Text S1: Additional derivations

Derivation of proportion of individuals exceeding a given post-test risk

The probability of obtaining a risk estimate, R, of t or greater is

$$
P(R>t)=1-\Phi\left(\frac{T-\Phi^{-1}(1-t) \sqrt{1-f h_{L}^{2}}}{\sqrt{f h_{L}^{2}}}\right)
$$

where Φ is the cdf of the standard normal distribution, and $T=\Phi^{-1}(1-K)$. To see this, decompose the liability of an individual into measured and unmeasured components as $X=X_{M}+X_{U}$ where $X_{M} \sim \mathcal{N}\left(0, f h_{L}^{2}\right)$ and $X_{U} \sim \mathcal{N}\left(0,1-f h_{L}^{2}\right)$. Using the fact that the post-test risk is $R=P\left(X_{U}>T-X_{M}\right)=1-\Phi\left(\frac{T-X_{M}}{\sqrt{1-f h_{L}^{2}}}\right)$, then $P(R>t)=P\left(X_{M}>T-\Phi^{-1}(1-t) \sqrt{1-f h_{L}^{2}}\right)=1-\Phi\left(\frac{T-\Phi^{-1}(1-t) \sqrt{1-f h_{L}^{2}}}{\sqrt{f h_{L}^{2}}}\right)$.

Derivation of probability density function for the logarithm of the likelihood ratio

Let $R(\theta)=\frac{e^{\theta} K}{e^{\theta} K+1-K}$ be the post-test risk when the logarithm of the likelihood ratio is θ. Following the derivation above,

$$
P(\log (\mathrm{LR})<\theta)=\Phi\left(\frac{T-\Phi^{-1}(1-R(\theta)) \sqrt{1-f h_{L}^{2}}}{\sqrt{f h_{L}^{2}}}\right)
$$

so the density function is given by

$$
\begin{aligned}
\rho(\theta) & =\frac{\partial}{\partial \theta} P(\log (\mathrm{LR})<\theta) \\
& =\phi\left(\frac{T-\Phi^{-1}(1-R(\theta)) \sqrt{1-f h_{L}^{2}}}{\sqrt{f h_{L}^{2}}}\right) \cdot \sqrt{\frac{1-f h_{L}^{2}}{f h_{L}^{2}}} \cdot \Phi^{-1^{\prime}}(1-R(\theta)) \cdot R^{\prime}(\theta)
\end{aligned}
$$

where ϕ is the density function for a standard normal random variable. Applying the fact that $1=\frac{d}{d x} x=$ $\frac{d}{d x} \Phi\left(\Phi^{-1}(x)\right)=\Phi^{\prime}\left(\Phi^{-1}(x)\right) \Phi^{-1^{\prime}}(x)=\phi\left(\Phi^{-1}(x)\right) \Phi^{-1^{\prime}}(x)$,

$$
\begin{aligned}
\rho(\theta) & =\phi\left(\frac{T-\Phi^{-1}(1-R(\theta)) \sqrt{1-f h_{L}^{2}}}{\sqrt{f h_{L}^{2}}}\right) \cdot \sqrt{\frac{1-f h_{L}^{2}}{f h_{L}^{2}}} \cdot \frac{1}{\phi\left(\Phi^{-1}(1-R(\theta))\right)} \cdot \frac{e^{\theta} K(1-K)}{\left(e^{\theta} K+1-K\right)^{2}} \\
& =\frac{e^{\theta} K(1-K)}{\left(e^{\theta} K+1-K\right)^{2}} \sqrt{\frac{1-f h_{L}^{2}}{f h_{L}^{2}}} \cdot e^{z}
\end{aligned}
$$

where

$$
z=-\frac{1}{2}\left(\Phi^{-1}(1-R(\theta))\right)^{2}-\frac{\left(T-\Phi^{-1}(1-R(\theta)) \sqrt{1-f h_{L}^{2}}\right)^{2}}{2 f h_{L}^{2}}
$$

Including covariates in the liability-threshold model

In the main text, we discussed various approaches to handling sex-dependence of phenotypes. Here, we describe an approach which explicitly models sex as a covariate in the model. We note that this approach extends easily to arbitrary discrete covariates.

Consider a modified liability threshold model in which an individual's disease liability is decomposed into additive genetic, environmental, and sex contributions, $X_{i}=G_{i}+E_{i}+S_{i}$. As before, we assume that G_{1}, \ldots, G_{m} are sampled from a multivariate normal distribution with zero mean and covariance matrix $h_{L}^{2} C$.

