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Supporting methods

Following the generative model (Equation (2), Methods) we use standard association and interaction
statistics [1] to test for associations between known variables (genotype of SNP n, environment indicator,
or mRNA expression level) and the inferred factor activations. For completeness, we first present the
model and test statistics used for both associations and interactions, followed by the significance testing
approach. The derivation is developed explicitly using the SNP genotype as the known variable and
factor activation as the dependent variable; tests for the other covariates (or eQTL effects) are performed
analogously.

Association and interaction test statistics

We perform independent tests for association between the activation xk of individual factor k and geno-
type sn of SNP n, fitting a liner model of the form

xk,j = µk + βk,nsn,j︸ ︷︷ ︸
SNP effect

+εk,j , (1)

(Methods), assuming Gaussian observation noise εk,j ∼ N (0, σ2
k,j). For each pair of SNP n and factor k,

we calculate the association log-odds (LOD) score

Lak,n = logP (xk |βk,n)− logP (xk |βk,n = 0) (2)

as a test statistic. The weight in the foreground model βk,n, the mean µk and the noise level σ2
k,n are fit

by maximum likelihood independently for every evaluation.
Test statistics for the interaction terms are calculated analogously based on an independent interaction

model. In short, we calculate the residuals of the factor analysis model and apply a standard interaction
model between SNP n, factor k and gene g. This corresponds to the linear model

yg,j = µg +

direct effects︷ ︸︸ ︷
θg,nsn,j︸ ︷︷ ︸
SNP effect

+ wg,kxk,j︸ ︷︷ ︸
factor effect

+φg,k,n (sn,jxk,j)︸ ︷︷ ︸
interaction term

+

∑
l 6=k

wg,lxl,j


︸ ︷︷ ︸

remaining factor effect

+ψg,j , (3)

where the expression level of gene probe g for individual j is described by fitted effects of the tested
SNP sn,j , learned factor activation xk,j and the interaction term sn,jxk,j with the residuals explained by
0-meaned Gaussian noise ψg,j . The log-odds test statistic for the interaction between factor k and SNP
n to influence gene g follows as

Lig,k,n = logP (yg |φg,k,n)− logP (yg |φg,k,n = 0). (4)

The respective mean variable µg, weights θg,n, wg,k (but not wg,k′ where k′ 6= k), and φg,k,n, as well as
noise variance ψg,j are fitted independently using maximum likelihood for each factor, gene, SNP triplet.
The contribution from all remaining factors is not refit to preserve the sparsity pattern learnt from the
factor inference. To reduce the number of effective tests, we used the strongest interaction LOD score
L̂ig,n = maxk L

i
g,k,n across factors, thus performing tests for every SNP and gene pair. This approach is

motivated by the assumption that at most a single factor is interacting with a given gene-SNP pair. The
consistency of the strongest interacting factor is informative of the identifiability of the interaction effect
(see below).
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Significance testing using several random initialisations

For all our analysis of intermediate phenotypes, we generated factor inference results from R = 20 random
initialisations of the model parameters to beter capture the variability in the model and avoid overfitting
of inferred factor activations to local optima (See Statistical identifiability of factors below). Thus, we
designed a significance testing scheme based on Q-values [2] that employs the full set of runs, taking the
uncertainty in the factor posterior distributions into account. We present this approach for associations,
testing interactions is analogous except the specifics of permutations highlighted in the text. In case of
analyses where the multiple restarts are not used (i.e. all analyses not employing the inferred factors,
such as trans eQTLs and genotype-environment interactions), we calculated Q-values from the single
instance. In all cases, the null distribution of LOD scores was obtained by combining all calculated null
statistics in the random restart.

Q-value calculation For every run r = 1, . . . , R of the factor anlysis model, we evaluated the test
statistics of factor associations (Lak,n) for every pair of factor k and SNP s. This analysis was then
repeated on 20 permuted datasets for each run with the genotypes shuffled with respect to the factor
activations, while keeping individual segregants grown in two conditions paired. For interaction LOD
scores, the factor activations and gene expression levels were not permuted with respect to each other.
From this empirical null distribution of LOD scores in run r (across all SNPs and factors), we calculated
Q-values qrn,r (local FDR) for each candidate association [2] between SNP n and inferred posterior of
factor k in this run.

Combining Q-values The Q-values from all runs were then combined into an overall Q-value qk,n =

R−1
∑R
r=1 q

r
k,n, which was used to assess significance at a given FDR threshold.

