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Abstract

Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This
accumulation leads to cell cycle arrest through activating the DNA–damage checkpoints involved in cancer protection.
Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain
threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered
question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show
that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA
(Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at
those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular ‘‘band-aid’’ for
ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are
protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the
junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired,
resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it
simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our
work has important implications for understanding the checkpoint and RPA–dependent DNA–damage responses in
eukaryotic cells.
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Introduction

Telomeres protect chromosome ends from activating DNA

damage responses that result in cell cycle arrest or inadvertent

‘‘repair.’’ Evidence that telomere dysfunction could be involved in

carcinogenesis [3–5] suggests that some telomere-defective cells

are able to avoid/escape arrest and generate genetically modified

progenies. Checkpoint inactivation and checkpoint adaptation are

potential routes to escape from arrest. Checkpoint adaptation is an

intriguing process, in which checkpoint responses are terminated,

despite persistent DNA damage and intact checkpoint pathways

(reviewed by [6]). Several proteins involved in checkpoint

adaptation have been identified. However, many if not all (Ku,

Mre11, Rad50, Tid1, Srs2, Sae2, Cdc5Polo) also participate in

processing the DNA damage [7–12]. Therefore, these proteins

permit escape from arrest most likely indirectly, by affecting the

substrate required for checkpoint activation.

Exciting discoveries in model organisms as diverse as Schizosac-

charomyces pombe and Drosophila melanogaster suggest that eukaryotic

cells are quite resourceful in their ways to prevent chromosome ends

from being detected as DNA damage. For example, dysfunctional S.

pombe telomeres do not recruit the checkpoint protein Crb253BP1,

most likely because they lack a particular checkpoint substrate [13].

Drosophila uses transposons to protect and maintain chromosome

ends, whereas S. pombe can use ribosomal DNA for the same

purpose, but only when telomerase is inactivated [14]. In contrast,

Saccharomyces cerevisiae can proliferate without transposons, telomeric

or ribosomal DNA at chromosome ends when telomere mainte-

nance pathways, e.g. telomerase and telomere recombination, are

inactivated [15]. Such budding yeast strains, called PAL survivors,

have no particular DNA sequences at chromosome ends, which

shorten progressively, without triggering a cell cycle arrest. [15].

The existence of the PAL survivors suggests that eukaryotic cells can

also prevent checkpoint responses to chromosome ends in a

sequence-independent manner, perhaps with help from ‘‘anti-

checkpoint’’ factors.

In this study, we identified arguably the first ‘‘anti-checkpoint’’

protein in Rif1 and demonstrate that checkpoint responses to

damaged chromosome ends can be inhibited without significant

modification of a major checkpoint substrate, the single stranded

DNA. We propose that Rif1 has important physiological roles in

preventing a cell cycle arrest to incipient or small single stranded

DNA lesions occurring on chromosomes, particularly on chromo-

some ends. However, high levels of Rif1 may contribute to

genomic instability by facilitating cell proliferation with even more

DNA damage.

Results

Rif1 associates with DNA damage differently from Rap1
Telomeres successfully avoid stimulating the DNA damage

checkpoint pathways, despite their resemblance to broken
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chromosome ends. Therefore, we hypothesized that proteins able

to inhibit checkpoint sensors are among the telomere-associated

proteins. To unmask potential checkpoint inhibitors, we tested

how Rap1, Rif1 and other telomere-associated proteins respond to

DNA damage. Rap1 is a major component of the telomeric

chromatin [16], whereas Rif1 is a Rap1-interacting factor [17]. To

induce DNA damage, we used the well-studied model system

cdc13-1. Budding yeast cdc13-1 cells have a temperature-sensitive

mutation in the telomere capping protein Cdc13Pot1. At restrictive

temperatures, telomeres become uncapped and vulnerable to

DNA processing factors. Hence, Sgs1 and other helicases unwind

telomeres [18], whereas Exo1 and other nucleases resect the 59-

ended DNA strand. Together, they generate single stranded DNA

(ssDNA), a potent checkpoint activator.

To determine whether the association of Rif1 and Rap1 with

chromosomes was affected by the recruitment (and subsequently

by the activities) of Sgs1 and Exo1, we induced telomere

uncapping by shifting cdc13-1 cells from permissive (21uC) to

restrictive (36uC) temperature. The dynamics of Sgs1 recruitment

to uncapped chromosome ends is not known. Using chromatin

immuno-precipitation, we found that Sgs1 did not significantly

associate with sub-telomeres at 21uC (time 0 in Figure 1a). At the

restrictive temperature 36uC however, Sgs1 progressively accu-

mulated at 1, 8 and 15 kb from chromosome ends, associating

with (sub)telomeres and single gene loci, whereas it did not

associate with the centromere-proximal PAC2 locus (Figure 1a–

1d). Exo1 accumulated at the same regions and with similar

dynamics to Sgs1 (Figure 1e–1h), suggesting that: 1) DNA

unwinding is closely followed by an Exo1-dependent resection

and 2) with time, increasingly more sub-telomeres and single gene

loci are processed by Exo1/Sgs1.

