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S1.1 Human diffs. 
 
We define a  human diff as a base where (i) chimp, mouse, and rat have the same 

nucleotide, (ii) human has a different nucleotide, (iii) the ancestral consensus sequence is 
not in a CpG dinucleotide, and (iv) the chimp base is high quality (Phred score  and 
in an 11 base window with no indels, no more than 2 human/chimp differences, and all 
Phred scores ). If the chimp base is not high quality, we refer to the base as a  low 
quality human diff. The number of human diffs in an element can be compared to the 
expected number if the element were evolving neutrally in the human lineage: 0.67 diffs 
per 100bp, based on a genome-wide estimate of  P(human≠chimp | chimp=mouse=rat). 
Table S3 contains the distribution of the number of human diffs in our set of 96% 
conserved regions. Nearly 24% of the regions have at least one human diff. In addition, 
they contain between 0 and 6 human indel events (mean=0.38), affecting between 0 and 
28 bases (mean=0.52). 
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S1.2 Model for nucleotide evolution. 

  
The methods we use to detect substitution rate acceleration all make use of a fitted 

molecular evolutionary model. For this purpose, we use a general reversible single-
nucleotide model (REV)1 with parameters estimated from a genome-wide data set of 
evolutionarily conserved bases constituting approximately  of the human genome. 
These sites were identified in an independent analysis of a 17 species multiple alignment 
of human, chimp, macaque, mouse, rat, rabbit, cow, dog, armadillo, elephant, tenrec, 
opossum, chicken, frog, fugu, tetraodon, and zebrafish using the methods described in 
Siepel et al.
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2. Using the 17 species alignments and a topology for their phylogenetic tree, 
we globally estimate the free model parameters (rate matrix, branch lengths) using the  
phyloFit program3. Summaries of the estimated parameters are given in Figure S1. We 
call this model the CONS model. 

The REV model is the most general model for nucleotide substitution subject to the 
time-reversibility constraint. This model implies a particular parameterization of the rate 
matrix for nucleotide substitutions, which has four nucleotide frequencies and five rate 
parameters. Other parameterizations of the substitution rate matrix could be considered. 
However, we selected the REV model because of its general applicability and do not 
expect the results to depend heavily on this choice. Note that for simplicity we use a 
model that assumes independence between bases. Employing a context dependent model 
would allow us to easily model substitution patterns over two or three adjacent bases, 
alleviating the need to remove CpG dinucleotides from the data set. However, a context 
dependent model might present problems with estimation in this setting. It remains to be 
shown whether employing a more heavily parameterized model will in fact provide more 
power to detect human-specific changes. 

Our model for nucleotide evolution could be modified to include indels, allowing us 
to utilize rather than discard information from alignment columns with gaps. We 
explored the possibility of treating gaps as a fifth character and identified a number of 
genomic elements with more human-specific indels than expected (data not shown). One 
serious drawback to this approach, however, is that insertions and deletions often affect 
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more than one adjacent base, violating the assumption of independence between bases. 
Consequently, large indels are assigned a higher probability then they deserve. A solution 
would be to model indel events, rather than indel bases (see ref. 3 for some work on this 
problem). 

 
 
S1.3 Likelihood Ratio Test. 

  
LRT statistics. For each region, we compute the likelihood ratio test (LRT) statistic as 
follows. First, we fit two models to the multiple alignment data for the region. Both are 
scaled versions of the CONS model, a technique that avoids re-estimation all model 
parameters on a small amount of data. The null model has a single scale parameter 
representing a shortening (more conserved) or lengthening (less conserved) of all 
branches in the CONS tree. The alternative model has an additional parameter for the 
human branch, which is constrained to be . This extra parameter allows the human 
branch to be relatively longer (less conserved) than the branches in the rest of the tree. 
Both models are fit using the  phyloFit function (phast library) with the  --init-model and  
--scale-only options. The model with a human rate parameter is fit with the additional 
option  --scale-subtree human:loss. The LRT statistic is the log ratio of the likelihood of 
the alternative model to that of the null model. Regions are ranked based on the 
magnitude of the LRT statistic, with larger values indicating more evidence for 
acceleration in human. The ranking on LRT statistics agrees well with other methods
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LRT p -values. It is also of interest to assign a measure of statistical significance to each 
LRT statistic. We compute empirical p -values by simulation from the CONS model. 
One million simulated data sets are generated using the  phyloBoot program (phast 
library). These are of variable lengths (median=140, as in the observed data). For each 
simulated data set, the LRT statistic is computed as above. The distributions of these 
statistics are similar for different length elements, so we pool all simulated LRT statistics 
to form a single null distribution. For each observed LRT statistic, the empirical p -value 
is the proportion of simulated data sets with a larger LRT statistic. Note that the smallest 
p -value that can be estimated by this method (  here) depends on the number of 

