
determine whether genetic hitchhiking was detectable among
fast-evolving genes in this study, we examined proximal pairs
of genes (separated on the chromosome by 0–5 genes) and
asked whether they showed a tendency to co-evolve - either
both ‘fast’ (m . 1), or both ‘slow’ (m , 1). Proximal genes are
frequently encoded on the same operon, and are thus
expected to be under similar selective pressures due to co-
expression and common function. Indeed, we find that pairs
of genes predicted to be on the same operon [36] co-evolve in
the same direction (either both genes with m . 1, or both with
m , 1, Z-score . 1; Fisher’s Exact Test: Odds Ratio¼ 3.1, p ,

2.2e-16). In fact, selective signature (correlation in m across
species) is a better predictor of operons than dN/dS, and about
as accurate as a small compendium of gene expression data
from E. coli under different experimental conditions (Figure
S2). Because these operon effects could confound the
detection of hitchhiking, we restricted our analysis to pairs
of genes on different operons, transcribed on opposite strands
of DNA or separated by at least one gene on the opposite
strand. In this operon-free dataset, we observe a slight but
statistically significant tendency for fast-evolving genes (m .

1), but not slow-evolving genes (m , 1), to cluster together in a
genome, not only at distances of 0–5 intervening genes, but
even as far as 20–100 genes apart (Figure 5C). Assuming an
average gene length of ;1 kb in prokaryotes [37], clustering of
fast-evolving genes up to 100 genes apart (Figure 5C) is very
much consistent with earlier predictions [32–35]. Alterna-
tively, genomic mutational hotspots might explain the
observed clustering, but this hypothesis is currently difficult
to test. Therefore, we tentatively conclude that selective
sweeps are occurring in a significant fraction of the 30 species
analyzed in this study, and that these sweeps leave a detectable
signal in the form of accelerated evolutionary rates.

Taken together, the observed correlations between m and
the Fixation Index (MK test), deletion frequency, and the
inferred footprint of genetic ‘hitchhiking’ lead us to conclude
that m is reflective of both positive and negative natural
selection on core genes.

Discussion

We have described an approach to detecting selection
across genes and genomes. By applying a simple, empirical
normalization, we have identified unusually fast- and slow-
evolving genes in a phylogeny of 30 bacterial species. Many of
these genes are likely targets of natural selection, and are thus
among the most important in shaping phenotypic and
ecological divergence among species. As genome sequencing
continues to outpace detailed phenotypic and functional
characterization in many species, efforts to identify the
genetic basis underlying ecological differentiation will rely
increasingly on sequence-based approaches. Our approach is
widely applicable across the tree of life, as it requires only a
set of sequenced genomes with common orthologs. Selective
signatures have the advantage of detecting subtle gene- and
lineage-specific variation in evolutionary rates, but the
disadvantage of being limited to core orthologs with
representatives in several genomes. For this reason, the
timescale and resolution of our approach will depend on the
set of species included in the analysis. This study was
restricted to extant species (terminal branches), but could
easily be extended to include ancestral species (internal
branches), providing insight into ancient selective pressures
and adaptations.
Relative rates provide information about which genes are

evolving unusually rapidly or slowly, but not about what type
of natural selection is responsible. We have complemented
our between-species relative evolutionary rate estimations
with within-species polymorphism data from E. coli to show
that relative rates are a reasonable and easily estimated
predictor of positive and negative selection. In the absence of
polymorphism data, relative rates can still yield high-quality
predictions of selected genes, which should be followed up by
further experimentation to test their functional significance.

Selective Signatures as a Measure of Natural Selection, or
of Niche-Specific Changes in Selection
Even for detecting selection in single genomes, the selective

signatures approach can be powerful because it can identify
positive (or relaxed negative) selection for genes with low
values of dN/dS, while in some other cases selection is more
easily detected using dN/dS with a variable branch or branch-
site model. To illustrate this, we simulated codon data for 180
genes families under different models of natural selection
across our tree of 30 c-proteobacteria, and calculated dN/dS
and m in each branch (Methods). In cases with elevated dN/dS
in all branches (Model 1 in Figure 6), PAML is able to
correctly identify all branches under selection. Because there
is very little variation among branches, m is uninformative,
despite positive selection in all lineages. When branch
variation is present, and selection is strong in some branches
but not others (Model 2 in Figure 6), both m and dN/dS are
able to correctly identify the species under selection. Yet
when branch variation is present but the branch under
selection is only weakly selected (few sites and dN/dS only
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slightly higher than background), it is identified correctly by m
but not dN/dS (Model 3 in Figure 6). Therefore, m is well-
suited to detect subtle cases of species-specific selection, but
is powerless to detect uniform positive selection in all species.