Under these conditions, we also determined the dynamics of

Rap1 and Rif1 onto DNA. We found that both Rap1 and Rif1

associated with (sub)telomeres at 21uC (time 0, Figure 1i, 1m),

consistent with other studies [19,20]. At the restrictive temperature

36uC however, Rap1 and Rif1 behaved differently from each

other. Whereas Rap1 progressively dissociated from (sub)telo-

meres, Rif1 accumulated in (sub)telomeres (Figure 1i, 1m).

Whereas only small levels of Rap1 (below 1%) were detected at

single gene loci, 8 and 15 kb from the right end of chromosome 5

(Figure 1j–1k), high levels of Rif1 (up to 26%) were detected at

these loci (Figure 1n–1o). In conclusion, Rif1 associated similarly

to Sgs1 and Exo1; two different models of Rif1 association with

DNA damage are presented in Figure 1u–1v. Moreover, Rif1

associated differently from Rap1. This is surprising, since it was

thought that Rif1 associates with DNA through Rap1 [17].

To confirm that Rif1 does not require Rap1 to associate with

DNA damage, we generated cdc13-1 strains lacking the C-

terminus of Rif1 (Rif1-CD), required for association with Rap1

[17]. We found that Rif1-CD did not significantly associate with

sub-telomeres at 21uC (Time 0 in Figure 1q), suggesting that Rif1

requires Rap1 to be recruited to normal (sub)telomeres, consistent

with other studies [17]. Following telomere uncapping however,

Rif1-CD progressively associated with sub-telomeres and single

gene loci (Figure 1r–1t), similarly to Rif1 (and different from

Rap1). These data indicate that Rif1 is recruited to DNA damage

independently of Rap1. Interestingly, the behaviour of Rif1-CD
bears a striking resemblance to that of mammalian Rif1 [2,21],

suggesting conserved functions. Similarly to Rif1-CD, mammalian

Rif1 does not co-localize with Rap1 at normal telomeres, however

it associates with dysfunctional telomeres and other damaged

regions [2,21].

Rif1 inhibits the association of Rad953BP1, Ddc1Rad9,
Ddc2ATRIP, and RPA with DNA damage (DNA junctions)

At DNA damage, Rif1 may occupy the substrate for important

DNA damage response (DDR) proteins. Ddc1Rad9 (part of the 9-1-

1 checkpoint complex) has high affinity for 59-junctions between

single and double stranded DNA [22]. The RPA complex has high

affinity for ssDNA, facilitating the recruitment of the Ddc2ATRIP

checkpoint mediator [23,24]. Rad953BP1 checkpoint protein

associates with chromatin adjacent to DNA damage. Therefore,

we determined whether Rif1 interfered with the association of any

of these proteins with sub-telomeres and single gene loci. We used

the same experimental design as in Figure 1, except that we

incubated cdc13-1 cells at their mildest restrictive temperature

(27uC). Interestingly, we found that several fold more checkpoint

protein (Rad953BP1, Ddc1Rad9 and Ddc2ATRIP) and RPA associ-

ated with (sub)telomeres and YER188W in rif1D than in RIF1+
cells, during 7 h at 27uC (Figure 2a–2h), indicating that Rif1

strongly inhibits their recruitment to DNA damage.

To inhibit checkpoint proteins and RPA, Rif1 may associate

with ssDNA at random, similarly to RPA, or mainly with DNA-

junctions and the adjacent (ss)DNA. To distinguish between these

possibilities, we analyzed the effect of Rif1 at 36uC. At this

temperature, resection is faster and affects many more chromo-

somes than at 27uC (see Figure 3). Consequently, DNA-junctions

move faster from (sub)telomeres towards internal regions like

YER188W and YER186C, leaving behind long ssDNA overhangs,

bound by RPA and checkpoint proteins (Figure 2u). Therefore, we

determined the location of Rif1 as follows: 1) If Rif1 associates with

ssDNA at random, the Rif1-effect will be region-independent; 2) If

Rif1 associates with DNA-junctions and the adjacent DNA, the

Rif1-effect will appear stronger towards internal regions and

weaker or absent towards (sub)telomeres. Importantly, we detected

a strong Rif1-inhibitory effect on checkpoint/RPA proteins at

YER188W and/or YER186C loci (Figure 2m–2t). Conversely, no

such Rif1-effect was detected in sub-telomeres (Figure 2i–2l).

