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1 Properties of the AFS

1.1 Distinguishing reduced divergence and increased migration
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Supplementary Figure 1: Fitting data including migration with a no-migration model.

As an example of inference with migration, consider the demographic scenario of Figure 1
for parameter values of moderate migration and divergence: θ = 1000, ν1 = ν2 = 0.5,
M = 2, and τ = 0.3. The noise-free AFS is shown in the upper left panel of Supplementary
Figure 1. For a model with M ≡ 0 fit to this AFS, the maximum likelihood parameters are:
θ = 1034.4, ν1 = ν2 = 0.44, and τ = 0.084. As expected, when we neglect migration the
inferred divergence time is substantially smaller. Less obviously, the ancestral population
size (proportional to θ) is overestimated, while current populations sizes are underestimated.
The resulting AFS is shown in the upper right panel of Supplementary Figure 1 and is
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qualitatively very similar to the AFS with migration. As illustrated in the lower left panel,
however, fitting this incorrect model yields correlated residuals; the model predicts too few
shared polymorphisms at low frequency in one or both populations. This is the AFS signal
that distinguishes between reduced divergence time and increased migration.

2 Numerical methods

2.1 Finite-difference scheme

Note: here we index populations using lower-case Greek indices, to distinguish from the
numerical index we use over grid points.

To numerically approximate the solution to our diffusion equation (Eqn. 1) for P popu-
lations, we discretize the equation over a non-uniform regular P -dimensional grid. (The grid
is described in section 2.3). To solve this multidimensional problem, we adopt an alternat-
ing difference scheme [1], in which we evolve terms involving derivatives in each variable xα
separately. Here we outline the finite difference scheme we use, inspired by work of Chang
and Cooper [2] on diffusion equations arising in plasma physics.

Importantly, aside from the boundary conditions our diffusive evolution conserves proba-
bility. For stability and accuracy our finite difference scheme should also explicitly conserve
probability. This motivates us to consider the fluxes Fα. Our diffusion equation can be
decomposed into fluxes as
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where V (α) = xα(1− xα), and M (α) =
∑

β Mα←β(xβ − xα).
If we take a centered finite difference about point j on our grid xi, where i = 1, 2, . . . G,

we obtain

φt+1
j − φtj

∆t
=

1

∆j

(
F t+1
j+1/2 − F

t+1
j−1/2

)
. (S4)

To conserve total probability (as defined by the trapezoidal numerical integration scheme)
we take F−1/2 ≡ FG+1/2 ≡ 0 and

∆j =


(x1 − x0)/2, j = 0,

(xi+1 − xi−1)/2, 0 < j < G,

(xG − xG−1)/2, j = G.

(S5)
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To evaluate F t+1
j+1/2, we take a centered finite-difference, so that
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1
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1

2

(
Vj+1 φ

t+1
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j
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where φt+1
j+1/2 ≡

1
2

(
φt+1
j + φt+1

j+1

)
. (Note that Chang and Cooper take a non-centered difference

on φ to ensure non-negativity of the equilibrium solution. This is not possible for us, because
the equilibrium solution of our equations can be singular.)

Combining equations S4 and S6 yields a tridiagonal system of equations which can be
solved by standard methods, e.g. ajφ

t+1
j−1 + bjφ

t+1
j + cjφ

t+1
j+1 = φtj.

The flux out is handled by particular absorbing terms [3] of the form:
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These are applied only at the grid points where all frequencies equal 0 or 1 respectively.
New mutations are injected into the system at each timestep via:

φt+1
1 − φt1

∆t
=
θ

2

1

x1

2P

(x2 − x0)xP−1
1

(S9)

The final term (involving 2P ) normalizes the probability density given trapezoid rule inte-
gration over the other dimensions of the grid. Note that we inject probability at a rate
θ/(2x1), independent of the relative population size να. This reflects the fact that mutations
are being input at x1, not 1/(2Nα). The effect of relative population size is accounted for by
the drift term V .

In total, for a P -dimensional problem, each timestep requires solving GP−1 tridiagonal
systems of size G. We set our timestep to be ∆t ≡ min ∆x/10, which provides good stability
and accuracy for the scenarios considered here. (Situations with very high migration rates
or selection coefficients or very small population sizes may require finer timesteps.) Thus
the total run time for a single likelihood evaluation is order GP+1.

2.2 Population splits

Numerically handling δ-function density for φ upon population splits (Eqn. 2) involves some
subtlety. In particular, it is important to properly conserve φ density, and the value z to
which a given pair of x and y map to may not be a point in the grid.

Consider x and y which map to a value z which lies between grid points zi and zi+1.
Define ∆zi ≡ zi+1 − zi. We distribute the density φ(x, y) which a proportion a going to zi
and b going to zi+1, such that

a =
zi+1 − z

∆zi
, b =

z − zi
∆zi

. (S10)
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To ensure proper normalization under the trapezoid rule in the interior of our domain, we
must have

a

2
C∆zi−1 +

a+ b

2
C∆zi +

b

2
C∆zi+1 = φ(x, y). (S11)

Upon splitting, a contribution aC is thus added to element φ(x, y, zi) and a contribution bC
to φ(x, y, zi+1).

The edge cases, in which z, for example, maps between z1 and z2 are handled similarly.
In those cases, Eqn. S11 must simply be altered to reflect the correct trapezoidal integration
rule for those edge cases.

2.3 Non-uniform grid
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Supplementary Figure 2: The nonuniform grid used in our numerical solution of the diffusion
Eqn. 1, for G = 60. The vertical lines denote grid points spaced on (0, 1), while the blue line
traces the spacing between adjacent grid points.

We solve our equations on a non-uniform x grid. For a grid of G points, the first G/10
points (rounded down) are uniformly spaced within x ∈ [0, 0.05]. This uniform grid spac-
ing makes the solution more accurate in the low-frequency regime, where we have many
segregating mutations and the data are therefore relatively less noisy.

The remaining points are placed so that their spacings increase quadratically, being finer
at small and large values of x. This scheme minimizes the difference in spacings between
adjacent grid points, which we found helped accuracy and stability. Specifically, we take the
remaining points onto q ∈ [0, 1] which is mapped onto x by x = a q3 + b q2 + c q + d, were
d = 0.05, c is equal to the spacing between the first G/10 points, b = −3(∆q+ c+∆q d)/∆q,
a = −(2/3)b. This pattern of grid points is illustrated in Supplementary Figure 2.

