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Abstract

The clinical utility of family history and genetic tests is generally well understood for simple Mendelian disorders and rare
subforms of complex diseases that are directly attributable to highly penetrant genetic variants. However, little is presently
known regarding the performance of these methods in situations where disease susceptibility depends on the cumulative
contribution of multiple genetic factors of moderate or low penetrance. Using quantitative genetic theory, we develop a
model for studying the predictive ability of family history and single nucleotide polymorphism (SNP)–based methods for
assessing risk of polygenic disorders. We show that family history is most useful for highly common, heritable conditions
(e.g., coronary artery disease), where it explains roughly 20%–30% of disease heritability, on par with the most successful
SNP models based on associations discovered to date. In contrast, we find that for diseases of moderate or low frequency
(e.g., Crohn disease) family history accounts for less than 4% of disease heritability, substantially lagging behind SNPs in
almost all cases. These results indicate that, for a broad range of diseases, already identified SNP associations may be better
predictors of risk than their family history–based counterparts, despite the large fraction of missing heritability that remains
to be explained. Our model illustrates the difficulty of using either family history or SNPs for standalone disease prediction.
On the other hand, we show that, unlike family history, SNP–based tests can reveal extreme likelihood ratios for a relatively
large percentage of individuals, thus providing potentially valuable adjunctive evidence in a differential diagnosis.
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Introduction

Over the last half decade, genome-wide association studies

(GWASs) have revolutionized the conduct of human genetic

research. Today, numerous companies offer consumers the

opportunity to access their genetic data and provide individuals

with personalized interpretations of their data based on genetic

associations reported in the literature. Thousands of genetic

associations covering hundreds of human diseases and traits have

now been discovered [1]; yet, for virtually all complex diseases, the

genetic risk factors that have been implicated to date often account

for only a small proportion of the total phenotypic variation, even

for conditions that are known to be highly heritable [2–4].

Recent estimates of the proportion of heritability explained by

known susceptibility variants across a survey of ten complex

diseases (Alzheimer disease, bipolar disorder, breast cancer,

coronary artery disease, Crohn disease, prostate cancer, schizo-

phrenia, systemic lupus erythematosus, type 1 diabetes, and type 2

diabetes) have ranged from 0.4% to 31.2% [5]. These proportions

highlight the sobering reality that only a fraction of the genetic

contributions to disease have yet been discovered. From a clinical

perspective, the problem of missing heritability has spurred

substantial concern regarding the practicality of using genetic risk

factors in the context of risk prediction. Many of these criticisms

focus on the poor predictive value of currently known markers

when used in SNP-based risk prediction models, or their limited

incremental value when used in conjunction with non-genetic risk

factors for disease.

In contrast with genetic associations, family medical history is

largely accepted as an important risk factor in clinical diagnosis

[6,7]. Taking a family history can easily be done in a physician’s

office, over the phone, or from the comfort of home using online

web tools [8,9]. Compared to SNP-based genetic testing, family

history risk assessment has the advantage of requiring no

specialized equipment and, in its simplest incarnation, can be less

expensive than personal genetic testing. Furthermore, family

history can be informative of undiscovered genetic factors and

shared environmental influences on liability to disease. On the

other hand, siblings within a family will generally have the same

prediction based on family history, and since half of the genetic

variance in a population occurs within families, this poses

substantial limits on the degree to which family history can be

informative of disease risk.

To date, few direct comparisons of the effectiveness of family

history and SNP-based methods for risk prediction across a broad

range of diseases have been conducted. A recent study conducted

by the Genomic Medicine Institute at Cleveland Clinic compared

family history with a commercially available genomic screening

service, and found low correlation between the risk estimates given

by each approach for three common cancers (breast, colon, and

prostate) in a selected population of individuals from a family

cancer clinic. These results suggest that the information contrib-
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uted by family history and current SNP panels may be relatively

independent, but do not indicate which method was more likely to

be correct in cases where the risk estimates differed [10]. Two

other recent studies [11,12] examined the problem of integrating

family history and SNP-based methods for predicting disease risk,

but did not specifically quantify the predictive power of each

method alone or both methods together.

In this paper, we use a theoretical model to show that the

accuracy of family history and SNP-based methods for risk

assessment is highly dependent on the particular characteristics of

the disease and population group being considered. We find that

while family history-based methods are sometimes more effective

for highly common diseases, SNP-based risk assessments tend to be

more powerful for less common disorders. We use these findings

not to argue that SNP-based assessments should replace the use of

family history in the clinic, but rather to suggest that SNP-based

assessments and family history are best viewed as complementary

tools for understanding an individual’s predisposition to disease

[13].

Results

The starting point of our analyses is the standard liability

threshold model [14], in which the presence or absence of a binary

trait is governed by an unobserved continuous phenotype, known

as the liability (see Table 1 for a summary of main notation used).

Conceptually, the liability (denoted as X ) represents the sum total

of all the risk factors involved in determining whether or not an

individual will develop a particular disease. At the heart of the

liability threshold model is the assumption that individuals with

liabilities greater than or equal to a fixed threshold T will develop

the disease (i.e., cases), whereas individuals with liabilities less than

T will not develop the disease (i.e., controls).

Usually, the liability is taken to be the sum of two quantities: a

genetic component, G, representing the total effect of one’s genes

on disease susceptibility, and an environmental component, E,

capturing the aggregate of all non-genetic effects influencing the

presentation of the disease. We use an additive model of liability,

which assumes no contribution due to dominance effects or gene-

gene interactions. For polygenic diseases, no single risk factor has a

large effect in isolation, and thus (in the absence of gene-

environment interactions) G and E are typically considered to be

independent normally distributed random variables.

By convention, we assume G and E to be independent random

variables drawn from zero-mean normal distributions with

variances h2
L and 1{h2

L, respectively; here, h2
L indicates the

proportion of variance in X due to additive genetic effects and is

known as the heritability of liability. Under these assumptions, it

follows that X*N (0,1) and T~W{1(1{K), where K is the

disease frequency and W is the cumulative distribution function for

a standard normal random variable. Following [5,11], we interpret

K to be the lifetime morbid risk, i.e., the probability that an individual

will develop a given disease at some point in his or her lifetime.

Here, we consider an extension of the basic liability threshold

model to a family-based setting, where the liabilities of related

Author Summary

In clinical practice, obtaining a detailed family history is
often considered the standard-of-care for characterizing
the inherited component of an individual’s disease risk.
Recently, genetic risk assessments based on the cumula-
tive effect of known single nucleotide polymorphism (SNP)
disease associations have been proposed as another
potentially useful source of information. To date, however,
little is known regarding the predictive power of each
approach. In this study, we develop models based on
quantitative genetic theory to analyze and compare family
history and SNP–based models. Our models explain the
impact of disease frequency and heritability on perfor-
mance for each method, and reveal a wide range of
scenarios (16 out of the 23 diseases considered) where SNP
associations may already be better predictors of risk than
family history. Our results confirm the difficulty of
obtaining accurate prediction when SNP or family histo-
ry–based methods are used alone, and they show the
benefits of combining information from the two ap-
proaches. They also suggest that, in some situations, SNP
associations may be potentially useful as supporting
evidence alongside other types of clinical information. To
our knowledge, this study is the first broad comparison of
family history– and SNP–based methods across a wide
range of health conditions.

Table 1. Symbols and terminology.

Symbol or Term Definition

X unobserved liability to disease

T liability threshold, beyond which individual will develop disease

G (additive) genetic component of liability

E environmental component of liability

h2
L

heritability of liability

K prior probability of developing disease during lifetime

f proportion of heritability explained by known SNP associations

area under the curve (AUC) probability of a true case receiving a higher predicted risk than a true control

sensitivity probability of a true case receiving a correct prediction

specificity probability of a true control receiving a correct prediction

positive predictive value (PPV) probability of a predicted case receiving a correct prediction

negative predictive value (NPV) probability of a predicted control receiving a correct prediction

likelihood ratio (LR) ratio of post-test odds to pre-test odds

doi:10.1371/journal.pgen.1002973.t001
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individuals are assumed to have a joint multivariate normal

distribution. In this model, the correlations in liability between

family members are determined by h2
L and the degree of genetic

relatedness between individuals, assuming no covariance due to

shared environmental risk factors. Based on the probabilistic

approach for modeling family history proposed in Appendix A of a

recent paper by So and colleagues [11], we develop new analytical

techniques for estimating the accuracy of family history-based risk

prediction models. The details of this procedure are described in

Methods.

Organization of results
The power of family history-based risk prediction methods

depends substantially on the extent to which an individual’s family

medical history is known. We analyzed a variety of different test

pedigrees, ranging from a simple trio structure to a more complex

three-generation family history (see Figure 1 and Figure S1). For

the sake of illustration, we focus throughout this paper on the

specific three-generation family history in Figure 1; corresponding

results for the other pedigrees are generally quite similar (see

Figures S2, S3, S4, S5, S6 and Tables S1, S2, S3, S4).