This is further demonstrated in an example from a gene
family in our dataset: PstC (COG573), which encodes a
permease involved in phosphate transport. This gene is highly
conserved across 18 species, with dN/dS near zero in most

Figure 6. Detection of Positive Selection by dN/dS and m under Different Evolutionary Models

Values of dN/dS and m (mean over 12 replicates of each model) are shown for three simulation models. Model 1: dN/dS¼ 2 at 3/10 of sites and dN/dS¼
1 at 7/10 of sites, in all species (shown in red). Model 2: dN/dS¼ 2 at 3/10 of sites and dN/dS¼ 1 at 7/10 of sites, respectively, for the species shown in
red. All other branches had dN/dS¼ 0 at all sites. Model 3: dN/dS¼ 2, dN/dS¼ 1, and dN/dS¼ 0 at 1/10, 7/10, and 2/10 of sites, respectively, in the
species shown in red. All other branches had dN/dS¼ 1 and dN/dS¼ 0 at 8/10 and 2/10 of sites, respectively. Values of dN/dS and m are also shown, as
estimated for a real protein family from our dataset of 744 protein families in 30 species.
doi:10.1371/journal.pgen.0040023.g006
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species except Xylella fastidiosa and Xanthomonas campestris,
which have among the highest genome-wide average dN/dS,
suggesting the high dN/dS of PstC may be due in part to
demographic effects. Despite the lack of information from
dN/dS, this gene shows substantial variation in m across
species (Figure 6), which may be related to species-specific
ecological factors.

Like the Fixation Index computed in the MK test, selective
signatures measure selection relative to a baseline. While the
MK identifies selection relative to a baseline of within-
population polymorphism, selective signatures test for
selection relative to a baseline established by related species.
Despite their contrasting and independent data and analyt-
ical methods, the two measures tend to overlap significantly
in their predictions of natural selection. Moreover, the
positive association between them (Figure 7; Odds ratio .

1) persists at high, intermediate, and low levels of dN/dS. The
association may be slightly stronger when dN/dS is very high,
due to correct identification of strong positive selection by all
three methods. Yet even when absolute dN/dS is low, the FI
and m often agree that evolutionary rate is relatively fast,
suggesting positive or relaxed negative selection (or strong
negative selection, when both FI and m are low), perhaps on
just a few sites. While the MK test may wrongly predict
selection after a population bottleneck, leading to between-
species fixation of slightly deleterious mutations [10],
selective signatures explicitly normalize out such genome-
wide effects. On the other hand, if demographic effects are
not significant, the MK test has the advantage of distinguish-
ing positive selection from relaxed negative selection, which
is not possible with selective signatures. In addition, HGT
(e.g., from S. enterica to E. coli) is expected to reduce the
observed divergence, lowering m without affecting FI or dN/
dS. Thus, the intersection of genes predicted by both high FI
and m (see Table S5) provides a more robust prediction of
positive selection.

Because selective signatures are also lineage-specific, they
represent a measure of niche-specific changes in selection,
and have the advantage of being sensitive to substitutions in

just a few amino acid sites, provided these are unexpected
relative to the gene-family and genome-specific background
rates. For example, we identified several Idiomarina genes with
high values of m, which corresponded to only a few sites with
high dN/dS, while average dN/dS across each gene was low
(Table S4). Even if rate acceleration is due to relaxed negative
selection rather than positive selection, the change in
selection detected by m is both gene- and lineage-specific,
and thus may be relevant to ecological differentiation among
species. Genes with similar values of m in the same species may
be part of a co-evolving functional module, and correlations
in m are able to identify such sets of genes (Figures 3, 4, and S2).

Genome Evolution through Horizontal Transfer and
Changes in Core Genes
Can horizontal transfer alter effective protein evolutionary

rates, thereby affecting selective signatures? HGT is prevalent
in prokaryotes [38,39], especially among closely related taxa
[40]. For example, we suspect that homologous recombina-
tion (or HGT between close relatives) within ‘species’
contributes to the observed clustering of rapidly evolving
genes (Figure 5C). HGT can also complicate inferred evolu-
tionary rates in two qualitatively different ways: (i) transfer
from distant lineages (or replacement with paralogs) can
make distances to sister taxa appear long (and disrupt tree
topology); and (ii) transfer between sister taxa does not affect
tree topology, but can shorten observed distances. Thus,
some of our observed rate variation is likely due to lateral
gene flow. We investigated the extent to which HGT affects
our results by repeating our analyses with a set of genes more
likely to include horizontal gene flow, and concluded that
our main findings are not easily attributable to artifacts of
HGT (Figures S4–S6). Moreover, our main findings are
supported by methods not directly biased by HGT (MK and
dN/dS tests).

