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Abstract

Much emphasis has been placed on the identification, functional characterization, and therapeutic potential of somatic
variants in tumor genomes. However, the majority of somatic variants lie outside coding regions and their role in cancer
progression remains to be determined. In order to establish a system to test the functional importance of non-coding
somatic variants in cancer, we created a low-passage cell culture of a metastatic melanoma tumor sample. As a foundation
for interpreting functional assays, we performed whole-genome sequencing and analysis of this cell culture, the metastatic
tumor from which it was derived, and the patient-matched normal genomes. When comparing somatic mutations identified
in the cell culture and tissue genomes, we observe concordance at the majority of single nucleotide variants, whereas copy
number changes are more variable. To understand the functional impact of non-coding somatic variation, we leveraged
functional data generated by the ENCODE Project Consortium. We analyzed regulatory regions derived from multiple
different cell types and found that melanocyte-specific regions are among the most depleted for somatic mutation
accumulation. Significant depletion in other cell types suggests the metastatic melanoma cells de-differentiated to a more
basal regulatory state. Experimental identification of genome-wide regulatory sites in two different melanoma samples
supports this observation. Together, these results show that mutation accumulation in metastatic melanoma is nonrandom
across the genome and that a de-differentiated regulatory architecture is common among different samples. Our findings
enable identification of the underlying genetic components of melanoma and define the differences between a tissue-
derived tumor sample and the cell culture created from it. Such information helps establish a broader mechanistic
understanding of the linkage between non-coding genomic variations and the cellular evolution of cancer.
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Introduction

Sporadic cancer is mainly caused by the progressive accumula-

tion of genomic mutations. Therefore, a mechanistic understanding

of cancer requires a comprehensive catalog of all somatic variants in

a tumor genome. Although the majority of somatic variants occur in

non-coding regions of the genome, most studies have focused on

interpreting genic mutations [1], even when whole-genome data

was generated [1–6]. As a consequence, it is unclear if and how non-

coding variants might contribute to cancer progression. To

comprehensively study functional consequences of somatic variants,

one needs cell cultures made from the tumor. First, though, one

needs to know how representative the cell culture is compared to the

original cancerous tissue. Here we characterize these differences

and use comparative and functional genomics methods to assess

how mutations are distributed within melanoma genomes.

We used a combination of data produced by the Illumina

GAIIx and HiSeq2000 platforms to generate over 5.4 billion

100 bp reads representing three different high-coverage genomes

(Figure 1A and S1) from the same 33 year old untreated male: two

genomes represent a cutaneous melanoma sample, one of a laser

capture microdissected metastatic tumor from the shoulder

(primary tumor is of unknown origin), and the other from a low-

passage cell-culture derived from that tumor. We also generated a

matched ‘‘normal’’ genome from a blood sample. Using our single

nucleotide genotype calling methodology [7], we were able to

make confident genotype calls at 92.9%, 84.5%, and 95.6% of the

tissue, cell culture, and normal genomes, respectively.
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Results/Discussion

Analysis of detected variants
To accurately and comprehensively identify novel somatic

single nucleotide variants (SSNVs) in the cell culture and tissue

genomes we developed a new computational algorithm, which was

validated and shown to have high sensitivity and specificity (see

Materials and Methods). Utilizing published algorithms [8–10], we

were also able to identify somatic copy number changes and

chromosomal rearrangements. Comparing the somatic alterations

identified in the tissue and cell culture genomes reveals their extent

of relatedness (Figure 1 and S2).

In total, we identified 105,460 SSNVs in the tissue and 122,837

in the cell culture that were not present in the patient’s non-tumor

DNA. This number of somatic mutations is substantially higher

than other published whole-genome cancer studies [1–6]. If we

examine genomic regions that have sufficient coverage to make a

reliable call in both samples (81.1% of the genome), 95.2% of the

sites are common (2.9% and 1.9% are unique to the tissue and cell

culture, respectively). The two melanoma samples are less

concordant at the level of copy number variations (CNVs) relative

to the normal genome (Figure 1C and 1D). In total, 118 Mb of the

cell culture has somatic CNVs whereas only 63 Mb of the tissue

does. In support of these results, we found that aCGH CNV calls

were highly concordant with our whole-genome sequencing-based

calls (Figure S3). One striking difference in the cell culture genome

is that it includes a near-complete loss of one copy of chromosome

14 (Figure S2 and S4). The additional CNVs in the cell culture

genome may result from the low-passage culturing process. This is

a known phenomenon that has been previously documented in

higher-passage hESC cell cultures [11] and a xenograft of a

primary tissue cancer sample [6]. As such, our CNV results are

consistent with other reports and extend these findings to lower-

passage tumor cell cultures. Because non-normal CNV regions can

influence SSNV calls, we recalculated concordance at non-CNV

regions. Focusing on these areas, there are 91,823 SSNVs in the

union of both samples, and 96.1% are shared (2.0% and 1.9% are

unique to the tissue and cell culture, respectively) (Figure 1B). The

SSNV mutational spectrum is reflective of UV damage, even for

cell culture and tissue-specific calls (Figure S5). We additionally

made somatic insertion and deletion (indel) calls (see Materials and

Methods), and found that after CNV filtering there are 269

somatic indels shared between the tissue and cell culture, while the

tissue has 127 unique indels and the cell culture has 160 (Figure

S6). This lower level of concordance, relative to SSNVs, between

calls is not surprising, as previous studies show that indel calling is

more difficult with short reads [12]. Together, these results provide

a high-resolution picture of the differences between a metastatic

tissue sample and the cell culture derived from it.