simulated data sets. For observed LRT statistics that exceed all simulated LRT statistics, 
we can only say . Computational burden prevents more precise estimation. 

61 −e

61< −ep
 

 
S1.4 Multiple comparisons. 

  
Because the genomic regions we study in this paper are on different chromosomes 

or are separated by significant distance we can assume independence of their nucleotide 
substitution processes. This assumed independence allows us to employ a simple multiple 
testing correction throughout this study, the Benjamini & Hochberg False Discovery Rate 
(FDR) controlling procedure5, which requires independence or weak dependence between 
tests. The smallest FDR adjusted p -value that we can compute in the LRT is . 44.5 −e
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S1.5 Filtering. 

  
In order to illustrate the types of erroneous elements that would be found in the list 

of HARs if we did not perform filtering (Section 4.3), we describe the following elements 
that were removed from the analysis. 

One high probability element,  hg17.chr13:22,408,812-22,408,911, has a paralog in 
chimp and human, but not the rodents. This element is eliminated because we could not 
determine conclusively (due to gaps in the chimp assembly) which chimp sequence 
should align to each human sequence. 

There are two relatively significant elements that contain multiple adjacent human 
changes: hg17.chr10:127,180,121-127,180,192 and hg17.chr11:118,305,215-
118,305,352. In both cases, recomputing the element ranking without the adjacent 
changes seriously reduces the overall significance of the element (regardless of which 
specific base is retained). Hence, we eliminate these elements from further study. 

For two elements, hg17.chrX:95,820,769-95,820,993 and hg17.chrX:95,820,618-
95,820,729, both of which fall in an intron of the DIAPH2 (O60879) gene, the 
chimpanzee reads in NCBI in fact agree with the human sequence. This suggests that the 
chimp whole genome assembly may be incorrect at this position and the substitutions are 
primate specific, but not human-specific. Furthermore, the macaque sequence in these 
two elements agrees with human, supporting the chimp reads and not the chimp 
assembly. We believe that the chimpanzee sequence in the corresponding Contig 
#300019 is an assembly error, potentially caused by mouse contamination of the 
chimpanzee library. 

One high scoring element,  hg17.chr18:74,236,384-74,236,609, is removed based 
on contradictory findings in our resequencing data. A 4bp deletion in the human genome 
relative to the chimp and rodent genomes is not found in any of the humans in the PDR 
panel. Furthermore, all reads in the NCBI trace repository also do not have the deletion. 
This suggests that it is either a rare mutation or an assembly or read error. Because the 
apparent human-specific changes in this element are explained by a shift in the alignment 
due to this questionable indel, we remove the element from the analysis. 

 
S1.6 Background substitution rates based on ENCODE data. 

  
Background substitution rates are estimated using 4-fold degenerate (4d) sites in the 

ENCODE regions6 (http://www.genome.gov/10005107), which cover 1% of the human 
genome. We fit a REV substitution model1 to 4d sites from all ENCODE regions and 
from the five ENCODE regions that fall in the last (distal) band of their chromosomes. 
The rate matrix and GC content parameters were adjusted to correct for known bias in 4d 
sites using genome-wide estimates from ancestral repeats. These regions have a similar 
distribution of distances to the chromosome end as the HAR elements, making their 4d 
sites a suitable data set to estimate background substitution rates near chromosome ends. 
For each fitted model, we compute the posterior expected value of the number of 
substitutions on each lineage with the program  phyloP with option  --subtree (phast 
library). The background rates in the human-chimp tree are compared to the estimated 
chimp and human rates in the HAR elements. 
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S1.7 Does selecting regions based on divergence bias the results of an 
HKA test? 

