Table S14. Separation between mutations within double and triple mutant *lys2* alleles

		Random		Random
		distribution of		distribution of
	Occurrence of	separations	Occurrence of	separations
	separations	within doubles,	separations	within triples,
Range of	within doubles	fraction of	within triples	fraction of
distances	(fraction)	events	(fraction)	events
11-1472	9 (0.56)	5791 (0.58)	8 (0.8)	14368 (0.72)
1473-2934	6 (0.38)	3251 (0.33)	1 (0.1)	4946 (0.25)
2935-4396	1 (0.06)	921 (0.09)	1 (0.1)	528 (0.03)

Expected distributions of separations between random *lys2* mutations (Table S12) within double and triple mutant alleles were calculated similar to *can1* (see footnotes to Table S13). Because of the limited number of mutants the *lys2* data were analyzed only for three intervals of distances. Distributions within mutant alleles with more than three mutations were not calculated due to insufficient data.

Distributions of random mutations were compared with experimental results using a χ^2 test: $P\chi^2 = 0.87$ for double mutants; $P\chi^2 = 0.22$ for triple mutants.