We next compared mutations from another melanoma whole-

genome study by applying our computational SSNV detection

method to sequence data from metastatic melanoma (colo-829)

and matched normal (colo-829BL) cell lines [1]. We identify more

SSNVs than originally reported, and the bulk of our calls are

concordant with those (Figure S7). Importantly, we identify 448 of

the 454 (98.7%) Sanger-validated and 40 of the 43 (93%)

COSMIC calls in the colo-829 genome. Variant calls that are

specific to our algorithm are enriched for the characteristic

melanoma UV mutational signature (Figure S8). We observe

100% concordance with Sanger sequencing-based cross-validation

of novel SSNV calls at 181 positions in the cell culture genome (see

Materials and Methods), which suggests that our SSNV detection

algorithm has a low false positive rate.

Additionally, we randomly selected 96 cell culture-specific and

96 tissue-specific SSNVs for PCR amplification and Sanger

sequencing. Of the successful PCR and Sanger sequencing

reactions, we observe 97.7% concordance and 98.7% concor-

dance at tissue-specific and cell culture-specific positions, respec-

tively. Together, these results suggest our SSNV detection

algorithm is both highly sensitive and specific.

Identification of commonly mutated genes in melanoma
Comparison of the colo-829 SSNVs to those from our

melanoma sample shows commonly mutated genes, some of

which are associated with melanoma pathogenesis (Figure S9). For

example, missense mutations (D261N and H533Y) were identified

in ADAM29, which encodes a member of the A Disintegrin And

Metalloproteinase (ADAMs) family which are membrane an-

chored glycoproteins with several biological functions encompass-

ing cell adhesion, cell fusion and signaling [1]. Importantly, we

recently reported that a systematic mutational analysis of all

members of the ADAM family of membrane-bound metallopro-

teases showed that ADAM29 is often mutated in melanoma [13].

Functional analyses have indicated that ADAM29 mutations affect

adhesion of melanoma cells to specific extracellular matrix

proteins, suggesting that mutated ADAM genes play a role in

melanoma tumorigenesis [13].

This study also identified a missense mutation (R175C) in

PTK2B, which encodes the non-receptor protein tyrosine kinase

PTK2B, also known as PYK2 or FAK2, a focal adhesion protein

that shares structural similarity with its paralog focal adhesion

kinase 1 (FAK1). PTK2B has been previously linked to metastasis

via RhoC-dependent activation of FAK1, MAPK, and Akt [14].

As we previously reported a high prevalence of somatic mutations

in PTK2B in metastatic melanoma [15], these studies suggest that

PTK2B may be a melanoma cancer gene and that further studies

are required to more fully characterize the functional role of its

mutations in melanoma. For additional genic annotations, we

include a supplementary file that outlines all coding mutations

discovered in this study (Table S1).

Nonrandom mutation accumulation across the genome
Because metastatic tumor formation involves successive itera-

tions of mutation, followed by selection and clonal expansion, the

resulting cell population has undergone an evolutionary process

commonly referred to as clonal evolution [16,17]. When

measuring the similarity of sequences across many species, the

genome has clear signatures of intense selective pressure [18–23].

Some regions reject mutations more than expected. To determine

Author Summary

Here we investigate the relationship between somatic
variants and non-coding regulatory regions. To do this, we
develop a new algorithm for identifying single nucleotide
somatic variants in whole-genome sequencing data and
apply it to a metastatic melanoma sample and a cell
culture derived from this sample. Our results show that the
two genomes are similar at the level of single nucleotide
changes and more variable at larger copy number
changes. We further observe that patterns of somatic
mutation accumulation in non-coding regulatory regions
suggests that the metastatic melanoma cells de-differen-
tiated into a more basal regulatory state. That is, by simply
looking at mutation accumulation across cell-type-specific
non-coding functional regions, one can clearly see
patterns that are indicative of cell state de-differentiation.
Results from genome-wide functional regulatory region
experimental mapping support this observation.

Signatures of De-Differentiation in Tumor Genomes
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if the selective forces operating on a metastatic cell over the span of

cancer development are similar to those operating across species

over millions of years, we compared somatic mutation accumu-

lation in melanoma to evolutionary constraint.

For this analysis, we combined the SSNVs from our tissue

sample with those we identified in the colo-829 cell line. This

resulted in 141,655 unique SSNVs, of which 99.3% are non-

coding. To determine if these mutations are uniformly distributed

throughout the genome, we first measured mutation accumulation

in functionally different regions identified by chromatin-based

chromosomal segmentations [24] (Figure 2A). Such segmentations

currently exist for nine different cell types (Figure S10), and we

chose NHEK cells as our primary focus since these appear most

similar to melanoma cells out of all nine cell types (see below). The

enrichment results are consistent when the samples are analyzed

independently (Figure S11). There is a clear anti-correlation with

evolutionary constraint (Figure 2B and S12). However, there is

also a strong anti-correlation with mutation accumulation and

coding regions (Figure 2C and S13), which is expected due to

transcription-coupled repair (TCR). Of note, the heterochromatin

low signal regions (state 13 in the chromosomal segmentations)

accumulate mutations roughly equal to random expectation

(Figure S14), indicating that they may be suitable targets for

estimating the background passenger somatic mutation rate (which

for this tumor we calculate as about 42 SSNVs per megabase).

