
TEXT S6 Empirical validation of c

TEXT S6.1 Calculation of c

We first segment the genome into contiguous segments of constant number of
chunks d. The number of chunks donated to individual i from j in segment k is
xijk, and d is chosen such that xijk is approximately independent (for different
k and conditional on i and j). This means that different individuals may have
a different number of segments if they have different patterns of recombination.
In practice, we found that d = 100 works well for the HGDP data, but due to
the high LD present in the linked simulation data, there were only an average
of 20 chunks per region. We therefore took the whole region to be a segment in
this case and computed c using the full 200 region dataset. Then we compute
sij =

∑
k(xijk) and s2

ij =
∑

k(x
2
ijk). If individual i has Ri segments in total,

we can calculate the theoretical variance for xij by first estimating the rate of
inheriting from each other individual P̂ij = sij/

∑
j sij and substituting into the

multinomial variance:

VT (xij ;Pij) ≈ VT (xij ; P̂ij) =
∑

j

sijP̂ij(1− P̂ij)/Ri

The empirical variance is:

VE(xij) =
s2
ij

Ri − 1
− (sij)2

Ri(Ri − 1)

This leads (with correction for the known overcounting factor of 2) to the estimate
of c:

cij = 2
VE(xij)

VT (xij ; P̂ij)

and we simply take the mean value as our estimate:

c =
1

N(N − 1)

N∑
i=1

N∑
j=1 6=i

cij

Note that we provide a helper program called ‘ChromoCombine’ that calculates
this, and which can easily use the two options of d described. It also handles
summation of multiple files in case of parallelization was used for processing in-
dividuals and/or chromosomes separately.

TEXT S6.2 Validation

In this section we present evidence of the effect of varying the rescaling factor ‘c’
on inference. Note that we view c as a summary of the data in the same way as
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the coancestry matrix X, and not as a parameter - it is therefore not appropriate
to perform inference for it in the standard Bayesian way.

For interpretation of the empirical evaluation presented, we note that when c
is ‘too large’, the effective number of chunks is reduced and therefore any mistakes
in population assignment will tend to be under-split, i.e. we will not distinguish
efficiently between similar populations. When c is ‘too small’ our model believes
it has more independent chunks than is true and therefore will tend to over-split
populations. The smallest c that does not over-split is called efficient, and larger
c are called conservative.

We start with the unlinked model in the case where there is no population
structure. Provided population sizes are large, we expect the theoretical results
derived in Section S4 above to hold. Specifically, the theoretical prediction (for the
approximately correct data likelihood) in the case of unlinked data is (Proposition
4 of Section S4.4):

F (x|p) =
N∏

i=1,j=1

(
Pqiqj

n̂qj

)xij(n−1)

(1)

which is equal to Equation 1 of the main text:

F (x|p) =
N∏

i=1,j=1

(
Pqiqj

n̂qj

)xij/c

(2)

when c = 1/(n− 1).
For this section we have generated datasets containing 15000 non-rare (> 5%

allele frequency) unlinked SNPs (at varying N) under the same splitting scenario
as the main text. Simulation for each SNP was by a) generating the ‘ancestral
frequency’ f with p(f) ≈ 1/f (since this is not a probability distribution, we first
choose which of 20 bins in the range 0 and 1 the SNP is from, then sample f condi-
tional on this), then b) applying a normally distributed drift matrix for population
level drift Σ, giving population level frequency vector g ∼ MVN(f , f(1 − f)Σ),
and c) sampling individuals SNP values according to this frequency. (SNPs with
empirical frequency below the 5% threshold were resampled). The covariance
matrix for the drift was:

Σ =


0.02 0 0 0 0
0 0.02 0.015 0 0
0 0.015 0.02 0 0
0 0 0 0.02 0.01
0 0 0 0.01 0.02


The theoretical prediction is compared to our empirical estimate of c on this

dataset in Figure S1 which shows that our theoretical understanding of c is correct,
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i.e. that the correlation with the truth is 1 at the predicted value and that both
the theoretical and empirical estimates of c are approximately efficient and equal
for large N . The empirical estimate is conservative for small N .

Our empirical estimate of c is also applicable in the case of linked data, whether
using our linked or unlinked models. For the linked simulated data described
in the Results section of the main text, we perform a similar scan of c and N
to check that our algorithm is computing an appropriate value of c in realistic
circumstances. Figure S2 shows these results.

The value of c estimated by the empirical method again appears to be con-
servative for small N and approximately efficient for large N . In both cases, the
‘truth’ (if obtainable from the data) is still obtained for a very wide range of c′ > c
i.e. greater than the estimated value. This demonstrates that exact specification
of c is not an important issue for many practical purposes.