We present the results of our analyses using figures that illustrate

the performance of both family history and SNP-based methods

under a range of different assumptions regarding the character-

istics of the polygenic disease being modeled. Each figure is

structured as a rectangular array of plots, organized to illustrate

the dependence of predictive accuracy on the heritability of

liability (h2
L) and disease frequency (K ). For consistency, rows in

each figure correspond to varying choices of heritability

(h2
L[f0:3,0:5,0:7g), and columns correspond to varying choices

of disease frequency (K[f0:001,0:01,0:1,0:25g). Array cells

correspond to particular combinations of heritability and frequen-

cy.

We depict the performance of family history based on two

different models. First, we consider a complete family history-based

model (solid red line) that assesses an index individual’s risk based

on the exact pattern of disease occurrence in his or her relatives.

Second, we consider a restricted family history-based model (dotted

red line) that only takes into account the number of first-degree

relatives of the index individual who have the disease, bucketed

into three categories (either 0, 1, or w1). Results for the complete

model are appropriately interpreted as a theoretical ‘‘best-case’’

analysis for family history: among all predictive models that rely

only on the pattern of disease occurrence within the family, the

complete model achieves the highest accuracy possible under

various assumptions. The more moderate levels of performance

achieved by the restricted model, however, are likely more

representative of what is actually achieved in clinical practice (see,

e.g., the incorporation of family history in the Gail breast cancer

model [15]).

We depict the performance of SNP-based risk assessment

assuming that only a proportion (f ) of the genetic factors

underlying disease liability are accounted for by known disease

associations. Our performance estimates for SNP-based models

assume a normal distribution of genetic liability among cases and

controls [16,17], and do not take into account either the disease

status or genetic factors of any relative.

Risk stratification
We begin our analyses with a comparison of the ability of family

history and SNP-based models for stratifying individuals according

to risk. In Figure 2, we consider a common measure of

discriminative accuracy for risk stratification: the area under the

receiver operating characteristic (ROC) curve, also known as the

AUC. In each plot, the horizontal axis corresponds to the

proportion (f ) of the additive genetic liability explained by known

SNP associations, and the vertical axis indicates the AUC, ranging

between 0.5 (random guessing) and 1 (perfect discrimination).

ROC curves for the various methods tested are shown in Figure

S4.

From Figure 2, we can make a number of observations

regarding the relative performance of family history and SNP-

based methods for risk stratification:

Dependence on heritability and disease frequency. As

one might expect, the accuracies of both family history and SNP-

based models increase with increasing heritability of the under-

lying disease. However, the response of each approach to varying

disease frequency differs substantially. Family history fares well for

highly common conditions, and worse for rarer diseases; this is to

be expected since for an uncommon disease, the vast majority of

index individuals in a population will have no affected relatives in

their pedigrees. Genetic risk prediction models, on the other hand,

show the opposite trend; as disease frequency decreases, SNP-

based risk prediction models tend to exhibit better discriminative

performance. This is consistent with the previously reported

observation that the maximum AUC for a SNP-based risk

prediction model increases with decreasing disease prevalence

[16].

Complete versus restricted family history. The discrim-

inative accuracies of the complete and restricted family history

models are generally close, with the advantage of the former over

the latter being most pronounced for large pedigrees where the

restricted model fails to look beyond the closest relatives, or where

the limited set of family history categories considered (i.e., 0, 1, or

w1 first-degree relative) prevents the restricted model from

distinguishing between higher numbers of first-degree relatives

with the trait (see, e.g., the disparity between complete and

restricted family history for the pedigree in Figure S1B, as shown

in Figure S2B). In all cases, however, discriminative accuracy for

even the optimistic complete family history model peaks at

AUC&0:7 for higher heritability (h2
L&0:7) diseases and at

AUC&0:6 for lower heritability (h2
L&0:3) diseases.

Comparison of family history and SNP–based

models. Finally, of particular note are the locations on the

various graphs where the family history and SNP-based risk

prediction curves meet, corresponding to the minimum proportion

of heritability that must be explained for a SNP-based risk

Figure 1. Test pedigree. The test pedigree used throughout this
paper, consisting of an extended family with multiple aunts and uncles.
An arrow designates one particular individual as the ‘‘index individual’’
(or consultand) whose disease risk we wish to predict.
doi:10.1371/journal.pgen.1002973.g001
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prediction model to match family history in discriminative

accuracy. The locations of these intersection points vary widely

as a function of both disease frequency and heritability. Family

history is most effective for diseases of high frequency and high

heritability, accounting for as much as 20–30% of the heritability

of the disease, thus meeting or exceeding the best SNP-based

models based on GWAS associations to date. But conversely, for

complex diseases of low frequency and/or low heritability, SNP-

based models surpass family history even when very little of the

total genetic variance has been explained. Specifically, for diseases

with 1% frequency, the crossover point occurs at less than 4% of

the genetic variance explained, which is well within the proportion

of heritability explained by known genetic variants for a wide

range of diseases [5].

This last point is seen most clearly in the context of real diseases,

as shown in Table 2 and Figure 3. We show for a variety of health

conditions (including age-related macular degeneration, Alzhei-

mer disease, bipolar disorder, bladder cancer, breast cancer, celiac

disease, colorectal cancer, coronary artery disease, Crohn disease,

lung cancer, melanoma, multiple sclerosis, ovarian cancer,

pancreatic cancer, Parkinson disease, prostate cancer, schizophre-

nia, stroke, thyroid cancer, type 1 diabetes, type 2 diabetes, and

ulcerative colitis) the predictive accuracies achieved by complete

and restricted family history risk models. We translate these

accuracies into estimated proportions of heritability explained by

family history, which we then compare against a variety of SNP-

based models based on known associations from an online catalog

of published GWAS associations maintained by the National

Human Genome Research Institute.

Obtaining accurate epidemiological parameters for each

disease is difficult in practice. Heritability estimates, in particular,

vary widely, and depending on the methodology used, estimates

of the proportion of heritability explained by known genetic

factors also differ. In Materials and Methods, we describe a

conservative procedure for estimating f that incorporates a

number of corrections to avoid overstating the accuracy

achievable with currently known associations. We note that

accuracy estimates may vary depending on the specific criteria

used for SNP selection, so the numbers provided are meant to

suggest general trends in performance across diseases, rather than

providing precise benchmarks for the models used by existing

commercial personal genomic screens. The above caveats not

withstanding, for the 23 conditions included in the table and

figure, current SNP-based risk models outperform complete

family history for 13 out of 23 conditions and outperform

restricted family history for 16 out of 23 conditions, with the

Figure 2. Area under the curve (AUC) plots. Each cell of the 3|4 grid corresponds to a different combination of disease characteristics: rows
correspond to differing heritabilities (h2

L) and columns correspond to differing frequencies (K). Within each cell, the subplots compare the AUC when
using a complete family history model that accounts for the disease status of every individual in the pedigree (solid red line), a restricted family
history model that only considers the number (0, 1, or w1) of affected first-degree relatives of the index individual (dashed red line), or genetic risk
factors for the index individual only (blue line). For each subplot, the horizontal axis indicates the proportion (f ) of heritability explained by known
SNP associations, and the vertical axis indicates the AUC. Arrows indicate points of equivalence—values of K and f for which family history and SNP-
based methods give the same AUC.
doi:10.1371/journal.pgen.1002973.g002
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magnitude of the differences in performance greatest for diseases

of low frequency.

Standalone prediction
On a population level, risk prediction models may be useful as

tools for stratifying individuals based on risk, so as to optimize the

allocation of resources for disease prevention programs. On an

individual level, however, family history and SNP-based models

provide only limited power for predicting disease outcomes when

used in isolation. This can be seen most clearly in terms of positive

predictive value (PPV), which, for a dichotomous test, is the

probability that a positive result is actually indicative of disease.

In general, the risk estimates generated by a family history or

SNP-based model are not direct predictions of disease status;

however, for any threshold t, one can define a classification

algorithm that predicts an individual will develop the disease only

when his or her estimated risk is greater than t. By varying the

choice of t[½0,1�, we can obtain a family of dichotomous

prediction algorithms that are capable of achieving varying

combinations of sensitivity and specificity. Figure S5 shows the

PPV obtained at different levels of sensitivity. A corresponding plot

of negative predictive values (NPVs) is provided in Figure S6.

For polygenic diseases of low frequency, the predictive value of

a classifier based on either family history or SNPs will be extremely

poor. Even a risk model that accounts for half the variance in total

liability (e.g., a SNP-based risk model that accounts for 100% of

the heritability for a disease with h2
L~0:5, or two-thirds of the

heritability for a disease with h2
L~0:75) will still have very limited

power to accurately identify cases when K~0:001; such a

classifier, when tuned to obtain a sensitivity of only 10%, would

be correct on only one out of every five positive predictions, and

thus would have a false positive rate of 80%. At the same level of

sensitivity, a family history-based method would have essentially

zero probability of a positive prediction being correct.