The above results indicate that somatic mutations do not occur

uniformly across the genome. To eliminate the mutation

suppression bias related to TCR in known genic areas, we

specifically focused on regions of the genome less likely to be

transcribed— windows that do not overlap and are greater than

10 Kb from annotated genes or transcription start sites (TSSs). We

performed a multiple regression on mutation accumulation in bins

of these regions using evolutionary constraint, GC content, and

fraction of transcribed bases, which we obtained from a separate

melanoma RNA-seq study [25]. Adding the additional variables

removes the correlation with evolutionary constraint. Unsurpris-

Figure 1. Melanoma tissue and cell culture similarities. (A) The experimental design of our study. Concordance between the somatic calls in
the tissue (blue) and cell culture (yellow) for SSNVs (B), CNV amplifications (C), and CNV deletions (D). The two samples are highly concordant at the
SNV level, but more different at the CNV level.
doi:10.1371/journal.pgen.1002871.g001

Signatures of De-Differentiation in Tumor Genomes
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ingly, the fraction of non-coding bases transcribed (one of the

variables in the above-mentioned regression analysis) is almost

perfectly anti-correlated with enrichment for mutation accumula-

tion (Spearman’s R = 20.97789; P,2.2e-16). These results

suggest that TCR is a mechanism associated with preventing

mutation accumulation in non-coding regulatory elements.

Functional mutation signatures in non-coding regulatory
regions

We next sought to examine the distribution of somatic

mutations across experimentally-derived functional non-coding

regions. To do this, we compared our SSNV collection to broad

classes of active regulatory elements identified by the DNaseI

hypersensitive site (DHS) assay [26–30]. This experiment was

performed genome-wide on melanocytes—the precursor cell type

to melanoma—as part of the ENCODE Project Consortium [31].

We hierarchically partitioned melanocyte DHSs based on genic

landmarks and calculated somatic mutation enrichment

(Figure 3A). All DHS categories except for 39 UTRs are

significantly less enriched than random expectation (horizontal

line at 0) and compared to common SNPs from the 1000 genomes

consortium (grey points). 59 UTRs are the most depleted. These

results are consistent with the observed increase in mutation

accumulation along the length of genes (Figure S15) and are

reproducible when the samples are analyzed independently

(Figure S16). Despite their distant location from known tran-

scribed regions, intergenic TSS-distal DHSs are also significantly

depleted for accumulating mutations. To avoid confounding from

transcription-coupled repair (described above), we subsequently

focus on intergenic TSS-distal DHSs. We performed single linkage

clustering of DHSs from 29 different cell states (cell types and

conditions) identified by the ENCODE Project Consortium [31] to

identify sites that are cell-type-specific, present in a combination of

cell types, or ubiquitously present. Out of all cell-type-specific

DHSs, the most depleted for mutation accumulation are those

specific to melanocytes, aortic smooth muscle cells (ASMCs) and

H1 embryonic stem cells (ESCs). Ubiquitously present DHSs are

even more depleted. We next calculated the mutational load on all

melanocyte DHSs by measuring mutation accumulation when

these regulatory regions are active in all possible cellular contexts/

combinations. Unsurprisingly, mutation enrichment decreases as

the melanocyte DHS is active in more cell types (Figure 3C; yellow

line). As a control for this experiment we examined all

combinations of non-melanocyte DHSs and found a similar trend

Figure 2. Somatic mutation accumulation is non-random across the genome. (A) Somatic (blue) and common (gray) variants have different
levels of enrichment or depletion depending on which chromatin segmentation they occur in. Somatic mutation accumulation is highly anti-
correlated with evolutionary constraint (B) and coding fraction (C).
doi:10.1371/journal.pgen.1002871.g002
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(Figure 3C; blue line), although not as depleted as the melanocyte

DHSs. These results indicate that regulatory regions are prefer-

entially repaired in metastatic melanoma and that this occurs in a

cell-type specific manner.

To further understand the relationship between cell type

regulatory architecture and somatic mutation enrichment in

metastatic melanoma, we clustered all 29 cell types based on

their regulatory element signatures (Figure 3D). Note the

relationship between melanocytes and the other two cell types

where cell-type-specific DHS mutations are highly depleted

(ASMCs and ESCs). ASMCs are derived from the same

embryological layer—neural crest—as melanocytes, and ESCs

are an undifferentiated pluripotent cell type. Brain cell (medullo-

blastoma)-specific DHSs, which are also neural crest derived, show

significant depletion as well. The topology of the tree and the

significant depletion for somatic mutation accumulation in

regulatory regions specific to neural crest-derived and ESC cell

types suggests that the metastatic melanoma cell utilized these

regulatory programs. These results imply that the regulatory

architecture of the metastatic melanoma cell de-differentiated to a

more basal cellular program that is visible in the pattern of

mutations covering cell-type-specific regulatory regions. In support

of this hypothesis, a recent study found that human melanoma-

initiating cells express a neural crest stem cell marker [32].