Summary
Species are believed to diverge only when they gain the

ability to exploit a new ecological niche [41], and this may
come about through mutations in existing (core) genes, or

Figure 7. Positive Association of Selective Signatures (m) and Fixation Index, Independent of dN/dS

We counted E. coli genes with FI . 1.2 or FI , 0.6 as ‘‘high’’ and ‘‘low,’’ and with log2 m . 0.5 (m . 1.4) or log2 m ,�0.5 (m , 0.7) as ‘‘high’’ and ‘‘low.’’
The genes were divided into sets with relatively high dN/dS ( .0.06), medium (0.02 , dN/dS , 0.06), or low dN/dS (,0.02). Within each set, counts
were binned in 2 3 2 contingency tables to calculate the Odds Ratio statistic, with Odds Ratio . 1 indicating positive association between m and FI. One-
sided p-values of Fisher’s exact test are shown.
doi:10.1371/journal.pgen.0040023.g007
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acquisition of new genes. It is gaining widespread acceptance
that the latter is responsible for many, if not most adaptations
[39,42], and possibly ensuing speciation events. Yet, as we
demonstrate, core genes are also subject to selection, and likely
contribute to differentiation between species over long time
spans. Much of this selection is positive, leading to novel
adaptations in core genes. Thus, core genes, which are by
definition retained in genomes over long periods of time, may
be quite dynamic in terms of their precise molecular
functionality. The coherence of selective patterns across genes
of similar function (those with the same operon, functional
annotation, or in the same pathway) is exciting because it
suggests that the genomic landscape is organized into func-
tional modules even at the level of natural selection. Thus, it
may be easier than anticipated to understand the complex
evolutionary pressures acting on genomes. Correlations in
selective signatures could be used to identify fitness co-
dependencies among genes in much the same way that
correlated mRNA expression profiles are used to identify
genes connected in the physical or regulatory networks of the
cell.

Materials and Methods

Estimation of relative evolutionary rates (m). To calculate relative
evolutionary rates (m), normalized to remove protein-specific ‘scaf-
fold’ constraints (q) and species-specific ‘molecular clock’ (b) effects,
we first constructed a ‘species tree’ for 30 species of c-proteobacteria
(see Table S2 for species names and taxonomy IDs). Our tree is based
on a concatenation of amino acid sequences for 80 housekeeping
genes that occur in single-copy in each genome (Table S1), and have
previously been shown to be orthologous and consistent with a single
organismal phylogeny [43]. Gene trees were then constructed for 977
putative ‘core’ gene families (members of the same cluster of
orthologous genes [27], retrieved from the MicrobesOnline database
[44]), each occurring as a single copy in at least 16 of the 30 genomes.
Multiple sequence alignments (MSAs) were performed using
MUSCLE [45], and all gaps were removed, along with one flanking
residue on either side. Gene trees were constructed from the
resulting MSAs using Tree-Puzzle [46] with a JTT amino acid
substitution model [47] and 8 c-distributed rate categories. Estima-
tion of m proved to be independent of the substitution model used
(see Figure S7 for comparison with WAGmodel [48]). Gene trees were
screened to remove genes that may have resulted from horizontal
transfer by excluding all gene families with topologies that conflicted
with the species tree topology according to a Kishino-Hasegawa (K-H)
test [49] (p , 0.05). Of the remaining 744 ‘core’ gene families, 99% of
the top BLAST hits were to a member of the same Genus, or to a
neighboring branch on the species tree. For the 744 gene families
consistent with the species tree phylogeny, trees were re-built using
the consensus ‘species tree’ topology, but with branch lengths
estimated separately for each gene. These gene trees were first
normalized to remove gene family-specific contributions (q) by re-
scaling each tree such that the sum of all branch lengths in the tree
matched that expected by the species tree (considering only those
branches of the species tree that are present in the gene tree). Gene
trees were further normalized to remove ‘molecular clock’-type
effects (b � t) by dividing each branch by the corresponding branch
length in the species tree (Figure S1). Only terminal branches (those
leading directly to extant species) were used in this study, and
branches with near-zero sequence changes were excluded from the
analysis. Finally, the resulting relative rates were median centered
within each genome, leaving an estimate of m in which values greater
than 1.0 indicate faster than expected evolution (e.g., due to positive
or relaxed negative selection), and values smaller than 1.0 indicate
slower than expected evolution (e.g., due to increased negative
selection). To estimate the significance of the deviation from 1.0 (no
unusual selective pressures), we computed 100 replicates of our
estimate for m by nonparametric sequence bootstrapping, and
computed a ‘Z-score’ as the ratio of the observed log2(m) to the
square root of its variance over the bootstrap replicates.