  
To test the hypothesis that beginning with high divergence regions might bias the 

results of HKA-like tests, we conducted a simulation study. We generated  simulated 
data sets from a model without selection. Then, we compared the distribution of the HKA 

610

p -values for the top N% (N=1,10) to the full distribution. The p -value distributions are 
not distinguishable, and in particular they have similar sized tails. The false positive rate 
(i.e. the number of ) is the same in both sets over repeated rounds of the 
simulation. Hence, we conclude that the use of high divergence regions should not bias 
our tests for selection. 

0.05<p

 
 
S1.8 SNP detection bias in dbSNP 

  
In an effort to directly quantify the level of bias in our SNP detection using the 

dbSNP125, we compared counts of segregating sites in non-overlapping windows of 
various sizes (5kb-50kb) from the 10 Hapmap resequenced ENCODE regions (i.e. an 
unbiased, non-ascertained dataset) to counts obtained from the dbSNP125 data that we 
have used here (i.e. a dataset of mixed origin and ascertainment). We combine all 10 
ENCODE regions and compute Spearman’s correlation coefficient across all windows of 
a fixed size spanning the data set. Windows at three scales were examined: 5kb, 10kb, 
and 50kb. In each case, a strong correlation was found between the number of SNPs 
discovered in each dataset (Spearman’s ρ  values: 50kb 0.814=ρ , 10kb 0.72=ρ , 5kb 

0.66=ρ ). Thus, although a non-ascertained dataset is not available for the genomic 
regions surrounding the HAR1-HAR5, the levels of variation detected using dbSNP data 
should accurately reflect the actual genomic levels of polymorphism on the scales 
analyzed here. 

Because we only utilize numbers of observed polymorphisms, and not their 
frequencies, our analyses could potentially be robust to certain forms of ascertainment 
bias7, 8. The qualitative insensitivity of our findings to sample size (Section 2.5) suggests 
that this may be the case. Another potential source of robustness comes from the fact that 
our hypothesis tests are based on comparisons across genomic windows. Hence, even 
though the estimate of species divergence time in our coalescent-based approach (Text 
S1.10) will differ between an unbiased sample and dbSNP data, the probability of the 
observed configuration of fixed and segregating sites conditional on the estimated 
divergence time should not be significantly affected. 

 
 
S1.9 Diversity in HAR1 region compared to Seattle/NIEHS SNPs data 

  
A 6.5Kb region around HAR1 was resequenced in 37 individuals producing a 
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folded site frequency spectrum consistent with the neutral model (i.e. no skew was 
found)4. Twenty-five of the 37 sequenced individuals (10 African Americans and 15 
CEPH Caucasians) belong to the panel (“Panel 1”) used for resequencing by the Seattle 
SNPs project (http://pga.gs.washington.edu). In order to evaluate diversity in the HAR1 
region relative to genome-wide averages, we computed several population genetic 
measures for the 6.5Kb HAR1 region and compared these to distributions for those 
measures in the Seattle SNPs data (178 genes). Only the overlapping 25 individuals were 
used in the comparison. Since the HAR1 region is non-coding, we performed the analysis 
for all of the Seattle SNPs sequenced regions and for introns only. Singleton SNPs 
(present in only 1 individual) as well as insertion and deletion polymorphisms are 
excluded from the computations. 

Estimates of several population genetic parameters for the 6.5Kb HAR1 region are: 
  
     •  Number of segregating sites: ,  29=S
     •  Mutation rate (population scaled): 0.0014=Wθ , 0.0018=πθ ,  
     •  Tajima’s D: .  1.12=D
 
 These values can be compared to the distributions from Seattle SNPs regions. 

Regardless of whether only introns or the whole sequenced regions are used for the 
Seattle SNPs data, it appears that the HAR1 region has a high mutation rate (97th 
percentile for Wθ  and 98th percentile for πθ  with introns only). The value of Tajima’s D 
for the HAR1 region is some what high (74th percentile with introns only). These 
findings suggest that a mutational hot spot could have been at least partially responsible 
for the rapid evolution in the HAR1 region. The fact that we detect reduced diversity 
relative to divergence in the HAR1 region (Section 2.5) despite there being a very high 
level of diversity underscores that fact that divergence is exceptionally high at this locus. 