To experimentally test the hypothesis of regulatory de-

differentiation, we performed genome-wide DNase-Seq to identify

DHSs in colo-829 and the cell culture sample sequenced in this

study. Generating trees using these two samples and DHSs from

the other cell types shows that the two melanoma samples are

closely related to each other and melanocytes (Figure 4A).

However, focusing on gene regulatory status by only considering

DHSs that overlap exonic regions shows a different tree topology

Figure 3. Non-coding Melanocyte DHSs are dis-enriched for accumulating melanoma somatic mutations. (A) Genic partitioning of
melanocyte DHSs such that every DHS occurs in a single category shows that most categories are depleted for mutation accumulation (TSS
P = Transcription Start Site Proximal [within 5 Kb]; TSS D = Transcription Start Site Distal [greater than 5 Kb]). Common SNPs are based on 1000
Genomes calls that have at least 5% minor allele frequency (MAF). (B) Intergenic TSS-distal cell-type-specific and ubiquitous DHSs show different
levels of enrichment or depletion. (C) Enrichment or depletion at cell-type combinations of intergenic TSS-distal melanocyte and non-melanocyte
DHSs. For these analyses, the set of regions representing any data point must have overlapped at least 10 somatic variants to be considered. The
horizontal black line at zero represents no enrichment. The GSC method was used to measure enrichment. Error bars represent one standard
deviation from the mean of the null distribution. (D) A hierarchical tree based on DHS Euclidean distance among 29 different cell states. Note the
positioning of melanocytes ‘‘Melano’’ relative to aortic smooth muscle cells ‘‘AosmcSerumfree’’ and human embryonic stem cells ‘‘H1hesc’’, which are
among the most depleted for somatic mutation accumulation (Figure 3B).
doi:10.1371/journal.pgen.1002871.g003
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(Figure 4B). Here, the melanomas are de-differentiated relative to

the melanocyte sample.

It is known that highly transcribed genes accumulate fewer

somatic mutations relative to more lowly transcribed genes [1].

Thus, the extent of TCR depends on the level of transcription.

Recent studies show that non-coding functional elements are

transcribed [33–36]. So, one would expect that somatic mutation

accumulation in these regions could be modulated by whether or

not, and to what extent, they are transcribed. To determine if

TCR might operate at melanoma-specific TSS-distal non-genic

regulatory regions, we calculated how many of these sites are

transcribed (Figure 4C). We found that melanoma-specific

regulatory regions are significantly more likely to be transcribed

(P,2.2 e216; Fisher’s Exact Test) relative to melanocyte-specific

regulatory regions. To further investigate this, we searched for a

hallmark signature of TCR—repair events biased to the

transcribed strand. Focusing on SSNVs overlapping the mela-

noma regulatory elements we identified that occur within introns

(so that we can orient mutations relative to the transcribed

strand), we observe a significant (P = 0.001605; exact binomial

test) strand bias (Figure 4D). These are the first results to our

knowledge that demonstrate the regulatory architecture at non-

coding regions in cancer genomes is de-differentiated and likely

shaped by TCR.

Here we have used whole-genome sequencing to identify the

somatic mutations in a metastatic melanoma tissue sample and a

low-passage cell culture derived from the same patient. We

speculate that the mutational signatures in the metastatic cell

indicate that regulatory architectures of the precursor cell it was

derived from and other basal cellular programs were utilized

Figure 4. The regulatory signature of metastatic melanoma. Genome-wide DNase-Seq identifies (DHS) regulatory elements in the cell culture
sample from our study and the colo-829 cell line. (A) Hierarchical clustering of all DHSs shows that the regulatory architecture of metastatic
melanoma cells (red) adopts that of a more derived melanocyte (blue). (B) Focusing on exon-overlapping DHSs to identify the open chromatin
landscape in gene regions shows that the metastatic melanoma cells are de-differentiated relative to melanocytes. Of the DHSs that occur in exonic
regions and are specific to the metastatic melanoma samples (and not present in any others), the important melanoma genes MITF, NEDD9, and DCC
are identified. (C) Melanoma transcription at melanoma-specific (dark blue) TSS-distal DHSs is significantly more frequent (P,2.2e216; Fisher’s Exact
Test) than at melanocyte-specific (light blue) TSS-distal DHSs. (D) Mutational bias in melanoma DHSs is asymmetric with respect to orientation relative
to the transcribed strand. The 12 possible mutations are collapsed into 6 such that the key mutation (A.C, for example; blue) and its complement
(T.G; yellow) version are represented with different colors. An asterisk (*) represents P,0.05 for a Binomial test, using a 50% expectation, on the
counts for a pair of key and complement mutations.
doi:10.1371/journal.pgen.1002871.g004
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during the path to metastasis—consistent with a tumorigenesis

model of embryonic program redeployment.