Differential diagnosis
Based on the results of the last section, one might conclude that

for polygenic diseases, the usefulness of family history and SNP-

based tests is primarily limited to diseases that are extremely

common and highly heritable. Consider, however, a different

Table 2. Performance comparison summary for test pedigree in Figure 1.

AUC f

Disease K h2
L complete restricted SNPs complete restricted SNPs

Coronary artery disease 0.402 0.49 0.665 0.627 0.584 26.3% 15.8% 6.9%

Type 2 diabetes 0.339 0.30 0.610 0.587 0.592 18.6% 11.7% 13.0%

Atrial fibrillation 0.245 0.62 0.701 0.673 0.593 27.8% 20.6% 6.1%

Stroke 0.190 0.17 0.564 0.552 0.528 9.8% 6.3% 1.9%

Prostate cancer 0.165 0.42 0.606 0.583 0.614 10.2% 6.3% 11.9%

Alzheimer disease 0.132 0.79 0.743 0.712 0.648 27.1% 20.6% 10.0%

Breast cancer 0.123 0.25 0.560 0.544 0.586 5.2% 2.8% 10.5%

Lung cancer 0.069 0.08 0.527 0.519 0.525 2.6% 1.3% 2.3%

Bipolar disorder 0.051 0.60 0.675 0.637 0.550 13.9% 8.5% 1.1%

Colorectal cancer 0.051 0.13 0.538 0.526 0.564 3.1% 1.4% 8.6%

Age-related macular
degeneration

0.047 0.71 0.700 0.660 0.758 15.2% 9.7% 25.9%

Bladder cancer 0.024 0.08 0.517 0.511 0.577 0.8% 0.3% 16.2%

Multiple sclerosis 0.020 0.51 0.615 0.582 0.622 5.4% 2.7% 6.1%

Melanoma 0.020 0.21 0.544 0.528 0.640 1.9% 0.8% 19.7%

Type 1 diabetes 0.018 0.87 0.700 0.660 0.638 9.6% 6.1% 4.5%

Parkinson disease 0.016 0.27 0.553 0.534 0.592 2.0% 0.8% 6.0%

Pancreatic cancer 0.015 0.36 0.569 0.545 0.557 2.5% 1.1% 1.7%

Ovarian cancer 0.014 0.22 0.520 0.513 0.548 0.3% 0.1% 2.0%

Thyroid cancer 0.010 0.53 0.591 0.563 0.614 2.7% 1.3% 4.3%

Ulcerative colitis 0.009 0.53 0.588 0.561 0.666 2.5% 1.2% 9.2%

Schizophrenia 0.007 0.66 0.607 0.578 0.540 2.8% 1.5% 0.4%

Celiac disease 0.007 0.75 0.624 0.594 0.733 3.4% 1.9% 12.6%

Crohn disease 0.005 0.56 0.573 0.551 0.717 1.4% 0.7% 13.5%

K denotes the lifetime morbid risk, and h2
L denotes the heritability of liability. The next three columns provide discriminative accuracies (measured in terms of AUC) for

complete family history, restricted family history, and currently known SNP associations. The last three columns show the corresponding estimated proportion of
heritability explained by each model (for family history models, this is taken to be the proportion of heritability that a SNP-based model would need to explain in order
to obtain the given AUC). Bolded, italicized rows indicate diseases for which current SNP-based models outperform the complete family history model; bolded, non-
italicized rows indicate diseases for which current SNP-based models outperform the restricted but not the complete model. Diseases were selected based on

availability of disease frequency and heritability estimates; references for values of K , h2
L , and f (for SNP-based models) are provided in Text S2 and Table 3. Note that

the performance of SNP-based models shown here reflects only currently known genetic factors for European populations and will change as more associations are
discovered.
doi:10.1371/journal.pgen.1002973.t002
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application: diagnosis of a disease when other risk factors have

already led a physician to suspect that a particular condition may

be present. In this scenario, the quantity of relevance is not the

predictive value of the test in isolation, but rather the strength of

the evidence provided by the test when combined with observed

symptoms, clinical signs, and other risk factors for disease.

Numerically, the strength of evidence is expressed in terms of a

likelihood ratio (LR), the multiplicative factor by which the odds of

having a disease change after seeing the results of the test,

analogous to the concept of ‘‘odds ratio’’ in an epidemiological

study. Figure 4 shows the distribution of LRs in a population for

family history and SNP-based risk models.

As disease frequency decreases, the range of LRs observed for

both family history and SNP-based models increases. However,

the proportion of individuals receiving extreme (i.e., very large or

very small) LRs decreases dramatically for family history, a

consequence of the fact that the probability of having a positive

family history also falls. For instance, using our test pedigree, for a

relatively common disease of high heritability (K~0:25, h2
L~0:7),

roughly 2.6% of the population has at least 56 increased or

decreased odds according to a complete family history model; at

K~0:001, this fraction falls to 0.4%.

In contrast, the availability of SNP-based evidence does not

depend on observing disease in relatives, so extreme LRs are in

fact more likely. For the example above, a SNP-based model

explaining 30% of the heritability of the disease would assign at

least 56 increased or decreased odds to 8.5% of the population at

K~0:25, but this increases to 49.2% at K~0:001. Of the

individuals in this 49.2%, the bulk (roughly 92%) receive test

results indicating that they are at decreased risk.

Combining family history and SNP–based models
Although family history and SNPs are often considered

alternative tools for risk assessment, methods that integrate

information from both family history and SNP-based risk

assessments can be more informative than either approach

individually [11,12]. One challenge in building combined models

is the potential non-independence of family history and SNP-based

risk. For a complex disease, family history will generally capture a

portion of the variability in genetic liability explained by SNPs; in

Methods, we describe an extension of our accuracy estimation

approach to deal with combined family history and SNP-based

models that accounts for non-independence without the need to

resort to heuristic arguments. Using this extension, we find that in

some cases, the proportion of overlap in explained variance due to

non-independence can be non-trivial (see Table S3). For example,

family history and SNP-based methods separately achieve AUCs

of roughly 0.70 and 0.76 for predicting risk of age-related macular

degeneration, corresponding to 15% and 26% of the heritability of

the disease, respectively. Combining the two methods yields an

estimated AUC of roughly 0.80, corresponding to 36% of the

heritability of the disease, implying that effectively 5% of the

variability in total liability (equivalently, roughly one-third of the

variance explained by family history or roughly one-fifth of the

variance explained by currently known SNP associations) is shared

between family history and SNPs. For diseases where a lower

proportion of heritability has been explained, the effect of non-

independence is smaller.

Discussion

We used quantitative genetic theory to compare the predictive

accuracy of family history and SNP-based approaches for

predicting risk of polygenic diseases. We focused on three key

areas: risk stratification, standalone prediction, and differential

diagnosis. In each area, we investigated a wide range of theoretical

and actual diseases and identified major trends in performance for

both family history and SNP-based models.

Interpretation
In terms of risk stratification, we found that family history is

most effective for diseases of high frequency and heritability, such

as atrial fibrillation, Alzheimer disease, or coronary artery disease,

in each case explaining 20–30% of the genetic variance. The

predictive power of family history, however, diminishes quickly

with decreasing disease frequency, such that family history

explains less than 4% of the heritability for less frequent diseases

Figure 3. Proportion of heritability explained. Subpanels (A) and (B) contain contour plots showing the proportion of heritability explained (f )
by a complete family history model and a restricted family history model, respectively. Horizontal and vertical axes correspond to varying disease
frequency (K ) and heritability (h2

L). Lines in each subplot depict the level curves of f , i.e., the combinations of K and h2
L for which the proportion of

heritability explained by family history is constant. SNP-based risk models for specific diseases are illustrated by circles (when the SNP-based model
outperforms family history) and squares (when family history outperforms the SNP-based model). The circle or square for each SNP-based model has
been colored to indicate the estimated proportion of heritability explained by SNPs, using the same color scheme as the contour plot (e.g., blue
indicates 25–30% of heritability explained whereas red indicates v5% of heritability explained). Note that the performance of SNP-based models
shown here reflects only currently known genetic factors for European populations and will change as more associations are discovered.
doi:10.1371/journal.pgen.1002973.g003
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(e.g., celiac, schizophrenia, or Parkinson disease). In contrast,

SNP-based models do not show the same dependence on disease

frequency, and for the majority of the diseases we investigate, SNP

models based on currently known associations perform as well or

better than family history (see Table 2).

For both types of models, high predictive value is extremely

difficult to achieve for standalone prediction of disease, especially

for less common conditions. This observation should be unsur-

prising to those familiar with the difficulty of achieving high

positive predictive values for rare diseases: for an uncommon

condition such as Crohn disease, even a diagnostic test that is able

to identify an individual as having a 100-fold increased odds of

having the disease only raises the post-test probability to roughly

one in three. The fraction of individuals with high estimated risk is

also very small; a genetic classifier explaining 100% of the

heritability for Crohn disease would classify less than 0.03% of all

individuals as having greater than 50% disease risk (see Text S1).