Because our algorithm run time scales as O(G4) when working with 3 populations, this
non-uniform grid gives a dramatic increase in computational speed for a given solution
accuracy.

2.4 Extrapolation

Our numerical approximation to the solution of the diffusion equation improves as the grid
becomes finer, as G → ∞. Our computational costs, however, increase rapidly with G. To
overcome this, we use Richardson extrapolation [1], extrapolating on the log of each entry
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Supplementary Figure 3: Extrapolation results. The blue points show the evaluation of
AFS[1,1] for G = {40, 50, ...200}. The green dot is the value extrapolated from the evalua-
tions with G = {40, 50, 60}. The red dot is the result of averaging 108 simulations from ms.
The purple line shows the run time for this two-dimensional problem as a function of grid
spacing. The extrapolated evaluation took ≈0.5 seconds.
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Supplementary Figure 4: Diffusion-coalescent comparison for low migration. As in Figure
1.E. from the main text, but with M = 0.1.

of the AFS, as in Eqn. 5. As illustrated in Supplementary Figure 3, this yields a massive
improvement in the accuracy of our calculated AFS. (A more sophisticated treatment of the
mutation influx boundary conditions [4] may alleviate some of the bias introduced by the
finite grid, but extrapolation would still enhance accuracy.)

The demographic scenario simulated in Supplementary Figure 3 is as in Figure 1, with
θ = 1, ν1 = ν2 = 1, M = 1, T = 0.5. The corresponding ms command is:
ms 40 1e8 -t 1 -I 2 20 20 -n 1 1 -n 2 1 -ma x 2 2 x -ej 0.25 2 1 -en 0.25 1 1

2.5 Small-M comparison with ms

The human applications we consider here involve relatively high migration rates, so there
are very few fixed differences between populations. In other cases, much smaller migration
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rates may be of interest, so we have additionally compared performance between diffusion
and coalescent simulations for M = 0.1, using the same procedure as reported in the main
text for M = 2. Supplementary Figure 4 shows that our method is again very accurate in
likelihood evaluation. The speed advantage of the diffusion method is similar in this case to
the M = 2 case.

3 Data processing

The 219 genes we consider yield 5,017,161 bases of non-coding sequenced DNA, with 31,352
observed SNPs in the EGP samples. Table 8 gives a gene-by-gene break down of the data.

To apply the statistical correction for ancestral misidentification [5], we align to the
panTro2 build of the chimp genome using BLAT [6]. Genes longer than the 25 kb recom-
mended for BLAT were split into 25 kb chunks with 2 kb overlap. Each 25 kb chunk was
required to have at least 90% identity with chimp across at least 70% of the sequence, or it
was discarded from analysis.

To apply the ancestral misidentification correction to a SNP it must satisfy 4 criteria.
1) It must have been successfully aligned to chimp. 2) The chimp allele must be one of the
segregating human alleles. 3) The two bases flanking the SNP must be the same in chimp
and human. 4) The SNP cannot be adjacent to any other SNP. All these criteria are satisfied
for 27,824 SNPs in our sample.

3.1 Projection

To account for missing data and ease visual comparison between populations, we project each
AFS down to 20 samples per population using a hypergeometric distribution. In essence, to
project from n successful calls in a population to m, we average over all possible results of
choosing a size m subsample from those n calls. Because the sampling in each population
is independent of sampling in the others, this is a simple extension of the one-dimensional
case [7]. In particular, if we are projecting an AFS S from a sample size in population α of
n to a sample size of m, the projected AFS P is

P [iα, iβ, . . . ] =
n−m+iα∑
d=iα

(
m
iα

)(
n−m
d−iα

)(
n
d

) S[d, iβ, . . . ]. (S12)

Note that this projection reduces the number of segregating SNPs, as SNPs segregating in
the original sample may project to make contributions to the ‘absent in the sample’ and
‘fixed in the sample’ classes.

For our Out of Africa model, which uses YRI, CEU & CHB data, 25,258 SNPs have ≥ 20
calls in every population. We correct our estimation of the ancestral population size for the
SNPs lost to the ancestral misidentification criteria and the ≥ 20 calls criteria by using an
effective sequenced length. In this case, it is 5.02 Mb · 25, 259/31, 352 = 4.02 Mb. After
projection, our AFS sums to 17,446 segregating SNPs.
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For the New World model we have 26,387 SNPs with ≥ 20 calls in every population,
yielding an effective sequencing length of 4.20 Mb. Our projected AFS, however, contains
only 13,290 segregating SNPs, reflecting lower diversity in these populations.

3.2 LD calculation

Figure 2.D. and Figure 3.D. show linkage disequilibrium as a function of physical distance
in the data. These values were calculated using phased haplotypes generated using PHASE
2.0 [8] and provided by the EGP. For comparison with our simulated data, only SNPs in
non-coding regions and with minor allele frequency ≥ 10% in all populations were considered.

3.3 Estimating µ

We estimate the neutral mutation rate µ using the divergence between human and chimp.
Comparing aligned sequences in our data, we estimate the divergence to be 1.13%. Assuming
a divergence time of 6 million years [9] and a mean generation time for human and chimp
over this interval of 25 years, we have

µ = 0.0113 · 25/(2 · 6× 106) = 2.35× 10−8 per generation. (S13)

Note that the assumed generation time formally cancels in the conversion between genetic
and chronological time units. If tC is the chronological time, τ is the genetic time (in units
of 2NA generations), and tg is the generation time, then

tC = tG · tg = τ · 2NA · tg = τ · θ
2µ
· tg. (S14)

As shown in the previous paragraph, µ is proportional to tg, resulting in the cancellation of
tg.

4 Coalescent simulations

Detailed simulations of the EGP data are required to estimate accurate confidence intervals
and to perform realistic goodness-of-fit and hypothesis tests. For these simulations, we use
ms [10].

To account for potential linkage between genes, in our simulations we divide the 219
sequenced genes into 194 potentially linked regions, each separated by at least 500 kb (Ta-
ble 8). We simulate the entirety of each region using a value for θ scaled by the relative
length of that region to the total sequenced length. The recombination rate for each region
is set to the average recombination rate from the HapMap Release 22 genetic map [11]. This
rate r was converted into a population-scaled rate ρ = 2Nrefr by using Nref inferred from θ
and our estimate of µ.