Estimation of synonymous and nonsynonymous substitution rates
(dS and dN). We used the codeml program from the PAML 4.0 package

[29] to estimate dN and dS, allowing their ratio to vary freely along
branches of the species tree (‘free-ratio’ model). Estimates of dN, dS
and dN/dS were made for each of the 744 core orthologs described
above. To generate ‘relative’ values of dN, dS and dN/dS, each of these
values was first normalized by its median value for each genome, then
by the median for each ortholog. Note the order of normalization
steps is reversed from that for relative rates, because there is no prior
expectation that dN/dS values across the tree are proportional to
evolutionary time/distance.

Simulation of genes under different models of selection. We used
the evolver program from the PAML 4.0 package [29] to simulate gene
families of 300 codons in 30 species, using the c-proteobacteria
species tree topology. In the first set of simulations (Figure 3B), we
used two classes of sites (occurring at frequency 0.1 and 0.9,
respectively), each with a different value of dN/dS, randomly chosen
from within 61 standard deviation of the mean of the observed
distribution of dN/dS in our dataset of 744 genes across 30 species. In
18 of the models, dN/dS was not allowed to vary among branches; in
the remaining 18 a different dN/dS value was chosen at random for
each site class and each branch. For each model, we generated 5
replicate codon sequences in 5 independent runs of evolver. In the
second set of simulations (Figure 6), we used either 2 or 3 classes of
sites (with frequency chosen within the range of 0.1 to 0.9), each with
dN/dS of either 2.0, 1.5, 1.1, 1.0, 0.5 or 0. We generated 180 different
models, 45 of which did not allow branch variation, and the
remaining 135 with 1 to 5 branches under selection, with one site
class having a higher dN/dS than the other branches. We generated
12 replicate sequences for each model. For both sets of simulations,
we translated the codons to amino acid sequence in order to
calculate m, treating each replicate of each model as a protein family.
We also estimated dN/dS in each branch using the free-ratio model in
PAML.

McDonald-Kreitman tests. Gene families were retrieved from 24
strains of E. coli (including strains of Shigella; see Table S2B), and an
outgroup, S. enterica. Each gene had exactly one representative in each
strain. Genes were assigned to orthologous families using OrthoMCL
[50]. Only the 473 gene families corresponding to COGs in the
relative rates dataset, and not violating the K-H test, were retained
for analysis. We tried excluding genes with a large number of
divergent sites relative to polymorphic sites, which might reflect HGT
from closely related species, but this did not significantly affect
results. Nucleotide sequences were aligned and trimmed using
MUSCLE, as described above. Polymorphic substitutions (within the
24 strains of E. coli) and divergent substitutions (fixed between E. coli
and Salmonella) were counted, and assigned to synonymous or
nonsynonymous categories, as previously described [11]. Only codons
for which there were no more than two states were retained for
analysis, and we always chose the pathway between codons that
minimized the number of nonsynonymous changes. An Odds Ratio
statistic, the Fixation Index (FI), was then calculated as described in
the main text.

Supporting Information

Figure S1. Example of Tree Normalization and Calculation of m

The normalization procedure is illustrated for two example protein
families (columns). We begin with a gene tree of three species
((A,B),C), with branch length ( (substitutions/site) 3 10�2) equal to
total evolutionary distance (top row). The gene tree is first
normalized so that terminal branches all sum to 1. The resulting
gene tree, normalized to remove gene-family effects (q) is shown in
the second row. Each branch in the normalized gene-tree is then
divided by the corresponding branch in the normalized species-tree
(b, shown in the third row) to yield an estimate of m for each branch,
shown in the bottom row. Values of m . 1 reflect faster-than-expected
evolution; m , 1 reflect slower-than-expected evolution.

Found at doi:10.1371/journal.pgen.0040023.sg001 (472 KB TIF).