Materials and Methods

Tumor tissues
A pathology-confirmed metastatic melanoma tumor resection,

paired with a pheresis-collected peripheral blood mononuclear cells,

was collected from a 33 year old melanoma patient enrolled in IRB-

approved clinical trials at the Surgery Branch of the National Cancer

Institute. A portion of the fresh tumor was frozen and embedded in

Optimal Cutting Temperature (OCT) embedding medium. A

melanoma cell line was derived from mechanically dispersed tumor

cells, which were then cultured in RPMI 1640+10% FBS at 37uC in

5% CO2 for 9 passages. Genomic DNA was isolated using DNeasy

Blood & Tissue kit (Qiagen, Valencia, CA). Several quality controls

were performed one of which was the use of cytopathology, to

determine the percentage of melanoma antigen expressing cells. The

tissue culture line used in this study was evaluated by immunohis-

tochemistry to have at least 75% of cells express melanoma-specific

antigens. This threshold was set as it has been reported to give

sufficient purity to identify regions of homozygous deletion,

hemizygous deletion, copyneutral LOH, duplication and amplifica-

tion [37–39]. Genotyping of the samples was performed to verify

that they are derived from the same individual.

Melanoma tissue processing for Laser Capture
Microdissection (LCM)

H&E stained sections of fresh frozen melanoma tissues are

prepared for initial histologic assessment. Sections are examined

by a pathologist for the presence of tumor, estimation of tumor

content, presence of inflammation and necrosis. Tissues with less

than 70% tumor and/or significant areas of inflammation and

necrosis are subjected to LCM.

Laser Capture Microdissection (LCM)
Laser capture microdissection (LCM) was performed in the

Pathology Core Facility of MSKCC, New York, NY, using the

Veritas Microdissection System (Arcturus). The Veritas system

combines ultraviolet laser cutting and laser capture using an

infrared laser source. Fresh frozen melanoma tissues sectioned

between 8 and 10 mm were transferred to PEN membrane slides

(MDS Analytical Technologies) and sections were stained by using

a modified protocol described previously [40,41]. Briefly, sections

were stained with hematoxylin as follows: slides were immersed in

70% ethanol for about 10 min followed by sequential dips in

nuclease free water, Mayer’s hematoxylin solution for 30 sec,

nuclease free water, 75% ethanol, 95% ethanol and finally

dehydrated in absolute ethanol by 3 changes of 3 min each.

Multiple serial sections (10–20) of the tissue are used to

maximize cell yields. 5,000 to 10,000 cells were harvested in each

LCM cap and material from 5–10 caps was pooled together to

maximize yields.

DNA extraction
DNA was extracted using DNeasy Blood and Tissue kit (Qiagen)

following manufacturer’s instructions. DNA was eluted in 35 ul of

elution buffer. DNA measurements were made using ND-1000 UV-

Vis spectrophotometer from NanoDrop technologies.

Genome build statistics
We generated 5,409,104,173 100 base paired-end reads that

pass the Illumina chastity filter and contain 32 or more Q20

Sanger-scaled quality bases for this study, which were partitioned

among the genomes as follows: 1,042,502,044 for the cell culture,

1,588,246,159 for the tissue, and 2,778,355,970 for the normal.

Reads were aligned to the unmasked hg18 version of the human

genome using BWA [42] with default parameters. After removing

molecular duplicate read pairs (read pairs that map to the same

position on the reference sequence are likely an artifact of sample

preparation) using samtools [43] and considering only reads with a

mapping quality of Q30 or greater and bases with quality of Q20

or greater, we observe an average base coverage of 21.46, 29.66,

and 47.76 for the cell culture, tissue, and normal genomes,

respectively (Figure S1). Within coding regions, we were able to

make confident variant calls (see details below) at 64.3%, 85.2%,

and 88.9% of the positions in the cell culture, tissue, and normal

genomes, respectively. Comparing territory that is callable in the

cell culture and tissue results in 81.1% genome coverage.

Single nucleotide variants
For variant calling, only reads with mapping quality of Q30 or

greater and bases with quality of Q20 or greater were considered.

We used two related algorithms to make single-position genotype

calls in the normal and melanoma genomes. For all genomes, we

use a Bayesian genotype caller named Most Probable Genotype

(MPG) that has been described previously [44]. This genotype

caller produces accurate calls in regions that satisfy whole-genome

coverage and quality parameters as determined by a separate

study [7]. Namely, the MPG score must be equal or greater than

10 and the MPG score to base Q20 quality-coverage ratio must be

equal to or greater than 0.5. To independently verify MPG calls,

we compared genotypes to those called by the Infinium 1M quad

SNP-chip platform. The genotype concordance rate with the SNP-

chip for the normal genome is 99.937% at 99.3% of the positions,

excluding regions with hidden SNPs [45] and abnormal copy

number. A similar comparison performed on the cell culture

genome results in 99.939% concordance at 91.2% of the positions.

