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1 The Normal-exponential-gamma distribution

The normal exponential gamma (NEG) distribution with shape parameter λ and scale pa-

rameter γ has probability density function

NEG(β | λ, γ) = κ exp

{

β2

4γ2

}

D−(2λ+1)

( |β|
γ

)

(1)

where Dv(z) is the parabolic cylinder function and κ = 2λλ
γ
√

π
Γ
(

λ + 1
2

)

. The derivatives of the

NEG density can be calculated from [1]
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The first derivative is obtained as follows:
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Substituting ν = λ + 1
2
, µ = β2/2, β∗ = 1/γ2 into (3) and rearranging we get

=
κ

2λ+ 1

2 Γ(λ + 1
2
)γ

d

dβ

∫ ∞

0

xλ− 1

2

(

x +
1

γ2

)−(λ+1)

exp

{

−1

2
β2x

}

dx

= − κ

2λ+ 1

2 Γ(λ + 1
2
)γ

β

∫ ∞

0

xλ+ 1

2

(

x +
1

γ2

)−(λ+1)

exp

{

−1

2
β2x

}

dx

and substituting ν = λ + 3
2
, µ = β2/2, β∗ = 1/γ2 into (2) and simplifying, we obtain
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Similarly, for the second derivative
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substituting ν = λ + 1, µ = β2/2, β∗ = 1/γ2 into (3)
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Since f(β) = − log NEG(β | λ, γ), and by substituting in (1), (4) and (5) we obtain
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2 The Likelihood

The log–likelihood and its first and second derivatives are given by

L(β) ≡ log p(y, x | β) = −
n
∑

i=1

log (1 + exp{−ηi}) (6)

L′(β) ≡ ∂

∂βj

L(β) =
n
∑

i=1

xijyi

1 + exp ηi

L′′(β) ≡ ∂2

∂β2
j

L(β) = −
n
∑

i=1

x2
ij

exp ηi

(1 + exp ηi)2
(7)

where ηi = yi

(

β0 +
∑k

j=1 βijxij

)

and y ∈ {−1, 1} denotes case/control status.

If βj = 0 it will remain there if the derivative of the log–posterior at the origin is negative

in |β|, which occurs if

∣

∣

∣

∣

∂

∂βj
log p(y, x | β = 0)

∣

∣

∣

∣

< f ′(βj = 0+). (8)
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This is bounded above and below as follows

−
∑n

i=1 I(yixij < 0)|xij |
1 + exp ηmin

+

∑n
i=1 I(yixij > 0)|xij |

1 + exp ηmax
<

∂

∂βj
log p(y, x | β)

< −
∑n

i=1 I(yixij < 0)|xij|
1 + exp ηmax

+

∑n
i=1 I(yixij > 0)|xij|

1 + exp ηmin
,

where I(E) equals one when E is true and zero otherwise. Thus the log–likelihood only needs

to be calculated when the absolute values of either of the bounds is greater than f ′(βj = 0+).

The bounds must be updated every time β changes. Implementation of this bound speeded

up the code by approximately a factor of 60.

3 Derivation of formula for type–I error probability

We can choose prior parameters to control the type–I error by assuming asymptotic normality

of the likelihood function. The asymptotic null distribution of an MLE is [2]

β̂j ∼ N

(

0,

(

− ∂2

∂β2
j

log p(y, x | β = 0)

)−1
)

. (9)

By evaluating (7) at the null β = 0, assigning β0 = log(n1/n0), and with standardised

genotype data, (9) can be expressed as

β̂j ∼ N

(

0,
n0 + n1

n0n1

)

. (10)

Differentiating the log–likelihood defined by (10) and substituting into (8) gives

|β̂j|
n0n1

n0 + n1

< f ′(βj = 0+)

and thus βj will remain at the origin if

|β̂j| < f ′(βj = 0+)
(n0 + n1)

n0n1

. (11)

For equal numbers of cases and controls this simplifies to |β̂j | < 4f ′(βj = 0)/(n0 + n1). For

a per-SNP type–I error rate of α we require the probability of (11) to be 1 − α at βj = 0.

From the distribution of β̂j given in (10) this implies

f ′(βj = 0+) =

√

n0n1

n0 + n1
Φ−1 (1 − α/2) . (12)
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3.1 Behaviour when βk 6= 0

When one or more SNPs are included in the model, i.e. βk 6= 0, the null distribution of β̂j

(9) becomes

β̂j ∼ N



0,

{

n
∑

i=1

x2
ij

exp ηi

(1 + exp ηi)2

}−1




and from (8) the criterion for inclusion becomes

|β̂j|
n
∑

i=1

x2
ij

exp ηi

(1 + exp ηi)2
< f ′(βj = 0+)

giving a probability of inclusion of

P

(

|β̂j | <
f ′(βj = 0+)

∑n
i=1 x2

ij
exp ηi

(1+exp ηi)2

)

= 2Φ





f ′(βj = 0+)
√

∑n
i=1 x2

ij
exp ηi

(1+exp ηi)2



− 1.

Substituting in the value of f ′(βj = 0+) given in (12) and assuming equal numbers of cases

and controls this can be expressed as

= 2Φ

(√

1
4

∑n
i=1 x2

ij
∑n

i=1 x2
ij

exp ηi

(1+exp ηi)2
Φ−1(1 − α/2)

)

− 1

since the numerator in the square–root is greater than the denominator

> 1 − α. (13)

Thus the test is now conservative. As more SNPs are included in the model the model fit

improves, the log–likelihood (6) will increase and the ηi’s will get closer to 0 or 1 and the

test will become increasingly conservative. This establishes that inclusion of true positives

reduces the false positive rate below that expected under the global null.

3.2 Asymptotic equivalence of the ATT and univariate variable

selection via shrinkage priors

Since the ATT is equivalent to a score test [3] the test statistic T ′ for the general multivariate

null hypothesis β = 0 can be written as [2]

T ′ = (L′(β = 0))
t
(−L′′(β = 0))

−1
L′(β = 0).
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For a univariate hypothesis this can be simplified to

T =
L′(βj = 0 | β−j = 0)

√

−L′′(βj = 0 | β−j = 0)
.

From the asymptotic distribution given in (9) and assuming η is constant for all individuals

(no other covariate effects) this can be expressed as

T = |β̂j|

√

√

√

√

exp η

(1 + exp η)2

n
∑

i=1

xij

Since the terms involving η are constant, the condition on βj remaining at the origin can be

expressed as

|β̂j| < κ

√

√

√

√

n
∑

i=1

x2
ij (14)

for some constant κ that controls the type–I error at the desired rate.

Returning to variable selection via shrinkage priors; for normalised data and η constant

the criteria for βj remaining at the origin (11) can be expressed as

|β̂ ′
j | < κ. (15)

where κ is determined by the derivative of the prior at the origin; all priors with the same

derivative at the origin will have the same type–I error which can be controlled at the

desired rate by appropriate choice of prior parameters. Let β̂ ′
j, x

′
ij and β̂j , xij denote the

MLE and covariates for normalised and unnormalised data respectively. Since βjxij = β ′
jx

′
ij

and x′
ij =

xij√
Pn

i=1
xij/n

, β̂j = β̂ ′
j

√
∑n

i=1 xij/n. Rewriting (15) in terms of unnormalised data

we get (14), thus the ATT and univariate variable selection using shrinkage priors, starting

the search at the origin, are equivalent when our asymptotic assumptions hold.
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