These data strongly suggests that Rif1 associates with DNA

damage at or around DNA-junctions (Figure 2u).

Author Summary

Here we identified arguably the first anti-checkpoint
protein in Rif1. The term anti-checkpoint was proposed
by Ted Weinert, one of the parents of the checkpoint
concept, to describe a factor that stops checkpoint
proteins from responding to DNA damage by other means
than repair, reduced amounts of ssDNA, or adaptation [1].
No such factor has been clearly identified; potential
candidates (for example, shelterin or CST complexes at
chromosome ends) may reduce the amount of damage,
therefore exerting an indirect ‘‘anti-checkpoint’’ function.
Interestingly, mammalian Rif1 was once thought to be a
checkpoint protein [2]. Our study indicates that Rif1 out-
competes checkpoint proteins for their substrate and sets
a threshold for checkpoint activation in budding yeast. Rif1
can tune down the checkpoint responses, thus permitting
cells to proliferate with DNA damage, a pre-requisite for
chromosomal instability, the hallmark of cancer cells. Rif1 is
an important link in understanding how eukaryotic cells
balance the need to proliferate with the need to preserve
their genetic heritage. Finding an anti-checkpoint is not of
pure theoretical interest. In the future, Rif1 inhibitors could
limit proliferation of chromosomally unstable cells. Con-
versely, Rif1 enhancers could tune down the over-blown
checkpoint responses that lead to massive cell death
following different insults.

Rif1 Is an Anti-Checkpoint
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Rif1 does not affect resection of sub-telomeres or single
gene loci

The ability of proteins like Cdc13 and KU to inhibit the

recruitment of checkpoint proteins and/or RPA to DNA is

indirect, by inhibiting DNA resection [25]. One possibility is that

the Rif1-effect is also indirect. A recent study used in-gel

hybridization assays to claim there is more ssDNA in cdc13-1

rif1D versus cdc13-1 cells at the very end of the chromosomes, the

TG-telomeric sequences [26]. However, no other chromosomal

regions were investigated. Because the in-gel hybridization assay is

Figure 1. The association of Sgs1, Exo1, Rap1, Rif1, and Rif1-CD with different chromosome regions during telomere dysfunction.
All strains were cdc13-1, grown overnight at 21uC, followed by 7 hours at 36uC to induce telomere uncapping. ‘‘ChIP (%)’’ was calculated for each
sample (time-point) as the difference between the immuno-precipitated DNA and the background, divided by input DNA, and multiplied by 100.
Error bars represent the standard deviation (SD) between three measurements. (a–d) The recruitment of Sgs1 to chromatin at the following distance
from chromosome ends: (a) 1 kb (in Y9 sub-telomeric repeats) (b) 8 kb (in YER188W), (c) 15 kb (in YER186C) and (d) 400 kb (in PAC2). YER188W,
YER186C and PAC2 are single gene loci on chromosome 5. Analyzed chromosome regions are indicated at the top of the figure. (e–h) As in a–d,
except that Exo1 was analyzed; (i–l) Rap1 was analyzed; (m–p) Rif1 was analyzed; (q–t) Rif1-CD (1-1350 amino acids) was analyzed. Analyzed proteins
are indicated above each graph. Exo1, Rif1 and Rif1-CD are Myc-tagged. Sgs1 and Rap1 are not tagged. (u–v) Preliminary models of interaction
between Rif1 and resection forks: (u) Rif1 associates with ssDNA accumulating behind resection forks; (v) DNA unwinding pushes Rif1 ahead of the
resection fork.
doi:10.1371/journal.pgen.1002417.g001

Rif1 Is an Anti-Checkpoint
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not sensitive enough for sub-telomeres or single gene loci, we used