Simulations use the total number of samples from each EGP population. The resulting
AFS is then projected down to 20 samples per population. When extracting an AFS from a
simulation, only SNPs lying within regions sequenced by the EGP are included.
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4.1 Reduction of effective independent SNPs by linkage
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Supplementary Figure 5: Shown are histograms of the likelihoods of generated data sets
under the model. Data sets in the top panel are simulated using the coalescent procedure
described above. Data sets in the bottom panel are simulated using the modified Poisson
procedure described below, where the effective number of data points has been reduced by
a factor f .

To first order, the effect of linkage on our analysis is to reduce the effective number of
independent samples in the frequency spectrum. To estimate the magnitude of this effect,
in Supplementary Figure 5 we compare the distribution of likelihoods generated by the full
simulation procedure described above and by modified Poisson sampling from the model
frequency spectrum M . In the modified Poisson sampling, we sample from M/f and then
multiply the resulting sampled frequency spectrum by f . In effect, this generates a frequency
spectrum where each sample is replicated f times.

As illustrated in Supplementary Figure 5, the likelihood distributions are similar for
f = 4.5. This suggests that linkage reduces the effective number of independent samples
in our data by a factor of approximately 4.5. Note that the likelihood distribution for the
full simulations remains somewhat wider than that for f = 4.5, indicating that the effect of
the linkage in the data is more than a simple consistent reduction in the number of effective
data points.

5 Out of Africa model

5.1 Marginal analyses

Supplementary Figure 6 and Supplementary Table 1 present results from a two-epoch model
fit to the YRI spectrum. The fit is quite good, and the inferred parameter values are
reasonable and consistent with estimates from other studies.
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Supplementary Figure 6: YRI marginal fit. The top panel shows the model (red) and data
(blue) spectra. The bottom panel shows the residuals.

Supplementary Table 1: Maximum-likelihood parameters for YRI marginal fit.

parameter value
NA 7,100
NAF 13,600

TAF (kya) 136

Supplementary Figure 7 and Supplementary Table 2 present results from a divergence and
growth model fit to the CEU/CHB spectrum. (In this model both populations diverge from
an equilibrium population and grow exponentially following a concurrent bottleneck.) Here
we do see a pattern of correlated residuals, in that the model underestimates the amount of
high frequency shared polymorphism. As seen in Figure 2, the more complex model which
incorporates migration from YRI alleviates this somewhat. Allowing the bottleneck times
in the two populations to occur anytime after divergence yielded only a very slight increase
in fit quality (data not shown).

5.2 Maximum likelihood parameters

In genetic units (scaled by NA), the maximum likelihood parameters are shown in Supple-
mentary Table 3. In ms syntax, the demographic model is:

-n 1 1.682020 -n 2 3.736830 -n 3 7.292050

-eg 0 2 116.010723 -eg 0 3 160.246047

-ma x 0.881098 0.561966 0.881098 x 2.797460 0.561966 2.797460 x
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Supplementary Figure 7: CEU/CHB marginal fit. The upper left panel shows the data, and
the upper right the model. The lower panels show the residuals, as a heat map and as a
histogram.

-ej 0.028985 3 2 -en 0.028985 2 0.287184

-ema 0.028985 3 x 7.293140 x 7.293140 x x x x x

-ej 0.197963 2 1 -en 0.303501 1 1’

To convert to physical units, we use θ = 4NAµL, where L is the length of sequence
considered. Importantly, L must use the effective sequenced length, which accounts for
losses in alignment and missed calls. So

Nref =
θ

4Lµ
=

2788.2

4 · 4.04× 106 · 2.35× 10−8
= 7310. (S15)

The remaining conversions are straightforward.

5.3 Projection and residuals

Some the correlation between residuals seen in Figure 2 and 3 is due to the fact that we’ve
projected the data down from a larger sample size. This effect is illustrated in Supplementary
Figure 8. In subfigure (a) we show the residuals between our model AFS simulated for the
total number of individuals in the EGP and a Poisson sampling from that AFS. As expected,
the residuals shown no correlation. Subfigure (b) compares the model AFS with the same
sampled AFS as in (a), but projected down to 20 samples per population. This projection
results in correlation between adjacent entries in the AFS that is very similar to that seen
in the model comparison with the real data.
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Supplementary Table 2: Maximum-likelihood parameters for CEU/CHB marginal fit.

parameter value
NA 6,650

NEU0 1,730
NEU 20,000
NAS0 330
NAS 35,000

mEU−AS (×10−5) 34
TEU−AS (kya) 18.4

Supplementary Table 3: Maximum likelihood parameter values for Out of Africa model, in
genetic units.

parameter value parameter value
θT 2788.2 MAF−B 3.65
νAF 1.68 MAF−EU 0.44
νB 0.287 MAF−AS 0.28

νEU0 0.129 MEU−AS 1.40
νEU 3.74 TAF 0.607
νAS0 0.070 TB 0.396
νAS 7.29 TEU−AS 0.058

5.4 Parametric bootstrap

Shown in Supplementary Figure 9 are the results of the parametric bootstrap analysis of
parameter uncertainties for our Out of Africa model. All distributions of bootstrap parameter
estimates have their mode approximately at the maximum likelihood value. This provides
empirical evidence that, as expected, our estimation is not significantly biased.

5.4.1 Parameter correlations

The correlations between parameter values inferred during our conventional bootstrap shed
light on the dependencies between model parameters. Supplementary Figure 10 shows the
squared correlation coefficient between each of the inferred parameter values. Correlations
are typically low, with a few exceptions.

Supplementary Figure 11 illustrates three of the most strongly correlated parameter pairs.
The strongest correlation is between the time of the African population size change TAF and
the ancestral population size NA. This likely reflects the need to generate the appropriate
level of polymorphism before divergence from Africa. Interestingly, the divergence time
between CEU and CHB, TEU−AS, is more strongly correlated with the growth rate of the
Asian population rAS than with the migration rate between the two populations mEU−AS.