In practice, there do exist some exceptional circumstances

where meaningful predictive value may be achievable from a

standalone prediction tool. For instance, high-penetrance Mende-

lian mutations (which are explicitly excluded from our analysis,

but see [18]) are commonly used for diagnosis of asymptomatic

individuals, or for assessing the risk that couples will pass a specific

inherited disorder on to their progeny. Also, for highly common

disorders, the odds ratios needed to obtain clinically significant

risks of disease are not particularly large; for instance, germline

mutations in BRCA1 or BRCA2 provide only 7-fold to 9-fold

increases in the odds of a woman developing breast cancer, yet

result in post-test risks ranging from 49% to 57% [19] due to the

high prior probability of the disease (roughly one in eight).

Nonetheless, the results of this paper suggest that for most diseases

of low or moderate frequency, in the absence of known strongly

penetrant mutations, obtaining high predictive value using SNP-

based risk models will likely remain challenging, even if additional

SNPs are discovered that explain more of the heritability of disease

[20].

We note that the performance considerations underlying the

usefulness of a risk prediction algorithm can be very different at

the population level compared to the individual level. In a large

population, mild increases in discriminative accuracy (as measured

using the AUC) may have important consequences on the

effectiveness of public health initiatives that use risk stratification

to efficiently allocate resources for disease screening and preven-

tion. The analysis of clinical utility for a risk stratification

algorithm involves many complicated factors beyond the predic-

tive performance of the algorithm, and we do not address these

issues here [21] (though see [11]).

In the context of differential diagnosis, we found that SNP-

based models consistently produced wider distributions of likeli-

hood ratios than family history. Although these differences are

Figure 4. Distribution of likelihood ratios (LRs). The subplots show density histograms for the distribution of LRs achieved by complete (solid
red line) and restricted (dotted red line) family history models, and probability density functions for the distribution of LRs achieved by genetic factors
accounting for either 10% (dotted blue line), 30% (dashed blue line), or 100% (solid blue line) of the heritability of the disease. As a technical aside,
since all plots are shown on a logarithmic scale, the density histograms and density functions shown here were derived for log(LR) rather than LR
itself (see Text S1).
doi:10.1371/journal.pgen.1002973.g004
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most dramatic for low frequency diseases, the absolute differences

in risk remain low; for instance, individuals with a 106 increase in

odds for a disease with 0.01% general population frequency will

still not have the disease roughly 99.9% of the time.

However, when a physician contemplates the likelihood of a

particular disease in the context of a differential diagnosis, the

‘‘effective pre-test risk’’ is actually much larger than the general

population risk K , since other non-genetic factors may already be

present which raise the odds of the disease. Consider, for example,

Crohn disease where we have estimated that current SNP-models

explain approximately 13.5% of the heritability. In an unselected

population, roughly 8.2% of all individuals would be identified as

being at 56 increased or decreased odds of the disease (or 1.7% at

106 increased or decreased odds). For a patient for whom a

diagnosis is already suspected on the basis of clinical symptoms

(e.g., abdominal pain, diarrhea, fever, rectal bleeding, elevated

white blood cell counts), the information provided by a SNP-based

test may help to support or weaken this hypothesis.

Note that in this type of setting, the utility of family history and

SNP-based tests differs considerably. The extreme likelihood ratios

provided by SNP-based tests, when combined with non-genetic

factors, may contribute valuable adjunctive evidence to a

diagnostic work-up. For family history, however, the low

probability of extreme likelihood ratios means that few individuals

will have useful information that can meaningfully contribute to

the diagnosis of an uncommon disease.

Finally, we note that our results, which suggest that SNP-based

tests will often yield extreme LRs indicating decreased risk of

disease, differ qualitatively from the conclusions reached in a

recent study by Roberts and colleagues [22], who argued that the

negative test results from a sequencing-based genetic test would

‘‘in general, not be very informative, because the risk of developing

[… disease] in those who test negative will still be, at minimum, 50

to 80% of that in the general population’’. We attribute the above

difference to the fact that the latter study assumed a population

genetic model in which the minimum risk for any individual in the

population was constrained to be K(1{h2
L).

Limitations
Our analyses rely on a simple liability threshold model of family

history that exclude a number of factors affecting risk estimates:

Highly penetrant mutations. Multifactorial models assume

that liability consists of the combined action of many independent

variants with small additive effects. This excludes highly penetrant

mutations with well-characterized inheritance patterns, such as

BRCA1/BRCA2 mutations in breast cancer. In such situations

where the distributions of genetic liability deviate significantly

from normality, extensions of the liability threshold model to

incorporate a major locus may provide improved accuracy

estimates [23].

Age-of-onset. For a disease with generally late age-of-onset,

observing a relative with early-onset disease provides stronger

evidence of a significant role for genetic factors than if the relative

had typical onset. Early age-of-onset is often indicative of the

involvement of familial disease due to high-penetrance mutations.

Non-additive effects, shared environment, and popula-

tion structure. The liability threshold model excludes non-

additive genetic effects resulting from gene-gene or gene-environ-

ment interactions, covariance in liability due to common shared

environment between family members, and shared genetic

covariance arising from population structure (e.g., consanguinity).

In principle, if one could accurately characterize the proportion of

variance arising from each of these sources, then it would be

straightforward to include these components in our liability

threshold model; however, obtaining stable estimates of these

parameters for individuals of varying relationships is difficult.

The effects of each of the above factors on our results are

arguably limited, and are thus unlikely to substantially influence

population-wide measures of accuracy such as AUC. For example,

inherited BRCA1/BRCA2 mutations have been estimated to be

present in approximately 5% of all breast cases [24] and

approximately 12% of all invasive ovarian cancer cases in

unselected populations [25]. Depending on the disease, early-

onset cases typically account for only a small percentage of the

total disease burden (e.g., 6–7% for Alzheimer disease [26]).

Drawing from empirical studies, Hill and colleagues have argued

that for most complex traits, additive variance accounts for at least

one-half (and often close to 100%) of the total genetic variance

[27].

The importance of shared environment varies by condition but

across different cancers has been estimated to account for no more

than 17% of the total variance in liability [28]. In Methods, we

describe a further extension of our liability threshold model for

upper-bounding the contribution of shared environment to

accuracy; these results, which are presented in Tables S2 and

S4, suggest that increases in the performance of family history-

based models due to shared environment factors are unlikely to

significantly change the broad patterns of performance identified

in this paper.

Additional considerations affecting the performance estimates in

this paper include:

Use of lifetime risk for disease frequency. Our measure

of disease frequency is the lifetime morbid risk, the probability that

an individual will develop a disease in his or her lifetime. Thus, our

model of family history relies not on the known disease status of

individuals in the pedigree at a single point in time, but rather the

pattern of disease occurrence based on the entire lifetime of each

individual. While this may be reasonable for pedigrees in which all

relatives are suitably old (and explains why we focused on pedigees

where the index individual belonged to the youngest generation), it

implies that the discriminative accuracies we estimate for family

history are likely to be somewhat higher than those achievable in

most situations.

Recall biases and limits of clinical interpretation. Here

we assume all family histories are complete and error free. In

practice, the implementability of such a diagnostic model may be

hampered by recall biases resulting from an individual’s incom-

plete knowledge of his or her family history, or the inability of a

clinician to correctly make fine-grained distinctions in risk based

on subtle differences in the pattern of disease occurrence in a

family. The net effect of this would again be an inflation of the

estimated discriminative performance for family history-based risk

prediction.

Estimates of heritability. The quantitative genetic model

used in this paper depends largely on accurate estimates for disease

heritability. Measurements of heritability depend strongly on the

particulars of the population in a study; the extent to which the

heritability measured in one particular population will generalize

to other populations with different ethnic composition, age

distribution, geographic location, or other environmental context

is unclear [29–31]. Furthermore, estimates from twin studies tend

to have extremely large standard errors and can be biased when

interactions are not properly taken into account [32].

We have attempted to ameliorate the above issues by examining

predictive performance across a wide range of conditions and

limiting our conclusions to those which appear to generalize well

across different values of heritability. It should also be noted that

errors in heritability estimates have similar direction of effect for
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both our family history and SNP-based models. Thus, though they

may affect the absolute estimates of accuracy, they will not change

the broad results.

Finally, it is worth considering the applicability of our results in

general populations. The SNP-based models examined in this paper

were restricted to associations derived in European populations. For

non-European individuals or individuals of mixed ancestry, it is

unclear to what extent the accuracy estimates presented here for

SNP-based models will apply due to differences in allele frequencies,

linkage disequilibrium between tagging SNPs and true causal

variants, and odds ratios across populations. Furthermore, ascer-

tainment biases in genetic studies (e.g., due to recruitment of only

severe cases) or differences in phenotype definition (e.g., between

study inclusion criteria and more commonly used clinical criteria)

can distort estimates of the effectiveness of a SNP-based model in

real populations. Similarly, the family history-based accuracy

estimates may also vary depending on the extent to which disease

frequencies and heritabilities are similar across populations.