Figure S2. Operon Prediction by Correlation in m, dN, dS, and dN/dS

Receiver Operating Characteristic curve of several methods for
operon prediction. Pairs of genes predicted to be on the same operon
are considered ‘‘true positives’’; pairs on different operons as ‘‘false
positives.’’ Correlations were computed between the 157,612 pairs of
genes for which both gene expression (from E. coli microarrays under
14–17 different experimental conditions) and relative rate (m) data
was available, and for which the pair is present in at least 16 of 30
species. Of these pairs, 898 are predicted to fall on the same operon
in E. coli [36]. To avoid systematic biases in correlations (pairs present
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in fewer species might achieve higher correlations by chance), the
correlations were percentile-ranked together with other genes
present in the same number of species. For each level of percent-
ranked correlation (in either m, expression level or raw/normalized
dN, dS, or dN/dS, estimated as described in Methods), the percentage
of pairs above this level in the different-operon set is plotted against
the percentage in the same-operon set. The solid gray line represents
random prediction (y¼ x). We also assessed the ability of similarity in
Fixation Index (FI) to predict E. coli genes on the same operon. For
each pair of COGs present in E. coli, we calculated ‘‘delta FI’’ as the
absolute difference between the FI of each COG. Delta-FI was
percentile-ranked and plotted on the operon-predicting ROC curve.
Similarity in FI is a rather poor predictor of operons, perhaps
because it a scalar value from one species, rather than a correlation
across many species. The E. coli gene expression data was obtained
from http://www.microbesonline.org. Correlations in expression level
(mean log-ratio of experimental condition to control) were taken
between genes for which expression had been measured in at least 14
of 17 experimental conditions, including heat shock (experiment ID
12 [51]), low pH (experiment ID 40; Blattner lab), UV exposure
(experiment ID 46, seven time points; GEO (http://www.ncbi.nlm.nih.
gov/projects/geo/) accession GSE9), and tryptophan exposure/starva-
tion (experiment ID 47, eight time points; GEO accession GSE7).

Found at doi:10.1371/journal.pgen.0040023.sg002 (344 KB PDF).

Figure S3. Effect of Normalization Procedure (A) and COGs Used in
Species-Tree Construction (B) on Rate-Function Correlation

Methods are as described in Figure 3 of the main text.
(A) Comparing normalized rates (m) to nonnormalized ‘‘raw’’ evolu-
tionary distance. Red lines, correlation in m between gene-pairs; black
lines, correlation in raw evolutionary distance (nonnormalized gene-
tree branch lengths) between gene-pairs; filled circles, including all
gene pairs; open circles, excluding pairs on the same operon. The
distribution of m-correlations among gene-pairs of common function
is significantly more biased toward high correlation than the
distribution of raw-distance correlations between gene-pairs of
common function (KS test, D ¼ 0.12 and D ¼ 0.10, respectively, for
total and same-operon excluded datasets, both p , 2.2e-16),
indicating that m-correlation is a significantly better predictor of
function than raw distance, even when same-operon pairs are not
considered. The gray line denotes the mean fraction with shared
function, over all genes.
(B) Comparing the full set of normalized rates (shown in red) with the
set excluding the 80 COGs used to construct the species tree (shown
in blue). The mean fraction of genes with shared function for each of
these datasets is shown in red or blue, respectively. The distribution
of m-correlations among gene-pairs of common function does not
differ significantly between these datasets (KS test, D¼0.02, p . 0.05).

Found at doi:10.1371/journal.pgen.0040023.sg003 (1.0 MB TIF).

Figure S4. Effect of Topology Violation (Putative HGT) on Rate-
Function Correlation

m-Correlations between genes were obtained for gene-pairs falling
into three categories: (1) Overall: those among the 744 used
throughout this work (red); (2) non-HGT: those among the 161
high-quality orthologs of Lerat et al. [43] (blue); or (3) HGT: those
among the 173 orthologs found to significantly violate the species
tree topology by the K-H test (green). Only gene-pairs with a COG
functional category annotation (16 categories, excluding ‘‘general’’ or
‘‘unknown’’ function), and which occur in at least 16 of 30 species,
were used.
(A) All pairs, including genes on the same or different operons; (B)
excluding gene-pairs on the same operon. For each case, we binned
the pairs according to m-correlation-percentile (as described in
Figure 3) and plotted the fraction with common function in each
bin. m-Correlations are expressed as percentiles to control for
possible bias in computing correlation for different vector lengths
(ranging from 16–30 species). Solid horizontal lines represent the
mean fraction of gene-pairs with shared function, averaged over all
values of m-correlation. For both (A) and (B), the distribution of m-
correlations differed between same-function and different-function
pairs only for the Overall and non-HGT sets, but not the HGT set (KS
tests: p , 2.2e-16 and NS, respectively, for Overall/non-HGT and
HGT set). The distribution of Overall m-correlations among gene-
pairs of common function is significantly different from the HGT
distribution for gene-pairs of common function (KS test, D . 0.12, p
, 1e-4, for both operon-excluded or total dataset).