The lower-right panel of Supplementary Figure 11 compares inferred values of the initial
population sizes for European and Asian populations, NEU0 and NAS0, respectively. There is
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(a) Model comparison with sampled spectrum

(b) Model comparison with projected spectrum

Supplementary Figure 8: Effect of projection on residuals. As shown in (b), projecting a
data set down from a larger sample size yields correlated ‘splotchy’ residuals.

little correlation between the inferred values. 92 of our 100 bootstrap fits yield NEU0 > NAS0.
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Supplementary Figure 9: Out of Africa model parametric bootstrap results. Shown the
results of fits to 100 simulated data sets, generated using maximum likelihood values from
the real data (red lines). For parameters defined to be positive, also shown are the logarithms
of the bootstrap results, as these were used in confidence interval calculations. Particularly
for TAF and TB, they are much closer to normally distributed.
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Africa analysis. Parameter indices are as in Supplementary Figure 9.
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Supplementary Figure 11: The first three panels are the highly correlated pairs of parameters
in our Out of Africa analysis. (NA and TEU−AS have been divided by 1000 for plotting, and
mEU−AS has been multiplied by 105.) The line in the lower right panel is NEU0 = NAS0.
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5.4.2 Sloppiness
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Supplementary Figure 12: Plotted are the eigenvalues of the model Hessian matrix and a
Principle-Components-Analysis of our 100 parametric bootstrap parameter sets. The fact
that these plots are roughly straight lines indicates that the model is ‘sloppy’.

Recently it has been suggested that the sensitivities of many-parameter models to changes
in those parameter values follow a universal ‘sloppy’ distribution [12]. This distribution
is characterized by eigenvalues of the Hessian matrix (∂2L/∂ log pi∂ log pj) which decrease
linearly in their logarithm. As illustrated in Supplementary Figure 12, the demographic
model we fit exhibits a sloppy spectrum of sensitivities. As expected, a principle components
analysis of our ensemble of 100 parameter sets derived from fitting simulated data sets shows
a similar sloppy pattern.

The sloppiness we see is indicative of strong correlations between the effects of different
parameters on the AFS. In some problems, it is possible to define an orthogonal parameter-
ization which eliminates these correlations [12]. Such a parameterization has been demon-
strated for the single-population AFS [13], but none is know yet for the multiple-population
case.

Additionally, the fact that this model is sloppy is interesting because the model was
designed to be parsimonious, and in all previous examples of sloppy systems the parameter-
ization was determined by biological or physical considerations. This example expands the
domain of ‘sloppy’ problems.

5.5 Contemporary migration test

Fitting the data with a model lacking contemporary migration yields the parameters in
Supplementary Table 4. In our test, we generate simulated data sets with these parameters,
then fit them with a model allowing contemporary migration.
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Supplementary Table 4: Maximum likelihood parameter values for Out of Africa model
without contemporary migration, in genetic units.

parameter value parameter value
θT 2532.4 MAF−B 3.65
νAF 1.82
νB 0.319

νEU0 0.149
νEU 8.41 TAF 1.28
νAS0 0.066 TB 0.897
νAS 34.36 TEU−AS 0.052

5.6 Rare alleles

In Figure 2.E. of the main text, we evaluate the goodness-of-fit of our model to the observed
data using our composite likelihood function. This function involves the entirety of the
frequency spectrum, and in some cases specific frequency classes may be of particular interest.
In particular, rare alleles may be of medical interest. Supplementary Table 5 compares our
the rare-allele entries of our bootstrap simulations with the real data. Each entry in the
tables records the fraction of bootstrap simulations which yielded a larger proportion of
SNP in that entry that in the real data. For example, 3% of simulations yield a larger
proportion of SNPs that are at frequency (2,1,1) in (YRI,CEU,CHB) samples, respectively,
than is observed in the real data. In general, the proportions seen in the real data are typical
in our simulations. For some entries the real data may be atypical of the simulations, but it
is unclear whether these deviations are signficant.
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Supplementary Table 5: P-values of rare frequency spectrum entries. The tables record the
fraction of parametric bootstrap simulations yielding larger proportion of mutations in a
given frequency class than observed in the data.

CEU
2 0.45 0.24 0.34
1 0.87 0.77 0.93
0 — 0.68 0.35

0 1 2 CHB

(a) Sample YRI frequency 0

CEU
2 0.38 0.22 0.49
1 0.41 0.05 0.63
0 0.17 0.82 0.63

0 1 2 CHB

(b) Sample YRI frequency 1

CEU
2 0.51 0.05 0.28
1 0.11 0.03 0.01
0 0.65 0.50 0.13

0 1 2 CHB

(c) Sample YRI frequency 2
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6 Settlement of New World model

6.1 Alternative demographic models
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(a) Divergence from equilibrium population. logL = −5405.9, 11 free parameters
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(b) Divergence from two-epoch population. logL = −5261.8, 13 free parameters
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(c) With African population. logL = −5262.0, 10 free parameters

Supplementary Figure 13: Alternative models for joint CEU,CHB,MXL demographic history.
Each panel shows one of the three models we considered for modeling settlement of the New
World, which differ only in history prior to the MXL divergence. Each panel also shows the
residuals from the fit to the data, along with a comparison of LD decay from the real data
and from the simulations.

Supplementary Figure 13 illustrates several alternative demographic models considered
for the Settlement of the New World. In Model (a) the CEU and CHB populations diverge
from an equilibrium neutral population. Unsurprisingly, this model fails to reproduce the
observed frequency spectrum well (log-likelihood = -5405.9, 11 free parameters). As an alter-
native, we considered Model (b), which allows for a population size change before divergence.
(We allowed for the population to increase or decrease. The optimization resulting in a de-
crease.) This model reproduces the frequency spectrum substantially better (log-likelihood
= -5261.1, 13 free parameters), but the predicted pattern of linkage disequilibrium is very
different from the observed pattern. The model we settled upon is Model (c), in which the
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Supplementary Table 6: Maximum likelihood parameter values for Settlement of the New
World model, in genetic units.

parameter value parameter value
νEU0 0.208 MEU−AS 1.98
νEU 2.42 TEU−AS 0.072
νAS0 0.081 TMX 0.059
νAS 4.186 fMX 0.48

νMX0 0.103
νMX 7.94

population history prior to CEU/CHB divergence is set to the maximum likelihood history
from our previous Out of Africa analysis. Note that θ must be scaled to reflect the dif-
fering effective sequence length. This model reproduces the frequency spectrum as well as
Model (b) (log-likelihood = -5262.0, 10 free parameters), and it yields the correct pattern of
linkage disequilibrium.

