Text S1: Additional derivations

Derivation of proportion of individuals exceeding a given post-test risk
The probability of obtaining a risk estimate, R, of t or greater is

where ® is the cdf of the standard normal distribution, and T' = <I>_1(1 — K). To see this, decompose the liability
of an individual into measured and unmeasured components as X = Xy + Xy where X3 ~ N (0, fh%) and
Xy ~ N(0,1 — fh?). Using the fact that the post-test risk is R = P(Xy > T — Xpy) =1 — <I><TXM
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Derivation of probability density function for the logarithm of the likelihood ratio

Let R(9) =
above,

eglér% be the post-test risk when the logarithm of the likelihood ratio is . Following the derivation
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so the density function is given by
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where ¢ is the density function for a standard normal random variable. Applying the fact that 1 = %x =
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Including covariates in the liability-threshold model

In the main text, we discussed various approaches to handling sex-dependence of phenotypes. Here, we describe
an approach which explicitly models sex as a covariate in the model. We note that this approach extends easily
to arbitrary discrete covariates.

Consider a modified liability threshold model in which an individual's disease liability is decomposed into
additive genetic, environmental, and sex contributions, X; = G; + E; + S;. As before, we assume that
Gq,...,G,, are sampled from a multivariate normal distribution with zero mean and covariance matrix hQLC.



This time, however, we additionally model sex contributions to liability for each individual in the pedigree as
being independently sampled from a Bernoulli distribution. Notationally, we refer to the two outcomes of the
Bernoulli distribution as sy and sz and their corresponding probabilities as p; and py (where p; + pa = 1);
without loss of generality, we assume that Zj p;js; = 0. Letting h% denote the total variance in liability
arising from sex effects, and assuming that E4,..., FE,, are each independently sampled from a zero-mean
normal distribution with variance 1 — h? — h%, it follows that E[X;] = E[G;] + E[E;] + E[S;] = 0 and
Var[X;] = Var[G;] + Var[E;] + Var[S;] = h% + (1 — h2 —h%) + h% = 1.

Let K7 and K5 denote the sex-specific disease frequencies for males and females, respectively. The liability
contributions s; for each sex can be determined from the sex-specific frequencies K; by noting that within
any sex stratum, the genetic and environmental contributions to liability are normally distributed, i.e., X|S =

. ~ N(s;,1 — h%). If T denotes the threshold on total liability beyond which the disease manifests, then
\;ﬁ ®~1(1 — K;) in order for the proportion of cases in the jth stratum to be K. Solving for s;, we have

s;=T—® (1 - K;)\/1—h%. Tofind T and h%, observe that
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From the first equation, it follows that 7' = Zj p;® 1 (1—K;)\/1 — h%. Substituting into the second equation,
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Letting z = Var [®~!(1 — K)], it follows that h% = %; values for T' and each of the s; follow immediately.
Evaluating the performance of a family history-based classifier that accounts for sex can be done in a manner
analogous to what has been described already; we simply modify all estimates of disease risk P(D1|Da, ..., D,,) by

conditioning on the known sex of each individual in the pedigree, i.e., P(D1|Da, ..., Dy, S1 = 81,...,Sm = $m)-



