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Text S4 Additive e↵ects of multiple sweeps

E↵ect of multiple catastrophes

We wish to find the probability of fixation P̄ of a new allele providing advantage s when there are ongoing

sweeps at linked loci, averaged over possible patterns of sweeps and genetic backgrounds. To do so, we

will first consider a related problem: suppose that a sequence of instantaneous “catastrophes” occurs at

times t
1

< t
2

< . . . < tn, and that the probability that a mutant individual survives the catastrophe at

time ti is given by wi. Then the probability that a mutant allele that arises at time t will fix is [79]
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where xi = exp [�s (ti � t)] and yi = exp [�s (ti � ti�1

)].

We can find the net reduction in fixation probability, integrated over randomly timed catastrophes,

as follows, with ci = �1 + 1
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(Above we have used that 1 + yici = wi�1

(1 + ci�1

). This is just the sum of e↵ects of each individual

catastrophe. Therefore, the expected net reduction in fixation probability, E [⌦] ⌘ 2s� P̄ , is equal to the

rate of catastrophes, ⇤, multiplied by the expected e↵ect of a single catastrophe, E [⌦] = 2⇤E
⇥
log

⇥
1

w

⇤⇤
=

⇤E [⌦
1

].
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We can now return to the problem of interfering sweeps. If all the interfering sweeps have selective

advantage Si � s, then their e↵ect is nearly the same as the series of catastrophes considered above, with

a sweep at distance r from the focal allele having e↵ect w = 1� (s/S)r/S [79]. Assuming that the sweeps

with advantage S occur at rate ⇤S and are scattered uniformly over a linear map of length R � S (i.e.,

r is distributed approximately uniformly), the average amount of interference is approximately:

E[⌦] =
4

R

Z
dS ⇤S

Z 1

0

dr log


1

1� (s/S)r/S

�
. (26)

(Note that there is a factor of 2 in Eq. (26) arising from the fact that sweeps cause interference to both

upstream and downstream loci on the chromosome.) If all interfering sweeps have the same selective

advantage S and occur at rate ⇤, this simplifies to

E[⌦] =
2⇡2S⇤

3R log[S/s]
. (27)

Thus the expected fixation probability of the focal allele is

P̄ = 2s

✓
1� ⇡2S⇤

3Rs log[S/s]

◆
. (28)

This is a proof of the linearity result in [79]: that paper only established the threshold at which alleles

become e↵ectively neutral and showed the linear relation between P̄ and ⇤ numerically.

Numerical analysis

In the main text, we instead focus on the case S ! s in which all alleles have the same e↵ect. In this case,

the above proof of linearity no longer applies, because the interference caused by a sweep can no longer

be approximated by an instantaneous catastrophe. Instead, the amount of interference grows and decays

in time approximately exponentially with st, peaking at ⇠ 1/s generations before the sweep reaches

frequency 1/2 (Figure S3). However, the numerical calculations below show that for small numbers of

interfering sweeps the e↵ects nearly add. Thus, as long as no more than a few sweeps are typically

occurring nearby on the chromosome (⇤/R . 1), we can continue to make the approximation that their
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e↵ects add. Doing so, we can write the total expected interference experienced by a new allele as

E[⌦] = ⇤

Z R

0

dr

Z 1

�1
dt⌦

1

(r, t)p(r), (29)

where p(r) is the probability density for the map length between the focal allele and a sweep; assuming

that both are distributed uniformly, it is p(r) = 2(1 � r/R)/R as long as r ⌧ 1/2 (the value at which

the genetic distance saturates).

⌦
1

(r, t) can be found by numerically solving Eq. (5) from [55], after which the integration in Eq. (29)

can also be performed numerically. The integral over r is dominated by r ⇠ s (see Figure S4 ), so for

R � s far-away sweeps make little contribution (besides the net e↵ect of unlinked sweeps discussed in

the main text), and we can take R to infinity in the integral. In this case, p(r) reduces to a uniform

distribution, and Eq. (29) evaluates to

E[⌦] ⇡ 4Z⇤s

R
, (30)

where Z ⇡ 1.05. Note that Z does not depend on any of the population parameters. Since P̄ = 2s�E[⌦],

Eq. (6) immediately follows.