6.2 Maximum likelihood parameters

Supplementary Table 6 gives the maximum likelihood parameter values for our Settlement
of the New World. The corresponding ms demography is:

-n 1 1.682020 -n 2 2.424020 -n 3 4.185850 -n 4 7.942130

-es 0 4 0.522451 -ej 0 5 2

-eg 0 2 67.978337 -eg 0 3 109.406463 -eg 0 4 147.474095

-ema 0 5 x 0 0 0 x 0 x 3.960400 0 x 0 3.960400 x 0 x 0 0 0 x x x x x x x

-ej 0.029475 4 3

-ema 0.029475 5 x 0.881098 0.561966 x x 0.881098 x 3.960400 x x 0.561966

3.960400 x x x x x x x x x x x x x

-ej 0.036114 3 2 -en 0.036114 2 0.287184

-ema 0.036114 5 x 7.293140 x x x 7.293140 x x x x x x x x x x x x x x x x

x x x

-ej 0.197963 2 1 -en 0.303500 1 1

Note that this command is complicated by the need to model admixture in MXL by gener-
ating a 5th population that exists for 0 time.

6.3 Parametric bootstrap

The parametric bootstrap results for our New World model are shown in Supplementary
Figure 14. Note that there does appear to be some slight bias in our inference of the growth
rate, rMX , of the MXL population. This is because our calculation of the frequency spectrum
is slightly biased in evaluation of the number of singletons private to MXL. Increasing the
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number of grid points G used in the evaluation would help eliminate this bias, at the cost
of an increase in computation time.

6.3.1 Parameter correlations

Supplementary Figure 15 shows the correlation between conventional bootstrap values be-
tween pairs of parameters.

Supplementary Figure 16 plots the three most correlated parameter combinations. The
correlation between MXL initial population size NMX0 and growth rate rMX is particular
strong. These likely represent combinations of parameters with generate the appropriate
YRI and CHB divergence.

6.4 Comparison with Out of Africa model parameters

For those inferred parameter values that are shared between our Out of Africa and Settlement
of the New World Model analyses, Figure 17 compares the distributions of conventional
bootstrap estimates. Importantly, all confidence intervals overlap substantially.

6.5 Admixture variability

Individuals in admixed populations mary vary considerably in their ancestry. In particular,
previous analyses of Mexican-Americans have found a wide range of ancestry [14]. Our
model adopts a single population-level admixture proportion, and it is important that we
understand the degree to varying individual ancestry affects our results.

To roughly estimate individual ancestry proportions, we adopt a maximum-likelihood
approach [15] similar to the Bayesian approach used in structure [16]. We consider only
the European and East Asian ancestry of Mexican individuals, in order to compare with
our three-population simulations. This is a rather crude approximation to the possibly very
complex ancestry of these individuals, but it nevertheless provides useful guidance for our
simulations.

Define qi to be European ancestry proportion of Mexican individual i. In this rough
analysis, 1−qi is then that individual’s East Asian ancestry proportion. For that individual,
the probability of the observing the pair of alleles xl = (α, β) at locus l is:

P
(
xl = (α, β)

)
= 2
(
Elαqi +Alα(1− qi)

)(
Elβqi +Alβ(1− qi)

)
. (S16)

Here Elα is the frequency of allele α at locus l in the European population. Similarly, Alα is
the frequency of allele α at locus l in the East Asian population. We simply estimate Elα and
Alα by the frequencies in our CEU and CHB samples, respectively. To estimate the ancestry
proportions qi, we maximize the composite likelihood formed by multiplying the probability
in Equation S16 over all loci.

The histogram in Supplementary Figure 18 shows the European admixture proportions
inferred for the 22 individuals in our Mexican-American sample. The green curve shows the
distribution of admixture proportions inferred from parametric bootstrap simulations of our
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demographic model. These simulations were performed with fMX = 0.47, indicated by the
dashed green line. As expected, we see that our admixture inference procedure overestimates
the CEU contribution, because we have no Native American samples. Also, we see that the
distribution of ancestry proportions arising from our simulations is narrower than seen in
the real data. In particular, there are a few individuals in the data with unusually little
European ancestry.

To roughly approximate the distribution of ancestry seen in the data, we perform sim-
ulations in which 3 of our 22 individuals have 5% European ancestry, 16 have 47%, and
3 have 60%. 1 The resulting distribution of inferred ancestries is shown by the red curve
in Supplementary Figure 18. This distribution captures the individuals with low-European
ancestry in the real data, and is overall perhaps somewhat wider.

To test our method in the presence of an extremely wide distribution of individual an-
cestry, we consider a scenario in which we have 1 individual each of European ancestry
proportion {0, 5%, 10% . . . }. To have 22 individuals as in our data, we simulate with
two individuals of European ancestry proportion 50%.2 The resulting distribution of in-
ferred ancestries is shown by the cyan curve in Supplementary Figure 18. As expected, the
distribution of inferred ancestry proportions is very wide.

We fit our CEU/CHB/MXL model to 100 data sets each simulated with our two dis-
tribution of MXL ancestry. Supplementary Figure 19 compares the resulting parametric
bootstrap parameter distributions with those from our single-ancestry-proportion simula-
tions. The differences in fMX are expected and correctly reflect the average ancestry of

1In ms parlance, the demograhpic history used was: -I 6 0 44 24 6 32 6 -n 1 1.682020
-n 2 2.424020 -n 3 4.185850 -n 4 7.942130 -es 0 4 0.950000 -es 0 5 0.530000 -es
0 6 0.400000 -ej 0 9 2 -ej 0 8 2 -ej 0 7 2 -ej 0 5 4 -ej 0 6 4 -eg 0 2 67.978337
-eg 0 3 109.406463 -eg 0 4 147.474095 -ema 0 9 x 0 0 0 x x x x x 0 x 3.9604 0 x
x x x x 0 3.9604 x 0 x x x x x 0 0 0 x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -ej 0.029475 4 3 -ema
0.029475 9 x 0.881098 0.561966 x x x x x x 0.881098 x 3.9604 x x x x x x 0.561966
3.9604 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x -ej 0.036114 3 2 -en 0.036114 2
0.287184 -ema 0.036114 9 x 7.29314 x x x x x x x 7.29314 x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x -ej 0.197963 2 1 -en 0.303500 1 1.