To better identify variant positions in the cell culture and tissue

genomes, we first developed a new algorithm similar to MPG,

called Most Probable Variant (MPV). An important distinction

between MPG and MPV is that the MPV score reflects the degree

of confidence that a sample has a genotype different from the

reference genome, whereas the MPG score reflects the degree of

confidence in the genotype call itself. MPV is a new option (–

score_variant) in the MPG program and the executable source

code is freely available for download from the following URL:

http://research.nhgri.nih.gov/software/bam2mpg/. We opti-

mized calling parameters for MPV by downloading and analyzing

genome-wide tumor and normal data that was previously

published for the colo-829 melanoma and colo-829BL normal

cell lines [1]. Using MPV with optimized parameters (MPV score

must be greater than or equal to 10 with no coverage ratio criteria

similar to the MPG parameters) on the cell culture genome allows

us to identify more variant positions without dramatically

sacrificing accuracy (Table S2). Comparing MPV calls for the

cell culture genome to the SNP-chip results in 99.79%

concordance at 96.28% of the variant positions.

To identify novel somatic single nucleotide variant (SSNV)

positions we compared the MPV-called genotype in either

melanoma genome to the MPG-called genotype in the normal

genome and then subtracted out any variants that are present in

dbSNP129 or within ten bases of an indel identified by the MPV

algorithm. Loss of heterozygosity (LOH) variants were ignored

since there is no novel somatically-acquired allele.

Running our analysis pipeline on our own samples resulted in

122,837 SSNVs in the cell culture genome and 105,460 in the
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tissue genome. It is important to note that these two numbers are

not comparable because they are not normalized across the

common callable territory in the cell culture and tissue genomes.

Once we account for this, the somatic variant counts drop to

97,532 for the cell culture and 98,548 for the tissue.

We validated novel SSNVs by PCR amplifying the regions in

the cell culture and normal genomes and then Sanger

sequencing the products. Of 192 randomly chosen positions

(96 in coding regions, and 96 in non-coding regions), we were

able to successfully PCR amplify and Sanger sequence 181 in

both genomes. Of these, we observed evidence for somatic

variants concordant with the whole-genome data at 100% of the

positions.

For further validations we randomly selected 96 cell culture-

specific and 96 tissue-specific SSNVs for PCR amplification and

Sanger sequencing. Of the 78 successful PCR and Sanger

sequencing reactions for the cell culture set, 75 (96%) had

genotype calls concordant with the whole-genome sequencing call.

For the tissue set, 43/73 (59%) were concordant. This result

allowed us to focus on the 30 positions where the tissue-specific

whole-genome calls were not concordant with the PCR and

Sanger calls. We found that by implementing three simple filters,

we eliminated 29 of 30 discordant positions and 0 of 43

concordant positions, so that the concordance rate is 43/44

(97.7%). The filters we implemented are:

1. Normal lookup filter to check for somatic variant alleles in the

normal genome, as previously described [5].

2. Indel filter to remove somatic variant calls within 10 bases of an

indel call made using reads with a mapping quality of 1 or

greater and a MPV score of 10 or greater in the tumor genome.

3. Strand bias filter to remove calls where the somatic allele is

present exclusively in reads mapping to one strand and not the

other.

These filters removed 2 of 3 discordant cell culture-specific calls

and 0 of 75 concordant calls, so that the concordance rate is 75/76

(98.7%).

We additionally looked at the mutation spectrum for all the

common, tissue-specific, and cell culture-specific SSNVs (Figure

S5). All three mutation spectrums are enriched for the known

G.A/C.T UV signature. Together, these results suggest that

our method is highly specific.

Cellular heterogeneity
To estimate the extent of normal cell contamination in the cell

culture and tissue samples, we calculated the fraction of reads with

mapping quality of at least 30 supporting the acquired somatic

allele at heterozygous positions and compared this to what would

be expected in a completely homogenous cellular population with

no normal cells. Our analyses show that the cell culture has no

normal contamination, while the tissue sample contains about

42% normal cells (Figure S17). Other groups have used similar

methods to estimate tumor sample purity [46].

Copy number variants
We first estimate copy number in non-overlapping 5 Kb tiles in

the normal genome using the copySeq algorithm [8]. We only

consider tiles with 80% uniquely mappable k-mers (which is 94%

of the tiles) to ensure accurate copy number estimation. To detect

amplifications and deletions in the cancer genomes we use the

CNV-seq algorithm [9], which compares the cancer to normal

genome, with the following parameters:

{p-value 0:0001 {bigger-window 10{global-normalization

Somatic copy number alterations (SCNAs) are then defined over

the 5 kb tiles called in the normal genome using CNV-seq results

and copy number is adjusted based on the level of normal genome

contamination, as described above. Adjacent amplified or deleted

5 kb windows are merged and only regions where two or more

windows are affected are retained. To conservatively identify tissue

or cell culture-specific CNVs, we filtered the CNV-seq calls in one

sample by looking at the corresponding log2 ratio in the other

sample. Any CNV-called regions in one sample with a CNV log2

ratio, = 20.1 or . = 0.1 in the other sample were considered

CNVs even if they were not called by the CNV-seq algorithm.

Thus, these regions are not considered sample-specific, which

result in a conservative set of CNV calls.