This time, however, we additionally model sex contributions to liability for each individual in the pedigree as being independently sampled from a Bernoulli distribution. Notationally, we refer to the two outcomes of the Bernoulli distribution as s_{1} and s_{2} and their corresponding probabilities as p_{1} and p_{2} (where $p_{1}+p_{2}=1$); without loss of generality, we assume that $\sum_{j} p_{j} s_{j}=0$. Letting h_{S}^{2} denote the total variance in liability arising from sex effects, and assuming that E_{1}, \ldots, E_{m} are each independently sampled from a zero-mean normal distribution with variance $1-h_{L}^{2}-h_{S}^{2}$, it follows that $E\left[X_{i}\right]=E\left[G_{i}\right]+E\left[E_{i}\right]+E\left[S_{i}\right]=0$ and $\operatorname{Var}\left[X_{i}\right]=\operatorname{Var}\left[G_{i}\right]+\operatorname{Var}\left[E_{i}\right]+\operatorname{Var}\left[S_{i}\right]=h_{L}^{2}+\left(1-h_{L}^{2}-h_{S}^{2}\right)+h_{S}^{2}=1$.

Let K_{1} and K_{2} denote the sex-specific disease frequencies for males and females, respectively. The liability contributions s_{j} for each sex can be determined from the sex-specific frequencies K_{j} by noting that within any sex stratum, the genetic and environmental contributions to liability are normally distributed, i.e., $X \mid S=$ $s_{j} \sim \mathcal{N}\left(s_{j}, 1-h_{S}^{2}\right)$. If T denotes the threshold on total liability beyond which the disease manifests, then $\frac{T-s_{j}}{\sqrt{1-h_{S}^{2}}}=\Phi^{-1}\left(1-K_{j}\right)$ in order for the proportion of cases in the j th stratum to be K_{j}. Solving for s_{j}, we have $s_{j}=T-\Phi^{-1}\left(1-K_{j}\right) \sqrt{1-h_{S}^{2}}$. To find T and h_{S}^{2}, observe that

$$
\begin{aligned}
0 & =\sum_{j} p_{j} s_{j}
\end{aligned}=\sum_{j} p_{j}\left[T-\Phi^{-1}\left(1-K_{j}\right) \sqrt{1-h_{S}^{2}}\right] .
$$

From the first equation, it follows that $T=\sum_{j} p_{j} \Phi^{-1}\left(1-K_{j}\right) \sqrt{1-h_{S}^{2}}$. Substituting into the second equation,

$$
\begin{aligned}
h_{S}^{2} & =\sum_{j} p_{j}\left[\left(\sum_{j^{\prime}} p_{j^{\prime}} \Phi^{-1}\left(1-K_{j^{\prime}}\right)-\Phi^{-1}\left(1-K_{j}\right)\right) \sqrt{1-h_{S}^{2}}\right]^{2} \\
& =\left(1-h_{S}^{2}\right)\left[\sum_{j} p_{j}\left(\sum_{j^{\prime}} p_{j^{\prime}} \Phi^{-1}\left(1-K_{j^{\prime}}\right)-\Phi^{-1}\left(1-K_{j}\right)\right)^{2}\right] \\
& =\left(1-h_{S}^{2}\right)\left[\left(\sum_{j} p_{j}\left(\Phi^{-1}\left(1-K_{j}\right)\right)^{2}\right)-\left(\sum_{j} p_{j} \Phi^{-1}\left(1-K_{j}\right)\right)^{2}\right] \\
& =\left(1-h_{S}^{2}\right) \operatorname{Var}\left[\Phi^{-1}\left(1-K_{j}\right)\right] .
\end{aligned}
$$

Letting $z=\operatorname{Var}\left[\Phi^{-1}\left(1-K_{j}\right)\right]$, it follows that $h_{S}^{2}=\frac{z}{1+z}$; values for T and each of the s_{j} follow immediately.
Evaluating the performance of a family history-based classifier that accounts for sex can be done in a manner analogous to what has been described already; we simply modify all estimates of disease risk $P\left(D_{1} \mid D_{2}, \ldots, D_{m}\right)$ by conditioning on the known sex of each individual in the pedigree, i.e., $P\left(D_{1} \mid D_{2}, \ldots, D_{m}, S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right)$.