2The ms command terms handling this admixture distribution are -I 24 0 44 24 2 2 2 2
2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 -n 1 1.682020 -n 2 2.424020 -n 3 4.185850 -n
4 7.942130 -es 0 4 1.000000 -es 0 5 0.950000 -es 0 6 0.900000 -es 0 7 0.850000
-es 0 8 0.800000 -es 0 9 0.750000 -es 0 10 0.700000 -es 0 11 0.650000 -es 0 12
0.600000 -es 0 13 0.550000 -es 0 14 0.500000 -es 0 15 0.450000 -es 0 16 0.400000
-es 0 17 0.350000 -es 0 18 0.300000 -es 0 19 0.250000 -es 0 20 0.200000 -es 0 21
0.150000 -es 0 22 0.100000 -es 0 23 0.050000 -es 0 24 0.000000 -ej 0 45 2 -ej 0
44 2 -ej 0 43 2 -ej 0 42 2 -ej 0 41 2 -ej 0 40 2 -ej 0 39 2 -ej 0 38 2 -ej 0 37 2
-ej 0 36 2 -ej 0 35 2 -ej 0 34 2 -ej 0 33 2 -ej 0 32 2 -ej 0 31 2 -ej 0 30 2 -ej
0 29 2 -ej 0 28 2 -ej 0 27 2 -ej 0 26 2 -ej 0 25 2 -ej 0 5 4 -ej 0 6 4 -ej 0 7 4
-ej 0 8 4 -ej 0 9 4 -ej 0 10 4 -ej 0 11 4 -ej 0 12 4 -ej 0 13 4 -ej 0 14 4 -ej 0
15 4 -ej 0 16 4 -ej 0 17 4 -ej 0 18 4 -ej 0 19 4 -ej 0 20 4 -ej 0 21 4 -ej 0 22 4
-ej 0 23 4 -ej 0 24 4.
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Supplementary Table 7: P-values of rare frequency spectrum entries. The tables record the
fraction of parametric bootstrap simulations yielding larger proportion of mutations in a
given frequency class than observed in the data.

CHB
2 0.13 0.32 0.63
1 0.75 0.11 0.45
0 — 0.02 0.59

0 1 2 MXL

(a) Sample CEU frequency 0

CHB
2 0.79 0.62 0.61
1 0.95 0.84 0.26
0 1.00 0.77 0.65

0 1 2 MXL

(b) Sample CEU frequency 1

CHB
2 0.38 0.32 0.61
1 0.90 0.52 0.04
0 0.94 1.00 0.94

0 1 2 MXL

(c) Sample CEU frequency 2

individuals in each simulation. Agreement between the distributions is outstanding. Our
demographic inferences are very robust to a distribution of ancestry in the MXL individuals.
Remarkably, variable ancestry does not even effect our power, as evidenced by the fact that
the widths of all the parameter distributions are identical.

6.6 Rare alleles

As in section 5.6, it may be of interest specifically how well our model including MXL
reproduces the distribution of shared rare alleles. Supplementary Table 7. In this case, it
appears that our model may be somewhat overestimating the proportion of alleles that are
observed to be absent or at very low frequency in CHB.
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Supplementary Figure 14: Settlement of New World model parametric bootstrap results.
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Supplementary Figure 15: Correlation (r2) between bootstrap parameter values for Settle-
ment of New World analysis. Parameters are indexed as in Supplementary Figure 14.
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Supplementary Figure 16: Plotted are conventional bootstrap values of the three most cor-
related parameter pairs. (For plotting NMX0, TEU−AS and NEU0 have been divided by one
thousand.)
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Supplementary Figure 17: Comparison of parameter inferences in Out of Africa and New
World models. The New World values are in blue, while the Out of Africa are red. The
maximum-likelihood values are indicated by vertical lines.

0.0 0.2 0.4 0.6 0.8 1.0
Inferred proportion CEU ancestry

Supplementary Figure 18: Distribution of inferred European ancestry proportion for real
data, and simulations with varying degrees of individual ancestry variability. Histogram is
the real data. The green, red, and cyan curves are, respectively, simulations with only a
single admixture proportion, with a simple distribution of admixture proportions chosen to
mimic the real data, and with an extremely wide distribution. Note that these are only
crude estimates of European ancestry proportion, because our data lack Native American
samples. This is emphasized by the dashed black line, which shows the European admixture
proportion used in the single proportion simulations.
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Supplementary Figure 19: Comparison of parametric bootstrap results with and without
variable MXL ancestry. Black dashed lines indicate parameter values used in the simulations.
The blue curve shows parametric bootstrap results for simulations with only a single Mexican
admixture proportion. The red curve shows parametric bootstrap results with a distribution
of Mexican admixture proportions chosen to mimic that seen in the data (see Supplementary
Figure 18). The cyan curve results from an extremely wide distribution of ancestries. The
excellent agreement between the distributions suggests that our inference procedure is very
robust to variable ancestry in Mexican-American individuals.
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7 Nonsynonymous variation
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Supplementary Figure 20: Detailed nonsynonymous SNP comparison. Showed are com-
parisons of the two- and one- dimensional marginal spectra from the data with the model.
Agreement is overall reasonable, although the data is too sparse for quantitative comparison
of the entire AFS.
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Supplementary Table 8: Properties of genes analyzed. Recorded are the location of each gene, the number of noncoding
bases sequenced, and the number of SNPs found in that sequence. Note that these are SNPs segregating in any of the EGP
populations, of which we’ve considered subsets. The horizontal lines divide genes that were considered contiguous possibly
linked blocks in our simulations with linkage. For each of these 194 blocks, the recombination rate used is reported.

Noncoding Recomb.
Gene Location sequenced SNPs rate (cM/Mb)

tnfrsf4 chr1:1134785-1141404 5785 53 0.89
eno1 chr1:8842305-8863311 15246 83 0.26

angptl7 chr1:11170249-11180532 8209 56 0.05
mad2l2 chr1:11655241-11665757 9026 75 3.47

ece1 chr1:21416988-21490465 40367 234 0.99
rpa2 chr1:28088693-28115249 23201 142 0.21

cdc20 chr1:43595293-43603425 6632 21 0.04
prdx1 chr1:45747295-45761481 12662 89 0.08

cyp4b1 chr1:47035798-47059298 15169 132 0.52
gpx7 chr1:52839455-52849118 8496 53 0.31

mrpl37 chr1:54436478-54458642 17729 111 4.22
gstm3 chr1:110076140-110086554 9480 52 0.45

dclre1b chr1:114247570-114260035 9519 38 4.74
fmo5 chr1:145123019-145164842 16491 117 0.30
mcl1 chr1:148811707-148820540 6884 26 0.09
sprr3 chr1:151238865-151243575 3822 54 0.01
hspa6 chr1:159758724-159765190 3836 74 1.09