Checking the additive approximation

We can check the assumption of additivity by numerically solving Eq. (2) for the fixation probability. To

do this, we must know the frequencies of the selected genetic backgrounds, g (X). (Note that the number

of possible backgrounds grows exponentially with the number of polymorphic loci, so it is impractical to

do this for more than a few interfering sweeps). We assume that each interfering sweep begins with a single

copy in a wild-type individual, and then follows the deterministic trajectory (given by Eq. (23)). (Note

that after this initialization, we allow for recombinant genetic backgrounds to be present at arbitrarily low

frequencies.) The deterministic approximation underestimates the typical initial rate of increase while

the sweeping alleles are at frequencies . 1/(Ns) [62], but the contribution of this very early part of the

trajectory to the total interference is negligible. The sweeping alleles will appear at appreciable frequency

after a time t⇤ ⇠ 1

s log(Ns). The sweeps will initially be in complete negative linkage disequilibrium;

the extent of linkage disequilibrium that remains when they reach high frequency, and hence the extent

to which they interfere with each other, depends on rt⇤ =
�
r
s

�
log(Ns). Thus, population size does

have an indirect influence on the rate of adaptation, by influencing the extent of linkage disequilibrium
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between competing sweeps. However, numerical calculations show that in large populations, linkage

disequilibrium between sweeps will typically decay to a negligible value before they reach frequencies at

which they appreciably interfere with new mutations. The total interference caused by two overlapping

sweeps therefore depends only weakly on the initial linkage disequilibrium between them, and in fact is

close to the interference caused by two isolated (non-overlapping) sweeps. The numerical results shown in

Figure S5 show that pairs of sweeps do typically have a stronger e↵ect than expected from their individual

e↵ects, but that this interaction is generally small compared to the total reduction in fixation probability.

Distribution of selective coe�cients

We can repeat the analysis leading to Eq. (30) for a distribution ⇢(S) of selective advantages of the

interfering sweeps. We can use the generalization of Eqs. (26) and (29):

E[⌦] =
2
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where we have assumed that nearly all sweeps have S ⌧ R, so that p(r) ⇡ 2/R. Eq. (4) and the scaling

argument in the main text imply that the total interference caused by a sweep must have the form

Z 1

0

dr

Z 1

�1
dt⌦

1

(r, t, S) = 2sZS/s, (32)

where Zs/S depends only on the ratio of the selective coe�cients; see [55] for a more detailed discussion.

ZS/s can be evaluated numerically by integrating Eq. (6) of [55]. Simply gluing together the approxima-

tions in Eqs. (27) and (30) suggests that we approximate Zs/S by Eq. (11), which does indeed fit the

numerical analysis well for S 6⌧ s – see Figure S6. (The numerical analysis fails in any case for S ⌧ s,

since [55] assumes that the interfering sweep is not a↵ected by the focal sweep.)

For the specific case considered in the main text of mutations with an exponential distribution of

e↵ects, ⇢(s) = e�s/hsi/ hsi, most alleles that would fix in the absence of interference have selective

advantages s ⇠ hsi, as do most of the alleles that they experience interference from (see Figures 7 and 8).

Thus, since S/s will rarely be greater than ⇡ 3 for the relevant pairs of alleles, we can make the simplifying

approximation that the logarithmic factor in Eq. (11) is roughly constant, and therefore Zs/S ⇡ S/s.
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With this simplification, Eq. (10) for the probability of fixation becomes:

P̄ (s) ⇡ 2s� 4NU

R

Z
dS SP̄ (S)⇢(S)

= 2s� 4NUŝ
⌦
P̄
↵
/R, (33)

where ŝ is the mean selective advantage of alleles that successfully sweep. Averaging over s and rear-

ranging terms, the mean probability of fixation is

⌦
P̄
↵ ⇡ 2 hsi

1 + 4NUŝ/R
. (34)

ŝ = 2 hsi when interference is weak, and does not increase much even for strong interference (Figure 7);

substituting in this value, we have
⌦
P̄
↵ ⇡ 2 hsi

1 + 4⇤
0

/R
, (35)

where ⇤
0

= 2NU hsi is the rate of sweeps in the absence of interference.

In Figure 8, we consider populations where interference from unlinked loci is substantial (v > 1/4),

and consider values of s large enough that the saturation at 1 must be taken into account; we therefore

use the more detailed equation

P̄ (s) ⇡ 1� exp
⇥�2(s� s⇤)e�4v

⇤
, (36)

where s⇤ = 4⇤ hsi /R.