From a probabilistic viewpoint, averaging Q-values over multiple restarts of the model can intuitively
be thought of as integrating out the uncertainty from the factor inference. For example, for an association
test assessing the significance of the weight βk,n, we are truly interested in the probability of an association
being absent (Bayesian Q-value, see for example [3]) given uncertain inference of the factor activation
P (xk |Y,π). Conditioned on the observed data Y and prior π this probability follows as

P (βk,n = 0 |Y,π, sn) =

∫
xk

P (βk,n = 0 |xk, sn)P (xk |Y,π). (5)

In general this integral is not analytically tractable. Assuming we have instead a number of R samples
xrk from the factor posterior, the integral can be approximated by

≈ 1

R

R∑
r=1

P (βk,n = 0 |xrk, sn) (6)

in a Monte Carlo fashion. Finally, identifying the null probabilities as Bayesian Q-values we get

=
1

R

R∑
r=1

qrk,n. (7)

Note that the restarts from the factor analysis model are not exactly samples from its posterior but
nevertheless characterise the posterior uncertainty sufficiently well (See also Simulation study below).
Full MCMC sampling is computationally infeasible due to the size of the regulatory network; for a
comparison of MCMC sampling and deterministic inference as employed here, see [5].
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Figure 1: Histogram over the maximum fraction of overlapping target genes per factor for (a) Yeastract
prior information and KEGG pathways respectively (b). An overlap of 1.0 indicates that at least one
factor shares identical target genes; an overlap of 0 indicates that no other factor has even a single target
gene in common.

Consistency of the interacting factor On simulations (see below) and real data, most interactions
have a single factor that consistently produces the highest LOD scores for almost all random initialisations
of the model. This fraction can be used to quantify the degree to which an interaction can be pinpointed
to a specific factor (See Simulation and Figure 3 in this text).

Statistical identifiability of factors

Factor analysis models have intrinsic symmetries with implications on the statistical identifiability of the
activation of individual latent factors. The inner product of weights W and activations X is invariant
under a general class of transformations of the form

Y = W
(
RRT

)
X = (WR)

(
RTX

)
= W̃X̃. (8)

Here, R is an arbitrary non-singular matrix, including rotations, rescaling and sign flips of factors. One
approach to resolve these ambiguities are post-hoc transformations of the factor solution; for example
the varimax rotation, which is frequently applied in PCA and ICA models (see [4] for discussion). An
alternative is to address these ambiguities by introducing additional constraints into the model, explicitly
restricting the space of valid factor solutions. In the sparse factor analysis used in this work, these
contraints are introduces as prior sparsity pattern P (zg,k = 1) = πg,k. (See also discussion in [5]).
Provided the prior sparsity profiles of the factors πk are sufficiently distinct, this prior rules out unwanted
symmetries including factor permutations. Figure 1 depicts the maximum fraction of overlapping target
genes across factors for KEGG and Yeastract prior information as used for the analysis in the main text.
These results show, that in particular the Yeastract data yields a high degree of factors with distinct
prior connectivity profile. The relation of the prior orthogonality and the empirical reproducibility of the
inferred factors is investigated on simulated data below (Simulation study).
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Simulation study

We used a simulated dataset to check on the accuracy of the sparse factor analysis and the recovery of
simulated associations and interactions.

Simulation procedure

We simulated J = 80 individuals with N = 1200 SNPs. The simulated minor allele frequency was 0.5
for each SNP, and the allele configuration sn,j of SNP n was encoded as (1, 0) or (1, 1), including a
column for mean effects. Similar to the yeast dataset investigated in the main text, we simulated a single
environmental factor. We considered K = 50 intermediate phenotypes that were meant to resemble
transcript factors and a total of G = 1000 target genes. The annotated connectivity structure between
factor and genes was subsampled from the full Yeastract [6] information, discarding factors that had fewer
than 3 target genes to avoid unidentifiable factors (See Methods). Assuming an FPR 0.05 and FNR 0.05
we generated a prior connectivity matrix π, providing uncertain information about the regulatory links.
From this matrix we drew an actual factor-gene association matrix Z which was used in the dataset
simulation.

Simulation of the factor activations and gene expression followed the causal direction of the true
mechanisms. First, we simulated linear direct effects between individual SNPs and the environmental
variable acting on the 50 factors that were meant to resemble transcription factors or pathway components
(see Statistical model). The probability that a factor was genetically driven was set to 0.6, the probability
of an environmental influence of the factor was 0.3 and with 0.1 probability the factor activation was set
to be randomly Gaussian distributed. Next, conditioned on the SNP genotype and factor activations,
we sampled independent gene expression values. Simulated effects from factors and SNPs on each of the
1000 gene expression values include direct effects from SNPs, factors and SNP-factor interaction effects
as well as observation noise

yg,j =

N∑
n=1

 θg,nsn,j︸ ︷︷ ︸
SNP effect

+

K∑
k=1

zg,k γg,kxk,j︸ ︷︷ ︸
factor effect

+φg,k,n (sn,jxk,j)︸ ︷︷ ︸
interaction term


+ εg,,j︸︷︷︸

noise

. (9)

Note that the indicators zg,k ensure that any factor k has only downstream effects on its true target genes.
The weights for direct factor effects were drawn to be Gaussian, γg,k ∼ N (0, 1). Interaction weights φg,k,n
and association weights to SNPs θg,n were drawn from a sparse Gaussian distribution. For 1% of all genes
a direct effect was simulated and for 0.001% of all factor-SNP-gene triplets a non-zero interaction weight
φg,k,n was simulated (each ∼ N (0, 1)). We drew the noise precision τg,n,k from a gamma distribution
with τg,n,k ∼ Γ(1, 0.1), and the individual noise levels εg,n,k,j were drawn from N (0, 1

τg,n,k
).