Significance
Over the last decade, family history tools have seen growing

adoption with the development of public health efforts focused on

prevention [7,33,34]. In the United States, the Centers for Disease

Control and Prevention (CDC) have developed Family Healthware,

an interactive online tool for personalized familial risk assessments

for six common chronic diseases (coronary heart disease, stroke,

diabetes, colorectal cancer, breast cancer, and ovarian cancer)

[8,9,35]. In collaboration with the United States Surgeon General

and other federal agencies, the CDC’s Office of Public Health

Genomics has also been involved in the deployment of ‘‘My Family

Health Portrait,’’ a web-based tool to help individuals collect and

organize their family health history information.

The relative acceptance of family history methods contrasts with

the mixed reception of genetic testing in recent years. In some cases,

the lack of disease-specific randomized clinical trials assessing

clinical utility in terms of improved health outcomes has been cited

as a reason for not performing genetic tests [36]. While the

demonstration of clinical utility for SNP-based risk assessments is

still ongoing, it is nonetheless worth noting that many of the same

challenges still exist for family history-based tools. Few studies have

sought to validate the accuracy of family history-based models for

predicting clinical outcomes in unselected populations, and limited

scientific evidence exists regarding the effectiveness of family

history-based messaging for motivating behavioral changes for

disease prevention [13,37,38]. It has been previously suggested that

an AUC of 0.75 to 0.8 provides a decent rule-of-thumb for

determining when a test may be useful for population screening to

identify individuals at increased risk for a disease [39]. Based on

such criteria, family history-based stratification would be unlikely to

be useful for screening except under the best-case circumstances of

extremely common, heritable disorders.

We re-emphasize that we have focused on polygenic diseases

where no single risk factor has a substantial individual contribution

to liability. Our conclusions, therefore, are not necessarily

applicable in situations where a causal mutation is known and

easily typed (where SNP-based tests have an advantage) or

situations involving unknown highly penetrant genetic risk factors

(where family history has an advantage). The extent to which

human diseases are governed by rare variants of large effect versus

common variants of moderate or low effect is a subject of

substantial debate in human genetics [40]. It is worth recalling,

however, that for many complex diseases, the majority of disease

burden is idiopathic, i.e., the contribution of known high

penetrance mutations to disease susceptibility is very small.

As the cost of obtaining genetic information continues to

decrease, we believe that access to genetic information will become

increasingly common. The implications of widespread genetic

testing for public health are still unclear, and the challenge of how

best to incorporate adjunctive genetic information into clinical

decision-making is far from resolved. But in some circumstances,

genetically-defined disease predispositions known from birth may

be one of the few clues that an individual will have for anticipating

and preventing future morbidity.

Broadly speaking, the personalization of healthcare will require

better approaches for integrating different sources of knowledge

and for interpreting and communicating the resulting information.

As shown in this paper, there exist distinct regimes of disease

frequency where family history and SNP-based tests each have an

advantage. More importantly, however, methods that combine the

results of family history and SNP-based risk assessments can be

more informative than either one individually.

In this sense, comparisons of family history and SNP-based

methods aimed at declaring one method categorically superior to

the other create a false dichotomy: in general, there is no need to

choose between family history and genetic risk profiling. An

understanding of both types of information would allow us to

obtain a better picture of an individual’s potential future health.

To ignore the potential impact of genetic information on public

health, while choosing to rely only on traditional risk factors such

as family history, will become increasingly untenable as our

understanding of genetics grows.

Methods

Modeling family structure
We consider an extension of the liability threshold model to

account for the correlations in genetic liability arising from family

structure. This extension follows immediately from the original

work of Falconer [14], and its application to modeling family

history was more recently considered by So and colleagues [11].

The text in this subsection summarizes the general modeling

approach described in Appendix A of the latter paper.

For a group of m genetically related individuals, the liability of

each individual in the group consists of additive genetic and

environmental contributions, Xi~GizEi. Due to genetic sharing

between individuals in a family, however, one would expect the

various genetic contributions for different family members to be

correlated to varying degrees. A natural model of genetic

covariance is to assume that G1, . . . ,Gm have a joint multivariate

normal distribution with zero mean and covariance matrix h2
LC,

where C is the m|m matrix of genetic relationship coefficients for

each pair of individuals in the family (e.g., Cij~1=2 for parent-

children or full sibling relationships). Similarly, E1, . . . ,Em may be

treated as jointly multivariate normal with zero mean and scaled

identity covariance matrix (1{h2
L)I, assuming no shared envi-

ronmental contributions to liability.

For notational convenience, suppose that Di is an indicator

variable that takes the value 1 whenever XiwT and 0 otherwise.

Conceptually, the family history pattern of the first individual in

the group (whom we denote as the index individual) can be

thought of as the (m{1)-dimensional vector of disease statuses

D~(D2, . . . ,Dm) for each of his relatives.

As a simple example, consider the pattern of disease liabilities in

a small family consisting of an index individual and his two

parents. Letting (X1,X2,X3) denote the total liabilities of the index

individual, his father, and his mother, respectively, and similarly

for (G1,G2,G3) and (E1,E2,E3), we have

Comparison of Family History and SNPs

PLOS Genetics | www.plosgenetics.org 9 October 2012 | Volume 8 | Issue 10 | e1002973



G1

G2

G3

2
64

3
75*N

0

0

0

2
64
3
75, h2

L
:

1
1

2

1

2
1

2
1 0

1

2
0 1

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

and

E1

E2

E3

2
64

3
75*N

0

0

0

2
64
3
75, (1{h2

L):
1 0 0

0 1 0

0 0 1

2
64

3
75

0
B@

1
CA

from which it follows that
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Letting p(X1,X2,X3) denote the multivariate normal density

described above, then the probability, P(D1~0,D2~0,D3~0),
that all three individuals do not have the disease is given by

ðT

{?

ðT

{?

ðT

{?
p(X1,X2,X3)dX1dX2dX3,

whereas the probability, P(D1~1,D2~0,D3~0), that the index

individual develops the disease while his parents do not is

ðT

{?

ðT

{?

ð?
T

p(X1,X2,X3)dX1dX2dX3:

From these two expressions, the risk, P(D1~1DD2~0,D3~0),
that the index individual will develop the disease given that neither

parent develops the disease is

P(D1~1,D2~0,D3~0)

P(D1~1,D2~0,D3~0)zP(D1~0,D2~0,D3~0)
:

We note that the computational procedures described above,

which are identical to the multivariate integration-based method

described in Appendix A of the paper from So and colleagues, may

be also approximated using results from genetic selection theory

[11]. Here, we opted for direct multivariate integration as the

computational complexity, though high, was nonetheless tractable

for the sizes of pedigrees considered.

Our model is also related to a family-based genetic risk

prediction method described by Ruderfer and colleagues, who

demonstrated that genetic factors in family members of an index

individual can actually be informative of his or her disease risk

[12]. As the goal of our study was to compare family history and

genetic approaches to risk prediction, we chose specifically to focus

on the task of predicting disease risk based on genetic variants in

the index individual only and thus excluded the consideration of

genetic variants in family members.

Assessing discriminative accuracy. For any type of risk

prediction model, we may characterize its behavior in several ways:

1. Sensitivity and specificity. For a binary classifier, sensitivity and

specificity describe the probabilities that a true case (i.e., an

index individual with the disease) or a true control (i.e., an

index individual without the disease), respectively, will be

correctly labeled by the classifier. A risk prediction model

corresponds to a family of binary classifiers, parameterized

by a threshold t[½0,1�: the binary classifier for a given

threshold t predicts an index individual to be a case if

P(D1~1DD2, . . . ,Dm) is at least t or a control otherwise. For a

risk prediction model, sensitivity and specificity must always be

considered together as it is otherwise trivial to obtain a classifier

with high sensitivity but low specificity (pick a low threshold

such that all individuals are labeled cases) or high specificity but

low sensitivity (pick a high threshold that such that all

individuals are labeled controls).

2. ROC curve and AUC. The receiver operating characteristic

(ROC) curve for a risk prediction model depicts the trade-

off between sensitivity and specificity of the classifiers

derived from a risk prediction model at varying thresholds t.
By convention, the points of a ROC curve are specified as

(1{specificity(t), sensitivity(t)) for varying t. The area under

the ROC curve (AUC) is a commonly used summary measure

of discriminative accuracy that avoids the need for choosing a

single specific threshold t. The AUC ranges from 0.5 (random

guessing) to 1 (perfect discrimination) and can be interpreted as

the probability that a randomly chosen case from the

population will have a higher predicted risk than a randomly

chosen control.

3. Positive and negative predictive value. For a binary classifier, positive

predictive value (PPV) and negative predictive value (NPV)

refer to the probabilities that a predicted case or a predicted

control are actually a true case or a true control, respectively.

