
TEXT S2 Partition posterior probability evaluation

Here we define the full model for the coancestry matrix of expected copying counts
x (dropping the ‘hat’ notation). Each row of x is distributed according to Multi-
nomial likelihood F (·) as defined in Equation 1 of the main text:

x|η, P =
N∏

i=1

xi|Pqi ∼
N∏

i=1

F (·|Pqi), (1)

where N is the number of individuals, Pqi is the row of P corresponding to the
population qi containing individual i, K is the number of populations and η is
the assignment of individuals to populations. Population membership qi can be
thought of as induced by η, as is the set of individuals found in a population Sa. A
Dirichlet Process Prior (e.g. Teh 2010) is placed on η, which (approximately, for
the purposes of exposition) means that for large K∗ →∞ (and not generally equal
to K), the probability of the number of individuals assigned to each population
n (which is related, but not equal to {Sa}a=1···K) follows n ∼ Multinomial(G)
with G ∼ Dirichlet(α/K∗, · · · , α/K∗). Note that in this view, many of these
populations will be empty, leaving a finite number K of occupied populations.

There are many representations of a Dirichlet Process, with a common choice
being {P1, · · · , PN} ∼ DP(α, G0), where G0 is the the ‘base distribution’, i.e.
we sample parameters Pa from G0, but obtain clustering by assigning the same
parameters to multiple individuals. However, we choose an alternative description
that suppressed G0 which is simpler in our case.

The representation we find most natural is the joint assignment distribution
induced on {η, K}, where K is the number of populations observed in our sample.
This takes the form (Huelsenbeck and Andolfatto 2007):

p(η, K|α, N) = αK

∏K
a=1 Γ(|Sa|)∏N

i=1(α + i− 1)
, (2)

where there are N individuals, and α is the ‘concentration parameter’ determining
the number of occupied populations expected under the Dirichlet Process. In this
case we can write the distribution of each probability vector Pa:

{Pa, · · · , PK}|η = P |η ∼
K∏

a=1

Dirichlet(βa), (3)

which is conjugate to F (and note that βa is a vector of length K). This repre-
sentation avoids the need to explicitly manage a G0 that is itself a function of the
number of populations K as is the case in our model. Note that we are free to
use any distribution here in principle; this choice of Dirichlet distribution is not
related to our use of a Dirichlet Process Prior.
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From Equation 2, for fixed N and α the prior on η can be written:

η ∼ p(η) ∝ αK
K∏

b=1

Γ(|Sb|), (4)

so that when α = 1 all possible assignments are given equal prior weight. This
allows us to control K in principle (though in practice the likelihood term over-
whelms the prior on K), and applies the usual Bayesian penalty for having addi-
tional parameters (via additional populations), leading to low K solutions being
favoured in the posterior. We wish to calculate the probability of a particular
partition η:

P (η|x) ∝ P (η)
K∏

a=1

L(xSa |η) (5)

where L(xSa) is the likelihood of all the individuals in population a:

L(xSa) =
∏

m∈Sa

P<m,Sa(xm) =
∫ ∏

m∈Sa

F (xm|Pm)dH<m,Sa(Pm), (6)

where P<m,Sa(xm) is the probability of the data row xm given the data for subset
(1, · · · ,m − 1) of individuals in Sa, with an incremental probability distribution
over Pa called (abusively) Pm. This is split up as the integral over the likelihood
F (xm|Pm) of the probability of the parameters given the previous individuals
data, dH<m,Sa(Pm). Conjugacy allows the incremental probability to be written
as:

dH<m,Sa(Pm) = Dirichlet
(

Pm;
{

βab + dSa
<m,b

}
b=1,··· ,K

)
, (7)

where βab is the prior given by Equation 2 of the main text and dSa
<m,b are the

counts from population Sb to population Sa for the individuals [[1, · · · ,m − 1]].
The final posterior follows from Eq. 3.13 of Lange (2002):

P (η|x) ∝ αK
K∏

a=1

Γ(|Sa|)
Γ(βa)

Γ(da + βa)

K∏
b=1

Γ(βab + xab)
Γ(βab)n̂xab

. (8)
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