cd3z chr1:165665594-165756452 35760 251 5.30
fmo3 chr1:169324675-169355337 19347 161
fmo2 chr1:169419962-169446946 24498 201 0.56
fmo4 chr1:169548369-169579838 23589 90 1.52

prdx6 chr1:171711198-171725810 12879 73 0.17
abl2 chr1:177341425-177466679 30983 166 0.04

glrx2 chr1:191330262-191343224 10690 39 0.00
sphar chr1:227504932-227509818 4694 21 0.00

dclre1c chr10:14988098-15038104 33128 283 1.29
sirt1 chr10:69313282-69350134 23368 135 0.06
pten chr10:89611246-89718010 44318 171 0.04

pdlim1 chr10:96986027-97042728 40888 267 3.21
mms19l chr10:99206900-99249416 31198 133 0.28
cyp17a1 chr10:104578288-104587866 6830 39 0.28

prdx3 chr10:120915578-120929924 12842 89 1.00
fgfr2 chr10:123226932-123349844 47179 321 1.92

mmp21 chr10:127443010-127456384 11664 68 0.47
bnip3 chr10:133629245-133647430 16068 88 0.21

cyp2e1 chr10:135188892-135204545 10388 80 1.62
muc2 chr11:1063774-1096409 18417 203

muc5ac chr11:1130549-1247305 43767 435 8.59
adm chr11:10281267-10287423 5598 20 0.08

calca chr11:14945166-14951958 5857 31 0.18
fancf chr11:22598688-22605597 5784 36 0.26

depc1 chr11:43857038-43900374 21499 157 0.26
ddb1 chr11:60821542-60858358 24953 140 0.02
esrra chr11:63828047-63842665 9753 44

prdx5 chr11:63840191-63847827 6991 39 0.16
fibp chr11:65406224-65414553 7234 40 0.02

pold4 chr11:66873631-66879563 5608 24 0.01
fadd chr11:69724915-69731534 5992 35 0.81
ucp2 chr11:73362345-73373540 8695 45 0.85
birc2 chr11:101721227-101756502 16890 99 0.19

mmp8 chr11:102086541-102102880 14746 114 0.38
mmp12 chr11:102236716-102252838 13144 60 0.21

casp4 chr11:104317257-104346525 19430 124
casp5 chr11:104368183-104385539 12732 96 3.07
bace1 chr11:116659883-116694031 28147 101 0.66
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foxm1 chr12:2835814-2858359 13105 84 0.44
cd4 chr12:6767038-6800499 20508 124 3.67

ddit3 chr12:56195043-56201780 5857 25 0.10
txnrd1 chr12:103203105-103269990 39658 208 0.09
tuba2 chr13:18643916-18655936 10143 134 1.53
tgm1 chr14:23786446-23804157 14147 84 4.81

prkd1 chr14:29113440-29468639 117650 709 1.01
hspa2 chr14:64070670-64081266 8398 50 0.26

rad51l1 chr14:67354260-68014651 54253 286 0.32
mlh3 chr14:74551067-74589968 26770 106 0.06

ngb chr14:76799588-76809367 8578 25 0.29
tdp1 chr14:89489997-89582627 54024 450 0.09

atxn3 chr14:91597290-91644709 33289 233 0.39
cdc42bpb chr14:102466485-102594317 68463 555 0.37

ckb chr14:103053810-103060893 4975 26 0.58
tjp1 chr15:27777670-27903095 64491 206 0.06

capn3 chr15:40437058-40493743 33273 259 0.41
lcmt2 chr15:41405704-41412105 4004 27

tp53bp1 chr15:41484739-41591642 42841 155 0.06
dut chr15:46409739-46424845 14611 73 0.13

cyp19a1 chr15:49286972-49420103 41602 235 0.77
aldh1a2 chr15:56030935-56147219 41406 297 0.21

ppib chr15:62233067-62244406 7645 29 0.51
cyp1a1 chr15:72797088-72806750 7744 41

csk chr15:72859819-72884394 20901 104 0.34
blm chr15:89059760-89160889 43775 320 1.91

abcc1 chr16:15949029-16144720 77618 548 2.36
itgal chr16:30390443-30443977 32203 98 1.04

tgfb1i1 chr16:31390025-31398732 6253 29 0.14
mt3 chr16:55178288-55185470 6383 54

mt2a chr16:55198077-55202889 4315 26 1.60
mmp15 chr16:56614812-56639604 20075 127 0.67

ces2 chr16:65523966-65538512 11835 34 0.10
cdh1 chr16:67327048-67427588 33768 192 1.03

map2k4 chr17:11863715-11989045 52874 244 0.78
nos2a chr17:23105934-23153691 40735 245 0.99
traf4 chr17:24094767-24102944 4920 17 0.05

slc6a4 chr17:25547870-25588397 32318 163 1.23
ccl5 chr17:31220679-31233116 8983 43 0.15

aoc2 chr17:38248179-38256964 5192 31
aoc3 chr17:38254788-38265391 8311 53 0.91
epx chr17:53623637-53638737 11958 66

mpo chr17:53700284-53715294 12360 59 1.04
fdxr chr17:70369763-70382705 10034 80 0.76

flj35220 chr17:76002438-76028361 22577 218 1.17
tbxa2r chr19:3543524-3559600 8156 55 2.61

retn chr19:7638899-7643335 3094 23 12.40
cdc37 chr19:10360810-10376873 9676 61 0.53
prdx2 chr19:12767010-12775436 6352 20 0.13

jund chr19:18249798-18255411 4569 31 0.21
uba52 chr19:18541857-18551267 7682 76 0.63

cyp2a6 chr19:46039745-46049329 6359 24 0.85
cyp2b6 chr19:46188528-46217135 12150 114 0.53

fosb chr19:50661388-50672275 7981 48 0.62
fgf21 chr19:53949867-53954694 3266 26 4.08

tpo chr2:1394275-1527510 52005 451 1.04
odc1 chr2:10495964-10507871 8829 77 2.89
osr1 chr2:19412748-19423807 10107 57 3.98

tp53i3 chr2:24151902-24163166 9080 37 0.02
xdh chr2:31410740-31492750 49855 359 1.90

