Advertisement

< Back to Article

Distinct Functional Constraints Partition Sequence Conservation in a cis-Regulatory Element

Figure 4

Different components of the distal promoter sequences regulate consistent expression and expression levels under temperature stress.

(A) Percentage of 200 individuals expressing GFP in the indicated number of D-type neurons under control of C. briggsae promoter with extended conservation, shown in solid black bars compared to C. briggsae full-length (black hashed bars) and proximal (gray hashed bars) promoters. (B) Intensity of GFP expression in D-type neurons and the cell DVB for animals bearing the extended conservation promoter reared at 26°C (red) or 15°C (blue). (C) Percentage of 200 individuals expressing GFP in the indicated number of D-type neurons under control of chimeric promoter fusion of C. elegans distal unc-47 promoter sequence and C. briggsae proximal promoter. For comparison, distributions for C. briggsae full-length and proximal promoters are shown in black and gray hashes, respectively. (D) Intensity of GFP in D-type neurons and the cell DVB for animals bearing the chimeric promoter reared at 26°C (red) or 15°C (blue). The chimeric promoter drives robust expression under temperature stress. (E) Percentage of 200 individuals expressing GFP in indicated number of D-type neurons from a chimeric promoter composed of distal C. briggsae unc-15 sequence and the C. briggsae unc-47 proximal promoter (black bars). For comparison, C. briggsae unc-47 full-length and proximal promoters are shown in black and gray hashed bars, respectively. The unc-15/unc-47 chimera is indistinguishable from the C. briggsae full-length promoter (Wilcoxon test p = 0.37), and it is significantly more consistent than the proximal promoter (Wilcoxon test p = 1.3×10−5). (F) Robustness of unc-15/unc-47 chimeric promoter under temperature stress.

Figure 4

doi: https://doi.org/10.1371/journal.pgen.1002095.g004