the ultra-sensitive qPCR-based method QAOS [27–29] to test

whether a difference in ssDNA was responsible for the different

accumulation of RPA and checkpoint proteins in RIF1+ versus

rif1D cells. We found that this was clearly not the case. Unlike its

strong inhibitory effect on RPA and checkpoint proteins, Rif1 did

not significantly inhibit the accumulation of ssDNA in sub-

telomeres or single gene loci, because similar amounts were

detected in either rif1D or RIF1 cells at different time points during

7 h at 36uC or 27uC (Figure 3a–3e). Moreover, Rif1 did not affect

Figure 2. Rif1 inhibits the recruitment of checkpoint proteins and Rpa1 to sub-telomeres and single gene loci. Cdc13-1 cells with a
rif1D mutation (dark columns) or with wild-type RIF1 (light columns) were grown overnight at 21uC, followed by for 7 hours at 27uC or 36uC to induce
telomere uncapping. ChIP (%) was calculated as in Figure 1. Analyzed chromosome regions are indicated at the top of the figure. (a–h) The dynamics
of Rad9, Ddc1, Ddc2 and Rpa1 association with chromosome ends at 27uC. (i–t) The dynamics of Rad9, Ddc1, Ddc2 and Rpa1 association with
chromosome ends at 36uC. Each analyzed protein is indicated above the respective graph. Ddc1 is HA-tagged; Rpa1 and Ddc2 are YFP-tagged; Rad9
is not tagged. Time 0 temperature and error bars are as in Figure 1. (u) A model of Rif1-association with excised chromosome ends in a population of
cells. Vertical bars indicate regions analyzed in a–t.
doi:10.1371/journal.pgen.1002417.g002

Rif1 Is an Anti-Checkpoint
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Figure 3. Rif1 does not inhibit resection of sub-telomeres and single gene loci. (a–c) Quantification of ssDNA generated in cdc13-1 cells
with a rif1D mutation (dark circles) or with wild-type RIF1 (light squares) at 36uC at: (a) 1 kb, in sub-telomeres, (b) 8 kb, in YER188W and (c) 15 kb, in
YER186C. (d–e) As in a–b, except that the temperature was 27uC. We used QAOS (the Quantitative Amplification Of ssDNA) to detect ssDNA as in
[29,51]. (f–h) The dynamics of Sgs1 association with chromosome ends following telomere uncapping at 36uC, in cdc13-1 cells with a rif1D mutation
(dark columns) or with wild-type RIF1 (light columns) at: (f) 1 kb, in sub-telomeres, (g) 8 kb and (h) 15 kb. Time 0 temperature and error bars are as in
Figure 1. (i) A model of RPA and checkpoint proteins association with YER188W in rif1D (left) versus RIF1+ cells (right). Squares indicate chromosomal
regions detected by ChIP and QAOS. (j–k) The ssDNA tolerance threshold model: (j) When short ssDNA lesions are generated, Rif1 acts as a ‘‘band-aid’’
for these lesions, associating with DNA-junctions and the adjacent ssDNA and blocking access for RPA and checkpoint proteins. In consequence, cells
avoid spending energy to arrest and to re-start the cell cycle. (k) When longer ssDNA lesions are generated, they extend beyond Rif1-protected
regions. In consequence, the damage is detected, a checkpoint signal is fired and cells arrest the cell cycle.
doi:10.1371/journal.pgen.1002417.g003

Rif1 Is an Anti-Checkpoint
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the dynamics of the Sgs1 helicase on chromosome ends (Figure 3f–

3h). Therefore, the inhibitory Rif1-effect on checkpoint proteins

and RPA was not through inhibiting ssDNA formation.

In summary, several fold more RPA/checkpoint protein

associated with sub-telomeres and single gene regions in rif1D
versus RIF1 cells, despite the fact that very similar amounts of

ssDNA accumulated at those regions in rif1D and RIF1 cells

(Figure 3i). To our knowledge, this is the first report of a protein

inhibiting the recruitment of RPA and checkpoint proteins to a

chromosome region, without inhibiting resection or unwinding of

that region. Rif1 most likely occupies the DNA junction and the

adjacent DNA, thus blocking access for other proteins (e.g.

checkpoint and RPA) to these important DDR structures.

Through this effect, we propose that Rif1 sets the ssDNA

tolerance threshold, facilitating cell proliferation with lower

amounts of ssDNA (limited to regions protected by Rif1) or

permitting arrest, if ssDNA is more extensive (Figure 3j, 3k). We

tested this hypothesis by investigating the effect of Rif1 on cell

proliferation and checkpoint responses, discussed next.

Rif1 inhibits the checkpoint responses to ‘‘below-
threshold’’ ssDNA

To test whether Rif1 affects the ssDNA tolerance threshold, we

investigated how much ssDNA could rif1D cells tolerate without

arresting in G2/M, compared to RIF1+ cells. To generate low

amounts of ssDNA, we incubated cdc13-1 cells (+/- other relevant

mutations) at the permissive temperature of 25uC. To generate

more ssDNA, we incubated cdc13-1 cells at 27uC. Consistent with

the idea that Rif1 facilitates cell proliferation with low amounts of

ssDNA and also with some recent observations [26,30], a rif1D
mutation was incompatible with proliferation of cdc13-1 cells at

25uC (Figure 4a). In contrast, cdc13-1 cells with a C-terminal

truncated version of Rif1 (Rif1-CD) proliferated as well as those

with the wild type Rif1 (Figure 4a). This indicates that the

interaction between Rif1 and Rap1 (disrupted in the truncated

version) is not relevant for facilitating proliferation of telomere-

uncapped cells, consistent with our observation that Rif1-CD
continues to associate with DNA damage (Figure 1q–1t).

