Advertisement

< Back to Article

Mouse Genome-Wide Association and Systems Genetics Identify Asxl2 As a Regulator of Bone Mineral Density and Osteoclastogenesis

Figure 5

Gene co-expression network analysis reveals that Asxl2 is connected to genes involved in myeloid cell differentiation.

(A) Gene co-expression network of the 3600 most variable and connected genes in the bone transcriptome. The network was created using Weighted Gene Co-expression Network Analysis (WGCNA). Genes were plotted based on a dissimilarity metric (1-TOM). The low-hanging gene “branches” (each gene is represented by a single line) are groups of genes that have highly similar TOMs (i.e. low dissimilarity). Based on the structure of each branch genes are placed into a “module” of a particular color. Each branch's color is labeled at the bottom of the panel. Asxl2 was a member of the blue module. (B) Node and edge depiction of the 34,690 edges (i.e. connections between nodes or genes) with the highest TOM in the blue module network. The blue module is enriched for genes involved in the cell cycle (green nodes), myeloid cell differentiation (red nodes) and chromatin (yellow nodes). The blue square corresponds to Asxl2. Asxl2 is connected to one other gene, Apaf1; the orange node. Apaf1, in turn, is connected to 149 genes in the cluster of genes on the left side of the network. This group is enriched (P = 2.0×10−3) for genes involved in myeloid cell differentiation (red nodes).

Figure 5

doi: https://doi.org/10.1371/journal.pgen.1002038.g005