Somatic insertions and deletions
We made somatic insertion and deletion calls by extending our

MPV and MPG scoring methodology (see Single nucleotide

variants section above) to indel calls. We first select all possible

non-reference indel calls, irrespective of score threshold, across all

three genomes using MPG on the normal genome and MPV on

the tumor genomes. After merging all possible calls, we then look

at each genome independently and determine how well the reads

support the indel call using MPG on the normal genome and

MPV on the tumor genome, both with thresholds of 10. To find

somatic indels we keep non-reference tumor calls that do not

match the normal call at that same position. Because CNVs can

bias indel calls, we subsequently filter by retaining regions where

the CNV log2 ratio .20.1 and ,0.1 such that a conservative set

of indels outside CNV regions are compared. The final indel

results are summarized in Figure S6.

Array comparative genome hybridization (aCGH)
We used an Agilent 180K aCGH array to look for CNVs in the

tissue sample. For gain/loss calls, we used the default Nexus 6.0

settings for Agilent 180K catalog arrays for mosaic tissue samples,

and adjusted the minimum probe bin size to 10 instead of the

default 3 for segmentation

Chromosomal rearrangements
We used the BreakDancer algorithm [10] to detect chromo-

somal rearrangements. In order to detect somatic events we

require a score of 90 or greater in the cancer genome, which is

consistent with parameters reported in a previous study [6] and no

evidence in the normal genome. We further filter the results in two

ways. First, by removing any somatic events that occur in any of

ten normal genomes from an ongoing internal study (data not

shown). Second, by requiring that the 2 kb region immediately

surrounding each putative breakpoint is greater than 99%

mappable according to the CRG 100mer alignability track

available at the UCSC genome browser.

Mutation accumulation enrichment
We used the Genome Structure Correction (GSC) method [47]

to calculate enrichment statistics for SSNVs relative to other

genomic features. All results are based on 10000 samplings and

reported as the log2 fraction of observed base overlaps divided by

the mean of the null overlaps. Error bars represent +/2 one

standard deviation from the mean of the null distribution. We

calculate enrichment or depletion only in situations where ten or

more SSNVs overlap a particular set of genomic features. If there
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are fewer overlaps, we consider the calculation unreliable and

therefore ignore those comparisons. Common SNP control data

sets were constructed using 1000 Genomes calls [48] at positions

that have a minimum of 5% minor allele frequency (MAF) and are

concordantly called across four different centers. Similar results

are observed when using 20% MAF SNPs (data not shown).

Chromatin segmentations
Chromatin segmentation data for nine different cell types was

obtained from Ernst et al. [24]. We ignored states 14 and 15,

which correspond to repetitive regions of the genome. Variant

calls are generally filtered out of these areas by the 1000 Genomes

Consortium because they result in high false positives rates. These

two states combined occupy 0.27% of the genome on average over

the nine different cell types, so ignoring them will have little effect

on our analyses.

Hierarchical gene-landmark partitioning
We divided genomic features into hierarchical and mutually

exclusive categories based on the following hierarchical sequence

of genic landmarks: coding regions, 59 UTR’s, 39 UTR’s, introns,

intergenic transcription start site (TSS)-proximal (within 5,000 bp

of a TSS), and intergenic TSS-distal (greater than 5,000 bp from a

TSS). All genic landmarks are based on the GENCODE

annotation [49] in hg18 and can be downloaded from the UCSC

Genome Browser [genome.ucsc.edu].

Non-genic tiles
We masked out all regions of the genome overlapping with, or

within 10,000 bp, of any part of a gene or TSS. For the remaining

parts of the genome, we created 50,000 bp non-overlapping tiles and

calculated the number of bases that overlap evolutionarily constrained

regions. Constrained regions are based on the GERP method [20]

and the Enredo, Pecan, Ortheus (EPO) alignments [50,51] and are

available at the Ensembl browser [www.ensembl.org]. We discarded

tiles with no constrained region overlap and sorted the remaining tiles

by the fraction of constrained base overlaps. Using this sorted list, we

created ten equal-sized bins and calculated mutation accumulation

enrichment (see above) for the tiles within each bin.

DNase I Hypersensitive Site (DHS) data sets and analysis
We used post-embargo ENCODE Consortium DHS data sets for

the following 29 cell lines: AosmcSerumfree, Chorion, Fibrobl,

Fibrop, Gm12878, Gm12891, Gm12892, Gm18507, Gm19238,

Gm19239, Gm19240, H1hesc, H9es, Helas3Ifna4h, Helas3, Hepg2,

Hsmm, Hsmmt, Huvec, K562, Lhsr, LhsrAndro, Mcf7, Medullo,

Melano, Myometr, Nhek, Panislets, Progfib. Information about the

cell lines and DHS experiments can be found at the UCSC ENCODE

Open Chromatin, Duke/UNC/UT Track Settings Page: http://

genome.ucsc.edu/cgi-bin/hgTrackUi?g = wgEncodeChromatinMap.

Enrichment statistic measurements and gene-landmark parti-

tioning for DHS regions were performed as described above.

Single-linkage clustering was performed on all DHSs across the 29

cell lines to determine regions that are active in single, multiple,

and all cell types. The DHS signature tree was constructed by first

creating a binary vector for each cell type that classifies a region as

either on (1) or off (0). Then, Euclidean distance was used as a

metric to hierarchically cluster the binary vectors. The resulting

trees were manipulated with the Dendroscope program [52] to re-

root using the GM cell types as an out group. Figure 4 reports the

result of this analysis on all DHSs, but we observe the same tree

topology when only non-genic TSS-distal DHSs are considered

(data not shown).