 
 
S1.10 Selective sweep analysis using the coalescent. 

  
The speciation model used is the simplest kind, where at a certain time T , a single 

ancestral species splits into two daughter species, with identical population sizes. The 
method employs a two-stage approach. 

First, we estimate the species divergence time T  by simulating coalescent 
genealogies as follows. Let M  be the total number of mutations observed in a sequence 
sample. These can be divided into mutations occurring since the most recent common 
ancestor of humans (segregating sites, ) and mutations occurring on the rest of the tree 
(fixed differences between the species, ). Then, 

S
D DSM += . Let  denote a 

particular observed sample configuration. Conditional on 
},{= DSx

x , T  creates a covariance 
between  and . Through simulation, we can therefore evaluate the likelihood of S D T  
given data x . That is, 
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 where , the number of simulations, is appropriately large (  here) and  is the 
indicator function. Simulation out of the coalescent is simple, and it is therefore 
straightforward to estimate the probability of a sample configuration by generating 
multiple genealogies, over which we lay down 

g 610=g )1(⋅

M  mutations according to the standard 
“fixed “ methodS 9, and then evaluate whether of not each simulated sample 
configuration is the same as what we observe in our data. As we are now in the summary-
likelihood setting10, 11, we can combine data across  independent loci to obtain a 
genomic estimate of time since speciation, 

k
'T , by taking the product of the individual 

likelihood values such that 
 

    ).|(=)(
1=

ii

k

i

' xTlikTlik ∏
 

Thus, we can obtain a coalescent-based ML estimate of species divergence time. We 
perform this estimation using the  observed sample configurations for the 1Mb 
genomic regions surrounding the four HAR elements (at three scales of analysis: 1kb, 
5kb, and 10kb). 

4=k

Next, because we are interested in selective sweeps, we evaluate the probability of a 
locus having  or fewer segregating sites conditional on our ML estimate of S T  and the 
number of fixed differences at that locus. This probability is evaluated at each locus of 
interest (at each scale centered upon each of the top four elements) and provides an 
estimate of the probability of a selective sweep in each region (proportion of  
simulated data sets with  or fewer segregating sites). 

510
S

As human demographic history is known to be complex, we performed the 
complete estimation and testing procedure under four different demographic models at 
each of the three scales of analysis. It should be noted that our results are qualitatively 
similar across all demographic models. The four models explored were 1) the standard 
neutral model (constant population size), 2) a recent population expansion where the 
human population expanded in size from  to  starting 1000 generations ago, 3) a 
more ancient population expansion where the human population grew from  to  
starting 5000 generations ago, and 4) a model of a population bottleneck followed by 
subsequent expansion where population size instantaneously decreased from  to  
5000 generations ago and lasted to 2500 generations ago at which point to population 
grew to size . 

410 510
410 510

410 310

510
 

 
S1.11 Estimation of the selection coefficient. 

  
The relative rate of substitution for selected mutations to neutral mutations in the 

Wright-Fisher model is 
 

  ,
1

2= 2
0

γ

γω −− ef
fs  
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 where Ns2=γ  is the population scaled selection coefficient, and  is the ratio of the 
fraction of mutations that are selected to the fraction that are not. It is typical to assume 

. Then, if 

0/ffs

1=/ 0ffs 12.47=0.11/0.009=ω , as we observe in the HAR elements compared 
to the neutral rate in the last band of chromosome arms, 6.24=γ . If we use the genome-
wide neutral rate 16.92=50.11/0.006=ω  and 8.46=γ . Because 22 ≤≤− γ  is 
considered nearly neutral, the selection coefficient would be at least three to four times 
higher in HAR1 and HAR2 compared to the neutral rate. 

 
 

S1.12 RNA secondary structure predictions 
  
RNA secondary structure predictions based on a phylogenetic stochastic context 

free grammar (phylo-SCFG) are available in the EvoFold track of the UCSC genome 
browser at http://genome.ucsc.edu. These predictions are based on a multiple alignment 
of 8 vertebrate species. Eighty-eight of the 202 HARs overlap a predicted structure on 
either the forward or reverse strand (or both). In order to rank these structures based on 
evidence in the substitution pattern that supports the predicted structure, a score is 
computed for each structure: 

 
  .0.5*#0.25*#=# orycontradictcompatiblerycompensatoS −+  
 

 This linear combination of different substitution types was found to perform well on 
known non-coding RNAs and was used in Pedersen et al.12. 