Since rif1D cdc13-1 cells had longer telomeres than cdc13-1 cells

(about 0.6 kb versus 0.3 kb), we asked whether their enhanced

temperature-sensitivity was somehow related to telomere length.

Therefore, we tested a rif2D mutant, which has also longer

telomeres [31]. In contrast to a rif1D mutation, a rif2D mutation

permitted cdc13-1 cells to proliferate at 25uC and even at 27uC.

Strikingly, deletion of RIF1 in cdc13-1 rif2D cells rendered them

unable to proliferate at 25uC (Figure 4a), indicating a dominant

effect for rif1D. Deletion of RAD24 and RAD9 checkpoint genes

partially rescued the proliferation of cdc13-1 rif1D cells (Figure 4a).

In conclusion, Rif1 is essential for proliferation of cdc13-1 and

cdc13-1 rif2D cells at 25uC and 27uC respectively, through a

mechanism independent of telomere length.

A recent report by Anbalagan et al attributed the increased

temperature-sensitivity of cdc13-1 rif1D cells to increased ssDNA in

the TG-rich telomeric repeats [26]. This interpretation is slightly

at odds with our findings that Rif1 did not affect ssDNA

accumulation at 0.6 kb distance from telomeres (in sub-telomeres)

or at more internal regions, at 27uC and 36uC (Figure 3). It implies

that Rif1 inhibits a very unusual resection activity that is restricted

to TG-telomeres or to temperatures around 25uC. However,

Anbalagan et al have not quantified and normalized the TG-

signals to the total amount of TG sequences. It is known that rif1D
cells have up to four times more TG sequences (longer telomeres)

than RIF1+ cells. Therefore, normalizing the TG-signals is

essential for determining whether stronger signals are caused by

more ssDNA, or merely by more TG-sequences per ssDNA

kilobase. To find out which one is true, we used similar techniques

and experimental conditions as in Anbalagan et al., except that we

quantified and normalized the original TG-ssDNA signals to the

total amount of TG repeats, used a previously described AC-rich

fluorescent probe [32], analyzed a cdc13-1 rif2D strain as control

for signals generated by longer TG-telomeres and tested an

additional temperature (27uC).

To determine whether Rif1 affects telomere resection at 25uC,

we needed to compare ssDNA accumulation in cells expected to

arrest proliferation in G2/M (cdc13-1 rif1D) versus cells expected to

divide (cdc13-1 +/-rif2D). However, ssDNA lesions at cdc13-1

uncapped telomeres are generated almost exclusively in the G2/M

phase [33]. Moreover, DNA replication factors would most likely

repair (re-synthesize) some of the lesions during S-phase, if cells

could proliferate. Therefore, nocodazole was used to arrest all

strains in G2/M, thus permitting comparison between their

resection rates based upon genetic differences, rather than cell

cycle differences. Over-night cultures at 20uC were incubated with

nocodazole for 2 h and then shifted to 25uC or to 27uC for 3 h.

The signals given by TG-ssDNA (e.g. ssDNA hybridized with an

AC-rich probe) at native and denatured chromosome ends are

shown in Figure 4b and 4d, respectively. The TG-ssDNA signals

normalized to the total amount of TG repeats are presented in

Figure 4e.

In these experiments, the wild type and rif1D controls

accumulated only about 1% TG-ssDNA, whereas strains with

mutations in the telomere-capping proteins Cdc13 or Yku70

accumulated more ssDNA. However, we found similar fractions of

ssDNA at telomeres of cdc13-1 and cdc13-1 rif1D cells: about 4% at

20–25uC and 7–8% at 27uC (Figure 4e). The error bars (the

standard deviation between measurements from two different

experiments) are also overlapping. This shows that Rif1 does not

significantly affect resection of telomeres, consistent with similar

results we obtained at other chromosome regions and tempera-

tures using QAOS (Figure 3 and Figure 4). In contrast, ssDNA was

two-fold lower in cdc13-1 rif2D versus cdc13-1 cells at any tested

temperature (Figure 4e). Together, these data suggest that Rif1

and Rif2 have different effects: Rif1 does not affect resection,

whereas Rif2 somehow facilitates resection at telomeres.