Experimental DHS identification in melanoma samples
DNase-seq libraries we generated as previously described

[29,30] and sequenced via Illumina’s GAII sequencer. After

alignment to the human reference sequence, we used F-seq [53] to

identify DHS peaks. These peaks were compared to DHS regions

identified in the same manner from other cell types.

Transcription at DHSs
We used transcribed regions from ten melanoma samples as

defined by Berger et al. [25]. A DHS element is considered

transcribed if any high mapping quality (mapQ. = 30) RNA-seq

read from any of the ten melanoma samples overlaps the DHS.

Supporting Information

Figure S1 Reference genome coverage for all three samples

using reads with a mapping quality of Q30 or greater and bases

with a base quality of Q20 or greater.

(TIF)

Figure S2 Somatic alterations in the tissue (A) and cell culture

(B) genomes. Whole-genome SSNV, SCNA, and translocation

results are presented for each sample. Blue bars represent the

number of SSNVs per 10 Mb. Interior to the blue bars, blue lines on

a gray background represent SCNAs from copy one to five. Inside

the circle, red and gray lines represent interchromosomal and

intrachromosomal translocations, respectively.

(TIF)

Figure S3 Somatic copy number alterations (SCNAs) called

using the whole-genome data have a high degree of concordance

with SCNAs called using aCGH data.

(TIF)

Figure S4 Copy number variation (CNV) differences in the cell

culture and tissue genomes relative to the normal genome. In some

instances, tissue CNV regions appear to nucleate larger CNV

events in the cell culture.

(TIF)

Figure S5 The mutational spectrum for all common, cell

culture-specific, and tissue-specific SSNVs.

(TIF)

Figure S6 Somatic indel calls in the tissue and cell culture

samples. (A) After CNV filtering there are 269 shared somatic

indel events, while the tissue (blue) has 127 unique events and the

cell culture (yellow) has 160 unique events. (B) Somatic indel size

counts show that smaller indels (around size +1 or 21) are more

common than larger events.

(TIF)

Figure S7 A comparison of SSNVs called on the colo-829 using

the method presented here and the method originally described by

Pleasance et al. [1].

(TIF)

Figure S8 The mutational spectrum for SSNVs called on the

colo-829 genome.

(TIF)

Figure S9 Shared genic mutations among the samples. Numbers

indicate the count of genes with a nonsynonymous or stop

mutation. These numbers reflect variants at all callable positions

per genome, not normalized across commonly callable territory.

Genes with star superscripts are implicated in melanoma

pathogenesis by other studies.

(TIF)
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Figure S10 Variant enrichment in chromatin segmentations

across nine different cell types.

(TIF)

Figure S11 Variant enrichment in chromatin segmentations

across nine different cell types using samples analyzed indepen-

dently.

(TIF)

Figure S12 Somatic mutation enrichment compared to fraction

of evolutionarily constrained bases in chromatin segmentations

across nine different cell types. R values represent Spearman’s

correlation.

(TIF)

Figure S13 Somatic mutation enrichment compared to fraction

of coding bases in chromatin segmentations across nine different

cell types. R values represent Spearman’s correlation.

(TIF)

Figure S14 Regions that are heterochromatin low signal zones

(state 13) accumulate somatic mutations at a rate similar to

random expectation.

(TIF)

Figure S15 Mutation accumulation increases with distance

along known transcripts. Each point represents a 5 Kb bin.

(TIF)

Figure S16 Genic partitioning of melanocyte DHSs such that

every DHS occurs in a single category shows that most categories

are depleted for mutation accumulation (TSS P = Transcription

Start Site Proximal [within 5 Kb]; TSS D = Transcription Start

Site Distal [greater than 5 Kb]). Common SNPs are based on

1000 Genomes calls that have at least 5% minor allele frequency

(MAF). In addition to a union analysis, each sample is also

analyzed independently in this plot.

(TIF)

Figure S17 Normal cell contamination levels are different in the

cell culture (A) and tissue (B) samples. We measured the fraction of

MapQ30 reads that support the somatic allele at heterozygous

positions and compared this to a binomial distribution fitted to the

observed read counts. As expected, the cell culture has no normal

cell contamination, but the tissue sample does. Based on location

of the observed tissue peak at 0.29 relative to the expected peak at

0.5, we estimate the tissue sample contains approximately 42%

((0.5–0.29)*2*100) normal cells.

(TIF)

Table S1 Coordinates, gene names, and amino acid changes

(where applicable) for all genic mutations in the cell culture and

tissue sample.

(XLS)

Table S2 We compared the genotype calls made on the whole

genome data using the MPG and MPV algorithms to SNP-chip

calls made on the same samples. Three sets of positions were

considered: 1) all SNP-chip positions, 2) hidden SNPs (positions on

the SNP-chip where a nearby SNP could affect probe hybridiza-

tion) removed, and 3) hidden SNPs and CNV abnormal regions

removed.

(XLS)
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