Like sensitivity and specificity, the PPV and NPV of a risk

prediction model vary depending on the specific threshold t
used. Unlike sensitivity and specificity, however, the measured

PPV and NPV of a given classifier depend strongly on the pre-

test risk K of the condition in the target population.

4. Likelihood ratio. Unlike the previous measures which focus on the

accuracy of a binary classification algorithm at the population

level, likelihood ratios (LRs) quantify the information conveyed

by a risk assessment at the individual level. As described in the

text, an LR is defined as the ratio of post-test odds to pre-test

odds of disease, and the distribution of LRs observed in a

population determines the type and frequency of test outcomes

one should expect from a risk prediction algorithm.

To analyze the predictive accuracy of family history-based

approaches to risk prediction, we describe a direct computational

procedure based on examining the expected performance of a

‘‘complete’’ family history-based classifier—i.e., one with full

access to the true probability of disease for an index individual for

each possible family history pattern. Our procedure works by first

enumerating all 2m possible patterns of disease occurrence in a

family of m individuals. We explicitly compute the full joint

distribution P(D1, . . . ,Dm) over disease statuses of the index

individual and his relatives by evaluating the resulting multivariate

Gaussian integrals numerically [41]. This step is generally

extremely computationally expensive as numerical integration

techniques can be slow and the number of family history patterns

that must be considered is exponential in m; however, for

sufficiently small families, this calculation can be performed on a

standard desktop computer.

Given the joint distribution over disease statuses, a complete

family history-based risk prediction model predicts the disease risk
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for an individual with family history pattern D~(D2, . . . ,Dm) to

be exactly P(D1DD)~P(D1~1DD2, . . . ,Dm). Let D(1), . . . ,D(n) be

an enumeration of the n~2m{1 possible family history patterns.

To analyze the accuracy of such a model according to the metrics

outlined above, observe that for any given t, the probability of a

true positive (TP), false positive (FP), true negative (TN), or false

negative (FN) for a classifier based on threshold t is

P(TP; t)~
X

i:P(D1~1DD(i))§t

P(D1~1DD(i))P(D(i))

P(FP; t)~
X

i:P(D1~1DD(i))§t

P(D1~0DD(i))P(D(i))

P(TN; t)~
X

i:P(D1~1DD(i))vt

P(D1~0DD(i))P(D(i))

P(FN; t)~
X

i:P(D1~1DD(i))vt

P(D1~1DD(i))P(D(i)):

It follows that

sensitivity(t)~
P(TP; t)

P(TP; t)zP(FN; t)

specificity(t)~
P(TN; t)

P(TN; t)zP(FP; t)

PPV(t)~
P(TP; t)

P(TP; t)zP(FP; t)

NPV(t)~
P(TN; t)

P(TN; t)zP(FN; t)
:

To compute the above quantities efficiently, assume without loss

of generality that D(1), . . . ,D(n) are sorted in order of non-

increasing disease risk (i.e., P(D1~1DD(j))§P(D1~1DD(jz1)) for

j~1, . . . ,n{1). Then, the vertices of the ROC curve are given

explicitly by:

xi~

Pi
j~1 P(D1~0DD(j))P(D(j))

1{K
~
Xi

j~1

P(D(j)DD1~0)

yi~

Pi
j~1 P(D1~1DD(j))P(D(j))

K
~
Xi

j~1

P(D(j)DD1~1)

for i~0, . . . ,n. Given any point on the ROC curve corresponding

to a (1{specificity(t), sensitivity(t)) pair, we can easily deter-

mine P(TP; t) and P(TN; t) based on the fact that

P(TP; t)zP(FN; t)~K and P(TN; t)zP(FP; t)~1{K . From

this, the computation of PPV(t) and NPV(t) is then straightfor-

ward. Finally, the likelihood ratio for any given value of risk

P(D1~1DD(j)) is given by LR~
P(D1~1DD(j))(1{K)

P(D1~0DD(j))K
. The key

parts of this procedure are illustrated for a small example family in

Figure 5.

As a minor technical point, the threshold-based classifiers

described above are actually only able to achieve a finite number

of combinations of sensitivity and specificity, as given by the

vertices of the ROC curve. Nonetheless, using appropriately

constructed randomized strategies, the sensitivity and specificity

pair corresponding to any convex combination of vertices of the

ROC curve can also be realized; the graphs shown in this paper

rely on this extension.

Complete versus restricted models of family

history. Underlying our procedure for estimating the accuracy

of a complete family history-based risk prediction model is the

premise that the model makes full use of the exact pattern of

disease occurrence in the relatives of the index individual. This

represents a perfect knowledge scenario in which a genetic

counselor has access to a patient’s complete family history and has

the ability to recognize subtle differences in risk that result from

minor differences in patterns of disease occurrence. In clinical

practice, however, obtaining a fully accurate family history can be

extremely challenging, and making exact inferences based on the

information collected can also be very difficult. For example, a

genetic counselor may have incomplete or incorrect information

regarding a patient’s family history as a consequence of

misinformation from relatives, errors in patient recollection of

his or her family’s medical information, or hesitance to share this

information openly.

These sources of potential error motivate the use of ‘‘restricted’’

models in which the full family history pattern for an index

individual is condensed into a single summary statistic. For

example, the Gail model for estimating breast cancer risk considers

only the thresholded number of first-degree relatives of the index

individual who have the disease (either 0, 1, or w1) [15]. This

dramatically reduced model more closely reflects the granularity of

information used in a standard clinical setting when a detailed

family history is not available.

Formally, we can represent a restricted model by defining a

function C : f0,1gm{1?S, mapping from complete family histo-

ries to summary statistics; in the case of the Gail model, for

instance, the set S contains exactly three possible outcomes,

corresponding to the thresholded number of affected first-degree

relatives of the index individual. A restricted family history-based

risk prediction model would then estimate that the probability of

disease, P(D1~1DC(D2, . . . ,Dm)), for an index individual with

family history pattern (D2, . . . ,Dm) is

P(D1~1,C(D2, . . . ,Dm))

P(C(D2, . . . ,Dm))
~

P
D̂D2,...,D̂Dm :C(D̂D2,...,D̂Dm)~C(D2,...,Dm) P(D1~1,D̂D2, . . . ,D̂Dm)P

D̂D2,...,D̂Dm :C(D̂D2,...,D̂Dm)~C(D2,...,Dm) P(D̂D2, . . . ,D̂Dm)
:

The remainder of the procedures for estimating accuracy are

identical to what was described previously with the sole

modification that rather than enumerating 2m{1 distinct family

history patterns for the index individual, we instead enumerate

equivalence classes of family history patterns (i.e., distinct values of

C(D2, . . . ,Dm)).
Accounting for sex dependence. The liability threshold

model presented here thus far applies generally for diseases where
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the lifetime risk of the disease does not differ between the sexes. In

some scenarios, however, such an assumption may not be realistic.

First, a disease may not be applicable for one of the two sexes; for

example, women do not develop prostate cancer, nor are men at

risk for ovarian cancer. Second, sex differences may inherently

reflect the involvement of different genetic and environmental

causal factors altogether. Third, heterogeneity in disease frequency

between men and women may simply be due to differences in

baseline susceptibility, even when the majority of genetic and

environmental risk factors are shared between the sexes.

In the first scenario, an appropriate adjustment to our family

history-based risk prediction model would be to treat the

phenotypic status for individuals of the sex for whom the disease

is not relevant as having an unobserved phenotype. As a

consequence of the marginalization properties of multivariate

Gaussians, such a treatment is mathematically equivalent to

removing these individuals from the model altogether. In the

second scenario, differences in the underlying disease etiology

would essentially require analyzing the two versions of the disease

separately. This would involve running male-only and female-only

analyses using sex-specific heritability estimates, as described in the

first scenario above. The third scenario may be handled by a

modification of the liability threshold model to include explicit

modeling of sex-specific effects; we do not pursue this direction

here but include an explicit derivation (which may be extended to

arbitrary discrete covariates) in Text S1.

For the experiments in this paper, we used sex-averaged disease

frequencies for most diseases for simplicity. In the case of breast,

ovarian, and prostate cancer, we used sex-specific disease frequen-

cies (in particular, ignoring male breast cancer cases) and used the

first approach described above. When the sex of the individual

shown in the test pedigree was not appropriate for disease being

tested, we flipped the sexes of all individuals in the pedigree.

SNP–based risk assessment models
The estimation of predictive performance for models involving

genetic factors has been discussed in detail previously [16,17];

here, we provide a brief review of the relevant theory.

In the scenario of genetic risk prediction, we assume that known

genetic factors account for a fraction f of the total variance of the

additive genetic component G1~G for the index individual; here,

we have dropped the subscript ‘‘1’’ as the genetic risk prediction

models discussed here do not make use of family information. We

model the condition of incomplete genetic information by

assuming that G~GMzGU , where GM*N (0,fh2
L) and

GU*N (0,(1{f )h2
L) correspond to the measurable and unmea-

surable components of additive genetic liability, respectively.