Interestingly, strains able (cdc13-1 and yku70D) or unable (cdc13-

1 rif1D) to proliferate at 25uC had similar fractions of telomeric

TG-ssDNA (about 4%) at this temperature (Figure 4e). Moreover,

cdc13-1 rif1D cells had similar fractions of telomeric ssDNA at

permissive (20uC) and restrictive (25uC) temperatures (Figure 4e).

These data indicate that resection of TG-telomeres does not

correlate with cell cycle arrest. Therefore, we tested whether

progression of ssDNA to sub-telomeres correlated with G2/M

arrest. We incubated cdc13-1 strains (+/- other relevant mutations)

at 25uC and 27uC, without nocodazole. We found that about 2%

ssDNA accumulated in RIF1+ cells at 25uC (Figure 4f), however

most cells continued to cycle (Figure 4g) and did not activate the

Rad53Chk2 checkpoint kinase (Figure 4j) or the Ddc2ATRIP

checkpoint protein (Figure 4k). At 27uC, about 6–10% ssDNA

was detected in sub-telomeres when over 75% RIF1+ cells

accumulated in G2/M (Figure 4f–4g). These data suggest that

the majority of RIF1+ cells arrest proliferation in response to about

6–10% sub-telomeric ssDNA, whereas they tolerate 2% sub-

telomeric ssDNA without activating a checkpoint response.

In contrast, rif1D cells responded to about 2% sub-telomeric

ssDNA at 25uC by accumulating in G2/M as fast as they did in

response to higher ssDNA levels at 27uC (Figure 4h–4i). A 2% sub-

telomeric ssDNA corresponds roughly to one chromosome end per

cell being resected as far as 1 kb. Another 1–2 telomeres are also

Rif1 Is an Anti-Checkpoint
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Figure 4. Rif1 inhibits the checkpoint responses to telomere uncapping in cdc13-1 cells. (a) Growth of serial dilution of cdc13-1 cells with or
without additional mutations (indicated at the right of each row) at different temperatures, indicated above each plate. (b–e) Over-night cultures at
20uC were incubated with nocodazole for 2 h and then shifted to 25uC or to 27uC for 3 h. DNA was digested and hybridized with a CA-rich probe. (b)
TG signals at native (non-denatured) telomeres. Numbers at the top of each lane correspond to different mutants, revealed in c. (c) Legend for b, d,
and e indicating relevant mutations. (d) TG signals at denatured telomeres. (e) The percentage of ssDNA represents the fraction of native TG-ssDNA
normalized to the total of TG sequences in each denatured sample. Error bars represent the standard deviation between measurements from two
independent experiments. (f–g) The ssDNA was quantified by QAOS and the G2/M fraction counted by microscopy in cdc13-1 RIF1+ cells incubated
for 240 min at 25uC (white circles) or 27uC (black circles). (h–i) As in f–g, except that cells were cdc13-1 rif1D at 25uC (white triangles) or 27uC (black
triangles). (j) Rad53 activation detected by western blotting in cdc13-1 cells with wild type RIF1 (left) or with a rif1D mutation (right), incubated at
25uC, (except for the time 0 when the temperature was 21uC). (k) As in (j), except that the Ddc2 activation was detected.
doi:10.1371/journal.pgen.1002417.g004

Rif1 Is an Anti-Checkpoint
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likely to be single-stranded (since 4% ssDNA was detected in

telomeres, Figure 4e), bringing the estimated total ssDNA to about

2 kb per cell. This is below the 10 kb ssDNA threshold predicted to

activate checkpoints [10,34]. These data indicate that Rif1

regulates the threshold for checkpoint activation in response to

ssDNA, thus permitting proliferation with DNA damage.

High level of Rif1 expression mimics a checkpoint
knockout

If Rif1 is a major ssDNA threshold-setter, then this threshold

may increase with increased Rif1 expression. To test this

hypothesis, we over-expressed RIF1 from the GAL1 promoter,

induced by galactose. We found that Rif1 over-expression

permitted cdc13-1 GAL-RIF1 cells to proliferate at 27uC and even

at 29uC, similarly to the effect of a rad24D or a rad17D mutation

(Figure 5a). Rad24Rad17 and Rad17Rad9 are checkpoint proteins,

essential to arrest the cell cycle of telomere-damaged cdc13-1 cells

[25]. Thus, Rif1 over-expression has the same effect as a

checkpoint knockout, eliminating cell cycle arrest.