Model fitting

Given the simulated dataset, we followed the analysis procedure described in the main text (Methods).
We run the sparse factor analysis model for 20 random restarts, each time inferring the transcript factor
activations given the prior network structure (π).

Evaluation of factor inference

Accuracy to recover regulatory links

The sparse factor analysis model was able to recover the true relational links between factors and genes
with high accuracy (Table 1). For comparison, this table also includes the accuracy when solely using
the imperfect prior knowledge π. As the recovered factor activations and the connectivity structure are
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Method ACC AUC

Prior 0.820± 0.002 0.722± 0.003
SparseFA 0.897± 0.010 0.877± 0.015

Table 1: Accuracy (ACC) and area under the operator curve (AUC) for recovering the true network
structure on the simulated dataset using the prior network structure (Prior) and the sparse factor analysis
model (SparseFA). Reported are mean accuracies and standard deviations estimated form 20 random
restarts of the model or draws fromt the prior respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Mean R^2

0

5

10

15

20
Fr

e
q
u
e
n
cy

Figure 2: Histogram of average Pearson r2 between the inferred factor activation in a single run and the
simulation ground truth.

inherently linked, these results suggest that the sparse factor analysis model is also likely to recover
accurate factor activations.

Factor identifiability

Next, we explicitly checked this hypothesis, investigating that the inferred factor activations X resemble
the true, simulated activations. Despite the high accuracy in recovering the connectivity structure, this is
interesting, as factor analysis-type models are generally prone to a large class of transformation invariances
(See Statistical identifiability of factors). Twenty nine of 50 inferred factor posterior means had average
Pearson’s r2 to the true simulated activation of greater than 0.9 (Figure 2). This shows that most factors
activations are reproducibly inferred to be very similar to their true simulated state.

Accuracy to recover interactions

Next, we applied the interaction model (Association and interaction testing) to identify SNP-gene pairs
for which there exists a significant interaction to at least one factor.

Using a Q-value cutoff of 0.01, we recovered 284 of the 600 simulated interactions and two false
positives, corresponding to 47% sensitivity and 99.3% specificity, the latter in line with the chosen FDR
cutoff. Thus, at this stringent cutoff, we are both sensitive and specific in recovering the interaction
effects.

Furthermore, 268 of 284 SNP-gene pairs had strongest interaction LOD scores to the true interacting
factor in the majority of the random restarts (Figure 3a). This shows that in most cases, we can accurately
recover the true interacting factor. Fifteen of the remaining 16 interactions were with two factors that
were not well identified (average r2 with true activation 0.27 and 0.48, respectively), with another factor
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(c)
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(d)

Figure 3: (a) Histogram of number of runs for each interacting SNP-gene pair where the true interacting
factor (blue) or any one factor (green) has the strongest interaction LOD score. (b) Scatter plot of the
fraction of times one factor has the strongest interaction LOD score and the average correlation of its
inferred activation to the underlying truth. (c) Scatter plot of the fraction of times one factor has the
strongest interaction LOD score and the uniqueness of its prior information. (d) Same as (c) for Yeastract
prior used in the main study.

capturing their effect and reproducibly exhibiting the interaction signal (Figure 3a). However, in these
cases, neither the true interacting factor, nor the factor strongest interacting showed the strongest LOD
score in more than 17 runs.

In general, the more reproducible the factor, the more reproducibly its interaction effects are correctly
the strongest ones across all factors (Pearson’s r between average factor posterior correlation to true
factor activation, and average fraction of random restarts for which the factor has the strongest LOD
score = 0.93, Figure 3b). This effect is related to the uniqueness of the factor’s prior information, with
less unique factors showing less reproducible effects (Figure 3c).

Thus, care must be taken when interpreting interactions for which the interacting factor is not unam-
biguously defined, but it is possible to uncover the factor if its effect is well reproducible. The simulation
data suggest that using a filter of 90% of runs yielding the strongest interaction LOD for one factor is in
most cases sufficient to retain a high fraction of true positives.
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In conclusion, even though the interaction effect LOD scores fluctuate between individual runs, we
are able to find the interaction effects, and in most cases, also pinpoint the responsible factor. This shows
that our testing approach robustly and elegantly incorporates the inherent variability in the model that
is due to multiple posterior modes.
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