Genetic risk prediction, then, is the task of estimating the

probability that the index individual will develop disease, given

the measurable component of his or her additive genetic liability,

i.e., P(D~1DGM ). Here, our genetic risk estimates rely only on

measured genetic information from the index individual. A related

model for family-based genetic risk prediction was previously

proposed that also takes into account information from the genetic

data for relatives [12].

Assessing discriminative accuracy. For the accuracy met-

rics considered in this paper, computing P(D~1DGM ) explicitly is

unnecessary if the goal is simply to estimate the accuracy of the

model. Since P(D~1DGM ) is a strictly increasing monotonic

function of GM , then for any two individuals, the relative ordering

of their disease risks is identical to the relative ordering of the

measurable components of their respective genetic liabilities.

To apply this fact, suppose that Gz
M and G{

M denote the

measurable genetic components for a random case and control from

the population; that is, suppose that Gz
M and G{

M are sampled from

P(GM DD~1) and P(GM DD~0), respectively. Standard results from

genetic selection theory can be used to prove that

Figure 5. Worked example. (A) In the family structure shown, the shaded box represents the index individual, whose risk of developing the
disease we wish to predict. (B) There are 23~8 possible combinations of disease status for the individuals in the family. Using the liability threshold
model, we compute the probability of each combination; in this example, we assume K~0:25 and h2

L~0:5. (C) From the joint distribution, we can
then compute the disease risk of the index individual for any given family history pattern, as well as the likelihood of particular family history patterns
among cases and controls. (D) These quantities then allow us to construct the receiver operating characteristic (ROC) curve for a complete family
history-based classifier, from which sensitivity, specificity, PPV, NPV, and AUC can be computed.
doi:10.1371/journal.pgen.1002973.g005
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E½Gz
M �~ifh2

L Var½Gz
M �~fh2

L(1{fh2
Li(i{T))

E½G{
M �~vfh2

L Var½G{
M �~fh2

L(1{fh2
Lv(v{T))

where i~
1ffiffiffiffiffiffi

2p
p

K
e{T2=2 and v~{

iK

1{K
. Assuming Gz

M and G{
M

to each be normally distributed [16,17], then the AUC is simply the

integral of the tail distribution of a difference between two normal

variables, and thus can be written explicitly as

AUC~P(Gz
MwG{

M )~W
E½Gz

M �{E½G{
M �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Gz
M �zVar½G{

M �
p
 !

:

Furthermore, the points on the ROC curve are given by the

parametric curve, (1{specificity, sensitivity)~(x,c(x)) for

x[½0,1�, where

c(x)~1{W
E½G{

M �{E½Gz
M �zW{1(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½G{

M �
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Gz

M �
p

 !

from which other measures of accuracy, such as PPV and NPV, can

be derived.

Estimating proportion of heritability explained. To

estimate the proportion f of additive genetic liability accounted

for by known SNP factors, we started from a list of curated

genome-wide associations compiled by the National Human

Genome Research Institute (NHGRI) [1], retrieved on January

18, 2012. From this list, we excluded associations derived in non-

European populations, with p-values exceeding the genome-wide

significance threshold of 7:2|10{8 estimated for European

studies [42], or referring to SNPs not present in the August

2010 release of the 1000 Genomes dataset [43]. The remaining

associations were ordered based on the effective sample size for the

study in which the association was reported (harmonic mean of the

total numbers of cases and controls), with ties resolved by the

strength of evidence for the reported association (in terms of p-

value). Then, for each phenotype separately, a greedy algorithm

was used to select a set of associations such that the r2 between any

two SNPs (as measured on a European subset of 283 individuals

from the 1000 Genomes dataset) was at most 0.005, so as to ensure

approximate statistical independence of all risk markers.

We then calculated f using the technique recently described by

So and colleagues [5], which is essentially equivalent to an earlier

approach described by Risch [44]. To prevent inflation of variance

estimates arising from the ‘‘winner’s curse’’ (a systematic inflation

of effect sizes from GWAS due to selective reporting of significant

associations) [45], we used a bias-correction procedure to adjust

the magnitude of reported odds ratios based on the strength of the

original association and the threshold applied for significance

(assumed to be 7:2|10{8, as above) [46].

We also used population allele frequencies based on the

European subset of the 1000 Genomes dataset, so as to obtain

representative estimates of the proportion of heritability explained

in an unselected population; to obtain these population frequen-

cies, we determined allele stranding for all associations in all cases

where this could be done unambiguously either on the basis of the

stated risk allele in the NHGRI list, or by matching study allele

frequencies to frequencies in the 1000 Genomes dataset (provided

that the minor allele frequency in each set was at most 0.45); we

omitted associations for which neither of the above criteria were

met, or where the strand information implied by the two

approaches were in conflict. A complete list of the associations

used in our models is presented in Table S5.

We note that our estimates of heritability explained are in many

instances lower than estimates that have been given elsewhere (see

Table 3). These differences may be partially explained by

incompleteness or errors in the NHGRI list of associations (due

to omitted studies, missing or incorrect annotations, or the fact

that not all known verified SNP associations have been discovered

through GWAS), omission of rare variants not available in the

1000 Genomes data, or our use of bias-correction and population

allele frequencies to provide conservative estimates of SNP-based

model accuracies (see Table 3 for a comparison of estimates when

omitting one or more of the above corrections).

Combining family history and SNP–based models
Consider a further extension of the liability threshold model for

family history in which the genetic liability for each individual is

decomposed as Gi~GM
i zGU

i . Here, GM
1 represents the measured

genetic liability based on SNPs found in the index individual, and

GM
2 , . . . ,GM

m represent the corresponding components of genetic

liability in other individuals from the family. As before,

GM
1 , . . . ,GM

m have a joint multivariate normal distribution with

zero mean and covariance matrix fh2
LC, and GU

1 , . . . ,GU
m have a

joint multivariate normal distribution with zero mean and

covariance matrix (1{f )h2
LC.

Decompose the matrix C as

C~
1 CT

21

C21 C22

" #

where C21[Rm{1, and C22[R(m{1)|(m{1). The conditional

distribution of GM
2 , . . . ,GM

m given the measured genetic liability

for the index individual follows from standard formulas for

conditional Gaussians:

N GM
1 C21,fh2

L C22{C21CT
21

� �� �
:

Based on the above result and the fact that GU
1 , . . . ,GU

m and

E1, . . . ,Em are independent of GM
1 , it can be shown that the

conditional distribution of total liabilities X1, . . . ,Xm given GM
1 is

N
m1

m2

� �
,

S11 ST
21

S21 S22

" # !

where

m1~GM
1

m2~GM
1 C21

S11~1{fh2
L

S21~(1{f )h2
LC21

S22~h2
L(C22{f C21CT

21)z(1{h2
L)I:

As described previously, we can use multivariate numerical

integration procedures to evaluate the conditional distribution
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P(D1, . . . ,DmDGM
1 ) over diseases statuses corresponding to the

above joint distribution over total liabilities; this conditional

distribution, in turn, may be used to evaluate the genotype-specific

risks P(D1~1DD,GM
1 ) for each possible family history pattern, and

the genotype-specific frequencies P(DDD1,GM
1 ) of each pattern

among cases and controls.

To estimate the AUC for a combined family history and

SNP-based model, we use a discrete approximation for the

distribution of GM
1 ; specifically, we assume that values of

GM
1 are drawn uniformly at random from the finite setffiffiffiffiffiffiffi

fh2
L

q
W{1(1=(dz1)), . . . ,

ffiffiffiffiffiffiffi
fh2

L

q
W{1(d=(dz1))

n o
. The accuracy

of this approximation improves as d increases; in practice, we use

d~100. Enumerating the possible values of GM
1 in this way allows

us to explicitly compute the full joint distribution

P(D1, . . . ,Dm,GM
1 ).

Let D
(1)
G , . . . ,D

(dn)
G be an enumeration of the dn~d2m{1

possible family history patterns conditioned on measured genotype

of the index individual; here, each DG can be thought of as a pair

consisting of both the family history pattern D~(D2, . . . ,Dm) for

the index individual and his measured genetic liability GM
1 . The

formulas provided previously for identifying points on the ROC

curve generalize immediately. We point out that this treatment

does not assume independence of the risks conferred by family

history and measured genetic contributions, and may be easily

generalized to situations where genetic measurements in a subset

of relatives are also known (see also [12]).

Accounting for shared environment
Within a family, a simple way of upper-bounding the impact of

shared environment would be to assume a common component of

liability due to shared environment among all family members.