Interestingly, the over-expression of the C-terminal truncated

variant RIF1-CD had additional effects on proliferation of cdc13-1

cells, increasing their temperature-resistance even further, to 30uC
(Figure 5b). However, cdc13-1 GAL-RIF1-CD proliferated slower

than cdc13-1 GAL-RIF1 on galactose (compare their growth at

27uC, Figure 5b). One hypothesis explaining these apparently

paradoxical effects could be that an excess of RIF1-CD slows down

DNA replication, which in turn allows more time for DNA

replication factors to repair (re-synthesize) some of the ssDNA

lesions at uncapped telomeres. Therefore, cells divide slower, but

tolerate DNA damage better. Although we have not investigated

the effects of over-expressing RIF1-CD any further, such mutants

may be useful to determine whether Rif1 plays a role in other

cellular processes like DNA replication.

Induction of Rif1 can terminate a checkpoint response
Another plausible consequence of the anti-checkpoint effect

could be that Rif1 is able to terminate a checkpoint response

when induced in cells that have already accumulated DNA

damage. To test this hypothesis, we grew cdc13-1 GAL-RIF1 cells

on raffinose at 27uC, to induce DNA damage and cell cycle arrest

(Figure 5c). Then, we added either dextrose or galactose to the

cultures. We found that with time, increasingly large fractions of

GAL-RIF1 cells escaped from arrest in galactose, but not in

dextrose (Figure 5c). Since galactose stimulates expression of Rif1,

whereas dextrose inhibits it, this indicates that Rif1 over-

expression abolishes a cell cycle arrest. Escape from arrest was

confirmed by a progressive reduction in the active form of

Rad53Chk2 (Figure 5d). In conclusion, (over-expressed) Rif1 was

able to terminate a checkpoint-dependent arrest caused by a

telomere uncapping.

Figure 5. Rif1 over-expression simulates a checkpoint knockout; Rif1-induction terminates a checkpoint response. (a) Growth of serial
dilution of wild type (first row, marked as CDC13) and cdc13-1 cells with RIF1 under its own promoter (second row) or under the GAL1 promoter (third
row) or with additional mutations (indicated on the right of each row). (b) Growth of serial dilutions of cdc13-1 cells with RIF1 under its own promoter
(first row); with RIF1 under the GAL1 promoter (second row); with the truncated RIF1-CD version under the GAL1 promoter. Temperatures and sugars
in the medium are indicated above each plate: DEX stands for dextrose, GAL for galactose. (c) A culture of cdc13-1 GAL1-GFP-RIF1 cells was grown on
raffinose (RAF) for 160 min at 27uC, then divided in two sub-cultures and either dextrose or galactose added; white squares represent the percentage
of G2/M cells on RAF; triangles on DEX; black rombi on GAL. (d) Western blotting with anti-GFP to detect expression of GFP-Rif1 (lane 1) or with anti-
Rad53 (lane 2) in samples collected during the experiment described in c.
doi:10.1371/journal.pgen.1002417.g005
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The fact that over-expressed Rif1 inhibited the recruitment and

activation of checkpoint proteins to the point it emulated a

checkpoint knockout is consistent with the model presented in

Figure 3j–3k, in which Rif1 out-competes the checkpoint proteins

for their substrate. The fact that several hours after its induction,

Rif1 was able to terminate a checkpoint arrest in a large fraction of

cells, suggests that Rif1 took advantage of the turnover of RPA/

checkpoint proteins on DNA damage to occupy their substrate of

detection. Additionally, we suggest that Rif1 could be recruiting

phosphatases to the DNA damage, to de-activate checkpoint

proteins. Consistent with this hypothesis, Rif1 interacts physically

with four different phosphatases: Glc7, Cdc14, Ptp1 and Psr2 [35].

Future studies will determine whether phosphatases are required

for the Rif1-effect. In conclusion, Rif1 has an anti-checkpoint,

anti-RPA effect at natural, but dysfunctional chromosome ends.

This raises the question of whether Rif1 has similar effects at the

ends of a double strand break (DSB).

Rif1 does not associate with an HO-DSB
A DSB poses an immediate threat to the viability of cells; in

response to a DSB, cells arrest proliferation within one single cell

cycle [36,37]. Therefore, it is perhaps unlikely that checkpoint

inhibitors would be acting at a DSB. To test this hypothesis, we

induced the HO nuclease to cut a DSB (at a locus where it could

not be repaired by homologous recombination) as previously

described [7] and compared the recruitment of RPA and

Ddc2ATRIP in RIF1+ versus rif1D strains. We found that Rif1

did not significantly affect the association of RPA or Ddc2ATRIP

with chromosomal DNA at 0.2–2 kb distance from the DSB

(Figure 6a–6d). We investigated the reasons behind this lack of

effect and found that Rif1 was not significantly recruited to a DSB

(Figure 6e–6f). This result reinforces the idea that Rif1 has to

associate with DNA damage, in order to inhibit RPA/checkpoint

proteins.