To assess the significance of the observed scores , shuffling experiments of the 
HARs extended by 50 nucleotides to both sides are performed as described in Pedersen et 
al.

S

12. An empirical p -value for the observed S  can be computed as the proportion of the 
1000 permuted data sets with a score at least as a large as . The S p -value evaluates how 
extreme the native structure is given the alignment composition. When there is a structure 
prediction on both strands, the one with the larger score is used. Twelve of the 88 HARs 
with predicted structures have unadjusted  (Table S4). None is significant at the 
0.05 level after FDR adjustment. 

0.05<p

 
 

S1.13 PhastCons elements containing HAR1-HAR5. 
  
We use the  phastCons program (phast library), as described in Siepel et al.2 to 

predict conserved regions in the 17 species alignments around each primate-rodent 
conserved block. HAR1-HAR5 each lie in a region that predicted to be highly conserved 
in the 17 vertebrates (Table S9). These extended HAR regions are between 155bp 
(HAR2) and 463bp (HAR4) in length. Human acceleration in these five regions is even 
higher than in HAR1-HAR5, with the human substitution rate varying from 12.8 to 37.5 
times the chimp rate. W→S bias is as high or higher than in HAR1-HAR5, with 75.8% 
of all human-specific changes from AT to GC nucleotide pairs compared to 8.0% from 
GC to AT. 
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S1.14 Biology of the fastest evolving elements. 

  
HAR1-HAR5 all lie in non-coding regions of the human genome that are not 

currently well characterized. This suggests that they might be involved in the regulation 
of nearby genes (e.g. acting as enhancers). Such regions have been increasingly studied2, 

13, 14, and mounting evidence suggests that highly conserved non-coding elements can 
regulate expression of nearby developmental transcription factors15-18. Interestingly, 
among the genes nearby these elements, two are known to be involved in human disease 
and several are expressed primarily in the brain and nervous system. While provocative 
bioinformatic clues such as these provide some insight, we emphasize that additional 
experimental work is needed to determine the functions of the HAR elements. We 
describe what is known about each element individually. All data are available at 
http://genome.ucsc.edu, unless otherwise noted. 

 
HAR1. The element with the most significant evidence for recent human acceleration 
overlaps two forward strand mRNAs, BC035016 and BC047717 (both sequenced from 
human hippocampus), and one reverse strand EST, DB088004 (sequenced from human 
testis). We describe the forward transcript (named HAR1F) and the overlapping reverse 
strand transcript (HAR1R) in ref. 4 and show that the entire HAR1 conserved region is 
transcribed. Secondary structure, compensatory substitutions, and lack of a convincing 
ORF indicate that HAR1 is part of an RNA gene expressed during neocortical 
development4. The DNA sequences corresponding to the two exons of the  HAR1F 
mRNAs align with primates and dog, but not the rodents, indicating that they are 
evolving much more quickly than the HAR1F conserved region. 

 
HAR2. HAR2 is a CpG island that lies in the eighth intron of the human centaurin 
gamma 2 (CENTG2) gene (Q9UPQ3), which encodes a nuclear protein belonging to a 
GTPase-activating protein family involved in membrane traffic and actin cytoskeleton 
dynamics. This element is part of a cluster of non-coding regions conserved between 
human and frog that lie in a ~750Kb neighborhood of the developmental gene 
gastrulation brain homeo box 2 (GBX2) (P52951). Such highly conserved segments 
surrounding developmental transcription factors are often enhancers15-18. GBX2 is 
believed to act as a transcription factor for cell pluripotency and differentiation in the 
embryonic brain. Its homeodomain has homologs in both mouse and chicken. In mouse, 
GBX2 is a hindbrain marker. The element we discovered lies 302.6Kb away from the 
start of  GBX2, compared to 371.3kb for the start of  CENTG2 itself. HAR2 could also be 
a close range regulator of the transcript represented by the 3’ polyadenylated mRNA 
AK074478, obtained from human lung tissue, which has 99.7% sequence identity (only 
sequence match in genome by the BLAT program19) with a region 2,058bp downstream 
of HAR2 (also in intron eight of CENTG2). 