srd5a2 chr2:31601222-31661522 25841 149 0.27
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rev1l chr2:99381900-99474946 47250 215 0.04
sult1c2 chr2:108358851-108372202 11442 57 0.22
casp10 chr2:201753864-201795925 36933 181
casp8 chr2:201804951-201862677 25564 155 0.32
xrcc5 chr2:216679600-216781263 59688 377 0.33

cdk5r2 chr2:219530783-219536873 4688 22 0.48
tuba1 chr2:219821294-219828881 5335 24 0.07
pax3 chr2:222770789-222873966 37987 238 2.11

ugt1a1 chr2:234331663-234348269 14764 102 3.88
stk25 chr2:242082485-242098503 11355 85 1.13
tgm3 chr20:2222687-2271646 27310 195 14.22

adam33 chr20:3594643-3612212 11441 98 9.72
gss chr20:32977941-33008951 24298 109 0.33

tgm2 chr20:36188289-36228787 33377 239 1.48
plcg1 chr20:39197582-39239725 38122 173 0.06

mmp9 chr20:44068952-44080602 8530 45 0.45
ncoa3 chr20:45562610-45720991 67165 312 0.09
spo11 chr20:55336692-55354204 16068 72 0.20

chrna4 chr20:61444524-61465155 13979 127 3.14
app chr21:26174598-26466748 76787 422 0.96

trpm2 chr21:44596008-44688231 46955 256 1.77
tbx1 chr22:18109239-18152828 40156 324 4.01

mapk1 chr22:20441947-20553900 44393 223 0.06
mmp11 chr22:22443300-22458501 10387 83

smarcb1 chr22:22457747-22508636 29700 311 0.35
mn1 chr22:26472295-26529526 31530 217 9.42
mb chr22:34331272-34345316 13084 83 0.47

rad18 chr3:8894583-8982157 47273 353 0.35
fancd2 chr3:10041369-10118048 43662 291 0.03

oxsr1 chr3:38180035-38273949 45330 196 0.04
cx3cr1 chr3:39278151-39298493 18139 123 2.52
cxcr6 chr3:45958001-45966776 6418 36 0.08
poln chr4:2043284-2202575 63537 303 0.75

ugt2b4 chr4:70378553-70398209 16390 128 1.27
fgf5 chr4:81404858-81433179 25201 225 3.66

snca chr4:90863805-90977228 39808 283 0.17
adh5 chr4:100209588-100231047 19125 155
adh4 chr4:100263522-100285442 17459 167
adh6 chr4:100342975-100360914 16267 61

adh1a chr4:100415366-100432987 14726 75
adh1b chr4:100446108-100463534 14564 69
adh1c chr4:100474697-100494926 12484 100 0.33
gab1 chr4:144476938-144612701 40223 175 0.48

anapc10 chr4:146133771-146240749 31273 128 0.01
neil3 chr4:178466441-178522793 31513 236 2.59

cyp4v2 chr4:187347686-187372899 19389 157 3.60
tert chr5:1304982-1349971 27598 235 3.94

rad1 chr5:34939140-34956145 14622 83 0.13
sepp1 chr5:42834018-42849661 14107 69 0.10
xrcc4 chr5:82407721-82686781 76892 515 0.57

glrx chr5:95173453-95186148 9618 72 1.99
ube2b chr5:133732767-133757695 22770 118 0.02

hspa9b chr5:137917554-137941006 17066 64 0.07
ctnna1 chr5:138144392-138300374 37327 178 0.04

atox1 chr5:151100578-151120117 16976 80 0.21
dusp1 chr5:172125723-172132307 4900 31 1.12

fgfr4 chr5:176445082-176458717 8382 45 0.52
mapk9 chr5:179593434-179642220 41550 270 0.44

gpx6 chr6:28578919-28593498 11224 69
gpx5 chr6:28599802-28611651 9891 47 0.16
msh5 chr6:31813759-31842569 21092 108

hspa1l chr6:31883771-31891515 5083 33
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hspa1a chr6:31889373-31895694 2453 17
hspa1b chr6:31901538-31907733 4013 30 0.13

fance chr6:35527645-35544820 13668 81 0.17
gsta3 chr6:52867429-52884390 13987 93
gsta4 chr6:52950677-52970041 14568 99 2.54

marcks chr6:114283284-114291631 7237 24 3.17
hsf2 chr6:122760560-122797817 29209 108 0.04

vnn1 chr6:133042458-133078042 16990 141
vnn3 chr6:133084723-133099338 13790 121
vnn2 chr6:133104704-133122726 14925 122 3.14

nudt1 chr7:2248275-2257703 8506 96 0.68
rac1 chr7:6380405-6412143 27091 252 0.35
rpa3 chr7:7641155-7726729 39301 284 1.63
polm chr7:44077383-44090597 11122 64 0.08

igfbp3 chr7:45916382-45929339 11936 61 5.63
por chr7:75420622-75454411 15593 114 3.20

hspb1 chr7:75769508-75772601 2475 20 1.28
abcb4 chr7:86867353-86949645 69500 410
abcb1 chr7:86970771-87182449 88991 468 0.41

cyp3a5 chr7:99083564-99115770 16185 76
cyp3a4 chr7:99191632-99221666 20737 67 0.50

abp1 chr7:150178590-150191285 8699 55 2.11
slc4a2 chr7:150385719-150406496 15421 103 1.09
msr1 chr8:16008774-16094804 24853 268 3.76

scara3 chr8:27545520-27588149 37814 303 1.02
ube2v2 chr8:49082972-49138936 15669 41 0.05

terf1 chr8:74081659-74123686 29263 205 0.10
mmp16 chr8:89120172-89410308 70209 382 0.91
rrm2b chr8:103284760-103322295 30205 164 0.45

oxr1 chr8:107739110-107833889 37475 141 0.05
cyc1 chr8:145220372-145226365 4786 26 0.07

recql4 chr8:145705653-145715945 6665 61 0.41
ifna1 chr9:21428453-21432913 3554 36 0.36

dapk1 chr9:89300614-89513612 97580 718 3.56
fbp1 chr9:96403244-96443887 30956 258 0.37
ptch chr9:97244275-97311000 33249 175 0.87

pole3 chr9:115207883-115214172 5845 36 0.26
hspa5 chr9:127035208-127045070 7560 39 0.23

ciz1 chr9:129966204-130008434 21746 139 0.64
abl1 chr9:132577087-132753794 52704 371 0.87
rxra chr9:136431296-136474254 32537 351 1.99
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