
Statistical analysis of microarray findings 

Twenty-four CEL files (four control mice plus four SMA mice, at each of three time 

points) were preprocessed concurrently using RMA without background correction 

(i.e. quantile normalization followed by robust probe-set summarization). RMA 

background correction was omitted because it had an empirically undesirable effect 

on the data, as is now described. RMA background applies a smooth, monotonic 

transformation from raw probe intensities to corrected probe intensities (see Figure 

S4 for the data-based mapping for a single array). The function is linear for medium-

to-high intensities, but tends to stretch out the low-intensity range (the figure is 

annotated with a two-fold interval that is mapped to a ten-fold interval). It does not 

make sense to inflate (relatively) that variation in intensity which is near to the 

background detection level. This is because such variation is relatively unlikely to be 

representative of true signal, and likely to represent experimental noise. 

Publicly available custom chip-definition files (CDFs) were downloaded from 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_downl

oad.asp and used to group probes into sets. Parallel analyses, based on two 

different CDFs were performed. The first CDF, which we refer to as ENSE, defines a 

probe set for each Ensembl exon. The second, ENSG, defines a probe set for each 

Ensembl gene. See [27] for a description of how these CDFs are created and a 

comparison of their properties with those of Affymetrix’s annotation system.  

There were 211,567 and 211,911 probe sets for the ENSE and ENSG analyses 

respectively. Each preprocessed data set comprises a single summary for each 

probe set on each array, representing the log2(expression) at the corresponding 

probe set in the assayed sample. 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp


At each probe set, the following linear model was fit using the limma package, 

version 2.16.5 [29,47] 

 

where  denotes subject number; indicates whether  is male  or 

female ;  denotes the time of sampling of the th subject; 

 indicates whether subject  is wild type  or SMN deficient ;  

denotes the residual error, which is assumed (across subjects) to be independently 

Gaussian distributed with zero mean and common variance. The fitted model 

comprises estimates of seven parameters, ( ), of which 

are of primary interest, representing case/control differences within time 

point. For each , a p-value was calculated for the t-test of the null hypothesis  

against the two-sided alternative. Let  denote the p-value at the th probe set, for 

the test of  . 

To assess the number of false positives, a permutation-based analysis was 

conducted. Each permutation of the data retained the time-point labels and sex 

labels of each subject, but randomly permuted the case/control labels of the subjects 

within each time point (i.e. for each time point, four of the eight assays were 

randomly labelled as cases, and four as controls). The data were permuted in this 

way 200 times. Each permuted data set was statistically analysed in the same way 

as the actual data set, giving three p-values (one for each time point) for each probe 

set. Let  denote the p-value at the th permutation, at the th probe set, for the 

test of   



For a particular p-value cut-off,  say, the number of significant probe sets at time 

point is , where  denotes the total number of probe sets 

(in ENSE or ENSG). The number of false-positive probe sets at time point is 

estimated by the median of the set , and 

the false discovery rate (FDR) is estimated in the obvious way as the ratio: 

(estimated number of false positives) / (number of significant probe sets for the 

actual data set). Table S1 displays the number of significant results at each time 

point, along with the estimated FDR, for a number of different choices of p-value cut-

off,  Subsequent results are presented with  for ENSE, and with  

for ENSG, as these choices control the FDR at a reasonably low level. For ENSE 

there are 72 (0.35), 66 (0.06), and 812 (0.01) significant exons at P1, P7 and P13 

respectively (estimated FDR in parentheses).  For ENSG, there are 83 (0.23), 92 

(0.09), and 693 (0.02) significant genes at P1, P7 and P13 respectively.  Figures 4B 

and S1 display the sharing of significant probe sets across time points. A consistent 

qualitative picture emerges across the two preprocessed data sets: case/control 

differential expression is much more widespread at P13 than at either of the earlier 

time points.  

While it is reasonable to compare across time points within ENSE or ENSG, a direct 

comparison between ENSE and ENSG (of the number of significant probe sets) is ill 

advised, as the two analyses have different power to detect differential expression. 

The ENSG analysis has more power to detect whole-transcript differential 

expression than does ENSE (more probes in a probe set increases the signal-to-

noise ratio). However, ENSE has more power than ENSG to detect differential 



splicing that manifests itself as differences at one or a few exons (with ENSE having 

the biggest advantage over ENSG for single exon-skipping events). 

Statistical analyses were performed using R [28], version 2.8.1. 

Comparison of the P13 dataset with Zhang et al.  

In order to allow direct comparison, we preprocessed Zhang et al.’s data [15] in an 

identical fashion to the data in our study (all six arrays preprocessed together using 

RMA without background correction, employing two parallel probe-set groupings: 

ENSE and ENSG). A linear model with terms for sex and SMA/control status was 

fitted at each probe set [29,49]. The same p-value thresholds were applied to both 

the P13 data and Zhang data (1e-4 for ENSE and 1e-3 for ENSG). In the ENSE 

analysis, Zhang’s data yielded 768 significantly differentially expressed exons, of 

which 94 are represented amongst the 812 significant exons our  P13 data (this is a 

higher level of sharing than would be expected to occur by chance: p < 1e-107). In 

the ENSG analysis Zhang yields 382 genes, our data 693, with an overlap of 119 

(again this overlap is unlikely to have occurred by chance: p < 1e-84). 

The directionality of differential expression is extremely consistent across studies, as 

is demonstrated in Table S2 (+ = cases over-expressed relative to controls).  

 



Alternative splicing events occur late in SMA 
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Primer sequences 
qRT-PCR 
SYBR 
Green 
qPCR 

Forward primer 5’-3’ Reverse primer 5’-3’ 

mGAPDH TGTGTCCGTCGTGGATCTGA CCTGCTTCACCACCTTCTTGA 
Chodl 1-2  GGTCAGTGGTCAAAAGGTGTGTT AAGCTCACCCGGCTAGACAGT 
Chodl-001 
5/6  

TGCTTTGGGAACCTGCTGTT CGGGCTAGTTTTTGATCTTCCTT 

Chodl-002 
5/6  

GTTTCCAGATGTTGCATAAAAGGA AGATGATAATGGAGTGGAGTCTTTGA 

Snrpa1 TGACAATGAGATCCGGAAACTG CACCTATACGGCAAATTCTGTTGTT 
Mccc2 CAGAGCATACAGTCCAAGGTTTCTC GCCTGCTCTCCTCCCATCA 
Cdkn1    GGCAGACCAGCCTGACAGAT TTCAGGGTTTTCTCTTGCAGAAG 
Uspl1-2  AGAGGAGTTCGGGTCCACTGT CAATGAACCCCTCCCGAAGT 
Uspl1 9-10   CTTCCATGCATGAAGCCAAA GGCAGCAACTGTGTCTGAGAGT 
ChAT  AATGGCGTCCAACGAGGAT CGGTTGGTGGAGTCTTTTAAGAG 
  
Semi-quantitative RT-PCR 
 Forward primer 5’-3’ Reverse primer 5’-3’ 
Uspl1 1-3 CTGTATGCGAAGAAGGAGCG TTTCGCTCTACAAGCAGGGC 
Mccc2-201 CAGGAGCTGCAGAACCGAGC GGGTTACATCCTGAAGATGCC 
Mccc2-203 GAGGTGAAGGCAGCTACAGG AGCGGTAAGATGGGACATCC 
 

 

 