 
HAR3. HAR3 lies in the ninth intron of the alternatively-spliced mitotic checkpoint 
protein isoform MAD1a (MAD1L1) gene (Q9Y6D9). Mutations in  MAD1L1 are 
associated with chromosomal instability and may play a pathogenic role in human 
cancers20.  NUDT1 (P36639) (involved in the sanitization of nucleotide pools by 
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hydrolyzing oxidized purine nucleoside triphosphates) and  FTSJ2 (Q9UI43) (a putative 
RNA methyltransferase) are 75.8Kb and 85.4Kb upstream, respectively, and could be 
regulated by HAR3. In addition, we predict a putative homolog of the  SLIT genes (key 
players in axon guidance during neural development) at hg17.chr7:1,557,474-1,559,960, 
about 410kB away from HAR3. Conservation between human and chicken suggests that 
HAR3 could potentially be a regulator of any of these genes. 

 
HAR4. HAR4 lies Kb upstream of the AT-binding transcription factor (ATBF1) gene 
(Q15911), which is a transcriptional activator known to bind to an enhancer of the  AFP 
gene (P02771) on chromosome 4.  AFP encodes alpha-fetoprotein, a major serum 
protein, produced primarily during fetal life and thought to be the fetal counterpart of 
serum albumin. The level of AFP in amniotic fluid is used to measure renal loss of 
protein to screen for spina bifida and anencephaly. AFP expression in adults can be 
associated with hepatoma and teratoma. Conservation between human and chicken 
suggests that HAR4 could potentially be a regulator of ATBF1. 

 
HAR5. The longest of the top four HAR elements (348bp) is a CpG island that is 
conserved between human and fish. HAR5 lies in the eighth intron of the cytoplasmic 
serine-threonine kinase WNK1 (PRKWNK1) gene (Q9H4A3), which is associated with 
familial hypertension. A novel human disease gene,  HSN2 (Q6IFS5), has recently been 
documented about 2.5kb downstream of HAR5 in intron eight of the  PRKWNK1 gene21. 
It is possible that HAR5 is involved in the regulation of the single exon gene  HSN2, 
which causes the autosomal recessive disorder hereditary sensory and autonomic 
neuropathy (HSAN) type II. Interestingly, two non-human ESTs (cow: CB465313 and 
mouse: BB660048) map to the location of HAR5, indicating that it may be transcribed. 

 
 

S1.15 HAR5 polymorphism. 
  
Resequencing of HAR5 showed that all but one of the human-specific changes 

appear to be fixed in the human population. The site  hg17.chr12:844,587 is polymorphic. 
Seventy percent of individuals are homozygous G (matching the human assembly), 10% 
are homozygous C (which is the base in the assemblies of all currently available 
mammals, chicken and frog), and 20% are heterozygous GC. These data suggest that the 
G in the human genome assembly is the derived allele, which has almost fixed in the 
human population. Interestingly, two additional human polymorphisms were also found. 
A polymorphic base was observed at  hg17.chr12:844,665, which is homozygous C in 
44%, homozygous T in 17%, and heterozygous C/T in 39% of the PDR panel. If the more 
common C allele had been in the human assembly, this would have been a ninth human-
specific difference (since chimp, mouse and rat assemblies are all T). This base is directly 
next to another human-specific difference (hg17.chr12:844,666). A polymorphic 1bp 
deletion was observed between  hg17.chr12:844617 and  hg17.chr12:844618, with 39% 
of the panel having a C (as do the assemblies of all currently available mammals, chicken 
and frog) and 61% having a deletion (as does the human assembly). Indels are not 
included in our statistical analysis, but this example is noted here as further evidence of 
recent evolutionary activity in this region. 
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Publicly available polymorphism data support the findings from resequencing. Of 
the top 5 HAR elements, only HAR5 contains publicly annotated polymorphisms: 
rs11611231 at  hg17.chr12:844,587, rs7300829 at  hg17.chr12:844,665, and rs11441897 
at  hg17.chr12:844,617-844,618. All three were detected in the PDR panel. 
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