Note also that the value of c is significantly larger for linked data (in both
the linkage and no-linkage models) than for the case of unlinked data. When
the unlinked model is used, correlations between neighbouring loci due to linkage
disequilibrium increase the variance between regions. When the linked model is
used, c values do not fall substantially below 1, even for very large population
sizes. Intuition behind the different behaviour of the linked and unlinked models
comes from considering the uncertainty in chunk assignment. For the unlinked
model, the number of haplotypes which a particular allele is identical to increases
linearly with sample size. For the linked model, each addition individual in the
sample has the chance of having a haplotype that is a still better match than
any preceding haplotype. For this reason, the uncertainty of assignment of each
haplotype does not change substantially as additional individuals are added.

We now describe a scenario in which neither the theoretical nor the empirical
estimate of c work well; this is because there is not a single suitable value of c
for which our model holds in this case. This is the case of unlinked markers with
strong differentiation between populations, large numbers of markers and large
sample sizes (Figure S4).Here the estimated value of c gives confident assign-
ment of incorrect splits. The model predictions break down because individuals
within the same population all share SNPs with individuals in other populations.
If genetic drift is strong at individual SNPs, then sharing this coancestry can
give inappropriately weighted information that the individuals are related to each
other. In other words, the assumptions of Section S4, Propositions 3-4 do not
hold.

It is important to note that this problem is less dramatic in linked data, and
essentially does not arise in the linked model. To see why, we note that these
correlations arise when an (unlinked) SNP is found in a individual that is com-
mon in another population but rare/absent otherwise. Such SNPs can only arise
through strong drift, are not excluded because they are not rare overall, and are
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interpreted as overly strong evidence of shared ancestry. As N becomes large
with population sizes na ∝ N , most SNPs provide O(N−1) information on popu-
lation level copying proportions (which is why c = O(N−1)). However, strongly
drifted SNPs provide O(1) evidence because they are shared with a high fraction
of another population, and not with any other individual. For (truly) linked data,
such a SNP will be down-weighted due to the average level of correlation between
nearby SNPs, so even in the unlinked model we will infer a larger value of c. For
the linked model, all chunks are approximately unique and therefore provide O(1)
information per chunk, so a strongly drifted SNP will not have a dramatic influ-
ence since all chunks are already ‘strongly drifted’. The success of our algorithm
for simulated linked data also supports this argument.

For the strong drift and unlinked case, we have developed an alternative algo-
rithm in which the likelihood is modified so that these correlations are accounted
for. We do this in effect by considering only within-population counts as impor-
tant, so that when considering a merge move, the between-population counts are
normalised to have the same mean. We re-normalise using:

x′ij = xij −
∑

k∈qi
xkj

|qi|
−

∑
l∈qj

xil

|qj |
+ 2

∑
k∈qi

∑
l∈qj

xkj

|qi||qj |
(3)

where qi is the index of the population for individual i, and |qi| is the number of
individuals in that population. This corresponds to ensuring that all row and col-
umn sums copying from population b to population a are equal. This is illustrated
in Figure S3 which shows the coancestry heatmap for the unnormalized and nor-
malised cases, as well as the difference between them. The coancestry heatmaps
are visually very similar, but the undesired correlation structure is clearly visible
in this difference. Some individuals have an elevated number of donated chunks
to all individuals within a specific population, leading to a ‘striped’ pattern. The
bottom plots show the same thing but where we consider a potential merged pop-
ulation (merging the most recent split). It is clear that the presence of population
structure is preserved under this procedure because the two populations have
a different profile within the population being merged. Therefore the standard
likelihood applied to both the merged and split matrices can correctly identify
both populations due to their different rates of copying within and between, and
additionally it is not mislead by the correlated copying from other populations.
However, were the only distinction between populations B1 and B2 the copy rate
from some third population, this would be normalised out.

Note that our simple likelihood is not a well defined entity under this modifi-
cation, because the data depends on the population assignment. There is however
an implicit likelihood induced by the modification of the data which is well defined
and is correctly comparable both within states of a given number of populations
K and for states of differing K, provided that we consider moving an individual
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between two populations as creating a merged state between the two populations
(which defines the normalisation), and creating a split state corresponding to the
move.

Although this procedure is more robust than the use of the raw coancestry ma-
trix, it is not recommended for general use because firstly, it discards information
about a split that comes from differential chunk counts from other populations,
and secondly, it is not a clearly defined model. We have tested this procedure on
the HGDP data (unlinked model, results not shown) and obtain broadly similar
results to those quoted in the main text with some subtle splits lost: for exam-
ple, the Tuscan/Italian split is not fully supported. We recommend using it as a
conservative check if the value of c is very low (say less than 0.05) and there is
strong structure in the dataset.
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