This assumption may not be particularly realistic, especially when

dealing with large pedigrees such as shown in Figure 1, given that

it attributes the same amount of shared environmental variance

between all pairs of individuals in the pedigree (i.e., siblings share

as much as environment as more distant relatives). In the absence

of more realistic estimates of environmental sharing, however, this

assumption provides a tractable hypothesis that allows computa-

tion of accuracy upper bounds. If the liabilities for individuals in a

family are decomposed as Xi~GizEshared
i zEnon{shared

i , and the

proportion of variance in total liability due to shared environ-

mental factors is c2
L, then Eshared

1 , . . . ,Eshared
m have a degenerate

joint multivariate normal distribution with zero mean and singular

covariance matrix c2
L11T. It follows that X1, . . . ,Xm have a joint

multivariate normal distribution with zero mean and covariance

matrix h2
LCzc2

L11Tz(1{h2
L{c2

L)I; integrating this joint multi-

variate normal distribution, as before, allows us to compute

Table 3. Estimated proportion of heritability explained by SNPs for various diseases.

Disease n f study
uncorrected f study

corrected f pop
uncorrected f pop

corrected Other estimates

Age-related macular degeneration 9 26.7% 26.2% 26.3% 25.9% -

Alzheimer disease 10 12.2% 11.2% 10.9% 10.0% 23.22% [5]

Atrial fibrillation 3 5.5% 5.5% 6.3% 6.1% -

Bipolar disorder 5 9.5% 1.0% 9.5% 1.1% 2.77% [5]

Bladder cancer 8 18.0% 15.9% 18.3% 16.2% -

Breast cancer 14 17.2% 10.3% 18.2% 10.5% 12.52% [5]

Celiac disease 21 21.8% 21.2% 13.2% 12.6% 40% [47]

Colorectal cancer 11 11.2% 7.9% 12.3% 8.6% -

Coronary artery disease 24 10.1% 6.8% 10.3% 6.9% 25.15% [5]

Crohn disease 60 15.5% 13.5% 15.5% 13.5% 23.2% [48], 13.43% [5]

Lung cancer 2 0.0% 0.0% 4.7% 2.3% -

Melanoma 11 48.0% 41.3% 24.4% 19.7% 18.9% [49]

Multiple sclerosis 37 4.1% 2.4% 9.7% 6.1% 17% [50]

Ovarian cancer 3 1.2% 1.2% 2.2% 2.0% -

Pancreatic cancer 3 2.7% 1.7% 2.8% 1.7% -

Parkinson disease 10 7.9% 5.8% 8.1% 6.0% 5–7% [51]

Prostate cancer 16 13.0% 10.7% 14.4% 11.9% 31.16% [5]

Schizophrenia 8 2.1% 0.4% 2.0% 0.4% 0.39% [5]

Stroke 1 2.0% 1.5% 2.5% 1.9% 0% [52]

Thyroid cancer 2 4.8% 4.3% 4.9% 4.3% -

Type 1 diabetes 26 6.0% 4.8% 5.8% 4.5% 13.63% [5]

Type 2 diabetes 21 2.0% 0.7% 17.2% 13.0% 27.93% [5]

Ulcerative colitis 37 9.7% 9.0% 9.9% 9.2% 16% [53]

n indicates the number of SNP markers used in the model being evaluated. All other values indicate the estimated proportion of variance in additive genetic liability

accounted for by known SNP associations. The columns labeled with f study
. rely on the risk allele frequencies in the control populations, as provided in the NHGRI

association list, whereas the columns labeled with f pop
. rely on population allele frequencies in the 1000 Genomes dataset. The columns labeled with f .

uncorrected use the

raw odds ratios provided in the NHGRI association list, whereas the columns labeled with f .
corrected use odds ratios that have been adjusted for winner’s curse bias. The

final column provides references for other estimates of f from the literature.
doi:10.1371/journal.pgen.1002973.t003
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estimates of accuracy for family history-based models that take

into account common shared environment. An analogous

procedure may be applied for combined family history and

SNP-based models.

Supporting Information

Figure S1 Additional test pedigrees. The pedigrees shown

correspond to (A) a trio, (B) a nuclear family with multiple children,

and (C) an extended family with four grandparents. In each

pedigree, an arrow designates one particular individual as the ‘‘index

individual’’ (or consultand) whose disease risk we wish to predict.

(EPS)

Figure S2 Additional AUC plots. Plots of AUC for pedigrees

(A), (B), and (C) from Figure S1.

(EPS)

Figure S3 Additional LR distribution plots. Plots of likelihood

ratio distribution for pedigrees (A), (B), and (C) from Figure S1.

(EPS)

Figure S4 Receiver operating characteristic (ROC) plots. ROC

plots pedigrees (A), (B), and (C) from Figure S1 and the test

pedigree (D) from Figure 1. Within each plot, the subplots show

the relationship between 1{specificity (on the horizontal axis)

and sensitivity (on the vertical axis) at varying risk thresholds. The

curves in each subplot represent different prediction models,

including a complete family history model that accounts for the

disease status of every individual in the pedigree (solid red line), a

restricted family history model that only considers the number (0,

1, or w1) of affected first-degree relatives of the index individual

(dashed red line), and genetic factors accounting for either 10%

(dotted blue line), 30% (dashed blue line), or 100% (solid blue line)

of the heritability of the disease.

(EPS)

Figure S5 Positive predictive value (PPV) plots. Plots of PPV for

pedigrees (A), (B), and (C) from Figure S1 and the test pedigree

(D) from Figure 1. Within each plot, the subplots show the

relationship between sensitivity (on the horizontal axis) and PPV

(on the vertical axis) at the risk threshold needed to achieve the

specified sensitivity. The curves in each subplot represent

different prediction models, including a complete family history

model that accounts for the disease status of every individual in

the pedigree (solid red line), a restricted family history model that

only considers the number (0, 1, or w1) of affected first-degree

relatives of the index individual (dashed red line), and genetic

factors accounting for either 10% (dotted blue line), 30% (dashed

blue line), or 100% (solid blue line) of the heritability of the

disease.

(EPS)

Figure S6 Negative predictive value (NPV) plots. Plots of NPV

for pedigrees (A), (B), and (C) from Figure S1 and the test pedigree

(D) from Figure 1. Within each plot, the subplots show the

relationship between sensitivity (on the horizontal axis) and NPV

(on the vertical axis) at the risk threshold needed to achieve the

specified sensitivity. The curves in each plot represent different

prediction models, including a complete family history model that

accounts for the disease status of every individual in the pedigree

(solid red line), a restricted family history model that only considers

the number (0, 1, or w1) of affected first-degree relatives of the

index individual (dashed red line), and genetic factors accounting

for either 10% (dotted blue line), 30% (dashed blue line), or 100%

(solid blue line) of the heritability of the disease.

(EPS)

Table S1 Performance summary for family history. fSNPs

provides the proportion of heritability explained by known SNP

associations. The last eight columns indicate the AUC achieved by

complete and restricted family history models using either the test

pedigree in Figure 1 or the additional pedigrees in parts (A), (B),

and (C) of Figure S1. Bold entries indicate situations where the

SNP-based model (see accuracies in Table 2) based on currently

known associations outperforms family history. Note that the

performance of models shown here reflects only currently known

genetic factors for European populations and will change as more

associations are discovered.

(PDF)

Table S2 Performance summary for family history, including

shared environment. fSNPs provides the proportion of heritability

explained by known SNP associations. The last eight columns

indicate the AUC achieved by complete and restricted family

history models, assuming 10% of the variance in liability is due to

shared environment across all individuals in the family, using

either the test pedigree in Figure 1 or the additional pedigrees in

parts (A), (B), and (C) of Figure S1. Bold entries indicate situations

where the SNP-based model (see accuracies in Table 2) based on

currently known associations outperforms family history. Note that

the performance of models shown here reflects only currently

known genetic factors for European populations and will change

as more associations are discovered.

(PDF)

Table S3 Performance summary for combining family history

and SNPs. fSNPs provides the proportion of heritability explained

by known SNP associations. The last eight columns indicate the

AUC achieved when combining these SNP associations with

complete and restricted family history models using either the test

pedigree in Figure 1 or the additional pedigrees in parts (A), (B),

and (C) of Figure S1. Note that the performance of models shown

here reflects only currently known genetic factors for European

populations and will change as more associations are discovered.

(PDF)

Table S4 Performance summary for combining family history

and SNPs, including shared environment. fSNPs provides the

proportion of heritability explained by known SNP associations.

The last eight columns indicate the AUC achieved when

combining these SNP associations with complete and restricted

family history models, assuming 10% of the variance in liability is

due to shared environment across all individuals in the family,

using either the test pedigree in Figure 1 or the additional

pedigrees in parts (A), (B), and (C) of Figure S1. Note that the

performance of models shown here reflects only currently known

genetic factors for European populations and will change as more

associations are discovered.

(PDF)

Table S5 Associations used to assess SNP-based risk models.

Alleles are indicated as reference allele/variant allele. freqstudy and

freq1000g provide the variant allele frequencies according to the

NHGRI list and based on the 1000 Genomes data, respectively.

ORuncorrected and ORcorrected provide the original allelic odds ratio

reported on the NHGRI list and its corresponding bias-corrected

odds ratio.

(PDF)

Text S1 Additional derivations.

(PDF)

Text S2 References for disease frequency and heritability.

(PDF)
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