Found at doi:10.1371/journal.pgen.0040023.sg004 (954 KB TIF).

Figure S5. Frequency of Lost Orthologs in Sister Taxa for HGT and
Non-HGT Datasets

Within each of three datasets (topology violators [failed K-H test,
putative HGT], high-confidence [putative non-HGT from Lerat et al.
[43]], or Overall [744 genes, passed K-H test]), fast-evolvers (or slow-
evolvers) were defined as those genes evolving four times faster (or
slower) than expected (m . 4.0 or m , 0.25, respectively, for fast and
slow, with a Z-score . 1.0). For the fast and slow sets of genes, we
counted the number with lost orthologs in the closest sister clade in
the species tree. When the sister clade contained multiple species, the
loss was only counted if all species in the clade had lost the ortholog.
Frequency of loss among the fast (red) and slow (blue) sets was
compared to the frequency of loss over all genes (gray) using Fisher’s
exact test; asterices denote significant differences (p , 0.01). In each
of the three datasets, the proportion of lost orthologs was
significantly different between fast-evolving and slow-evolving genes.
The proportion of fast-evolving genes with lost orthologs did not
differ significantly between the HGT and Overall set, nor between the
high-confidence non-HGT and Overall set. However, the proportion
of slow-evolving genes with lost orthologs was significantly higher in
the HGT set than the Overall set (Fisher’s exact test, Odds Ratio¼3.2,
p ¼ 0.009), but not between the non-HGT and Overall set.

Found at doi:10.1371/journal.pgen.0040023.sg005 (1.9 MB TIF).

Figure S6. Clustering of ‘‘Fast’’ Genes in HGT and Non-HGT Datasets

(A) High confidence dataset (161 probable non-HGT genes [43]).
(B) Topology-violating dataset (173 probable HGT genes; failed K-H
test). For each dataset, a binomial test was used to determine whether
fast (or slow) evolving genes tend to be clustered near other fast (or
slow) evolving genes on the chromosome across all 30 species (m . 1
or m , 1, respectively, for fast and slow, with a Z-score . 1.0). The log
p-values from the binomial test are plotted against genomic distance
between genes. All pairs were on different operons. The p-values are
plotted for pairs separated by distance-windows of 0–5 genes, 6–20
genes, 20–100 genes, 100–200 genes, and 200–300 genes. Points shown
indicate the maximum separation in each nonoverlapping window.
The gray line represents a p-value of 0.05.

Found at doi:10.1371/journal.pgen.0040023.sg006 (1.1 MB TIF).

Figure S7. Agreement of Values of m Estimated Using JTT and WAG
Substitution Models

For each of 744 genes across 30 species, the value of m estimated
under a JTT substitution model is plotted against the value estimated
under a WAG substitution model. The species tree topology did not
differ significantly between JTT and WAG models implemented in
Tree-Puzzle (K-H and S-H tests, p . 0.05); therefore, the same
topology was used for both models, but with branch lengths estimated
separately to compute m under each model. The models produce
near-identical values of m (Pearson’s correlation¼ 0.987, R2¼ 0.974, p
, 2.2e-16, n ¼ 16,681).

Found at doi:10.1371/journal.pgen.0040023.sg007 (114 KB PDF).

Table S1. List of Genes Used To Construct the Species Tree

Found at doi:10.1371/journal.pgen.0040023.st001 (75 KB PDF).

Table S2. Taxonomy IDs of Species Used in This Study

Found at doi:10.1371/journal.pgen.0040023.st002 (47 KB PDF).

Table S3. Enrichment of COG Functional Categories in Top 10%
Fast- or Slow-Evolving Sets of Genes

Found at doi:10.1371/journal.pgen.0040023.st003 (46 KB PDF).

Table S4. Evidence for Site-specific Changes in dN/dS in Idiomarina
Genes

Found at doi:10.1371/journal.pgen.0040023.st004 (100 KB PDF).

Table S5. Genes Predicted under Selection in E. coli by Selective
Signatures and the MK Test

Found at doi:10.1371/journal.pgen.0040023.st005 (122 KB PDF).
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