Discussion

Our study indicates that Rif1 has a novel anti-RPA, anti-

checkpoint effect. This effect manifested through less RPA and

checkpoint protein recruited in RIF1+ versus rif1D cells to DNA

damage (ssDNA) caused by telomere uncapping. Normal expres-

sion of Rif1 prevented a checkpoint-dependent cell cycle arrest in

response to relatively low levels of ssDNA (estimated at 2–10 kb

ssDNA per cell), whereas Rif1 over-expression prevented/abrogat-

ed a cell cycle arrest in cells with higher levels of ssDNA, similarly

to the effect of a checkpoint knockout. Therefore, we proposed

that Rif1 has a physiological role in regulating the checkpoint

activation threshold in response to ssDNA; our model is presented

in Figure 3i–3k.

We also investigated the mechanism(s) by which Rif1 inhibits

checkpoint proteins/RPA and found that: 1) Rif1 did not

significantly affect the amount of ssDNA at any chromosomal

region (Figure 3, Figure 4); 2) Rif1 did not affect the amount of

checkpoint protein in cells (Figure S1); 3) Rif1 inhibited the

recruitment of checkpoint proteins/RPA when Rif1 associated

with their DNA substrate (Figure 1, Figure 2, Figure 3).

Conversely, Rif1 had no effect on checkpoint proteins/RPA,

when Rif1 did not associate with their DNA substrate (Figure 6).

These data strongly suggest that Rif1 inhibits the recruitment of

checkpoint proteins/RPA to DNA damage through a competitive

inhibition mechanism. Clues about the conditions required for

Rif1 to out-compete RPA and checkpoint protein could be found

in the different behavior of Rif1 at chromosome ends versus

internal double strand breaks, discussed next.

Figure 6. Rif1 does not associate with an HO-induced DSB. Strains were grown overnight on raffinose; galactose was added to the
medium at time 0 and samples collected every 2 hours. Galactose induces GAL-HO-nuclease to cut an unique DSB at the MATa locus [7].
Although a DSB is usually repaired by recombination, recombination was prevented in JKM139-derived strains by deletion of the donor locus [7]. (a–
b) Chromatin immuno-precipitation experiments indicating the association of RPA and Ddc2 with chromatin at 0.2 kb right from the DSB, in RIF1+
(white columns) and rif1D (grey columns) JKM139-derived strains. (c–d) As in a–b, except that the association of RPA and Ddc2 with chromatin at 2 kb
right from the DSB was analyzed. e) Chromatin immuno-precipitation with Myc antibody in the Rif1-Myc JKM139-derived strain. Legend indicates the
time in galactose. The numbers on the X-axis indicate the location of the DSB (marked as 0) and the distance from the DSB (in kilobases). (f) As in (e),
except that immuno-precipitation with Myc antibody was performed in the untagged JKM139 strain.
doi:10.1371/journal.pgen.1002417.g006
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Several hypotheses could explain the absence of Rif1 from an

internal DSB: 1) Putative recruiters of Rif1 are missing from a

DSB; 2) Rif1 is out-competed by other proteins. 3) Rif1 associates

only with DNA damage initiated from telomeres. Although we

have not pursued these hypotheses, our favourite is the second

one. This is because a recent study showed that the majority of

Rif1 is bound to the nuclear membrane [38], the place where

telomeres are usually anchored. Therefore, we propose that Rif1

can efficiently out-compete other proteins for damages occurring

near regions with abundant Rif1 (e.g. close to the nuclear

periphery and/or to telomeric or sub-telomeric sequences).

Conversely, Rif1 is usually out-competed at DNA damage

occurring further from Rif1 anchor sites. Protein(s) preventing

Rif1 from binding an internal DSB may also prevent checkpoint

proteins from detecting lower amounts of ssDNA (caused by

incipient resection/unwinding of the DSB), thus setting a Rif1-

independent checkpoint-activation threshold. These do exclude

the possibility that Rif1 may associate with internal DSBs under

certain conditions, which remain to be investigated.

The association of Rif1 with chromatin within 15 kb from

chromosome ends was demonstrated by chromatin immuno-

precipitation in experiments presented in Figure 1. Interestingly,

we found that Rif1 associated with DNA damage differently from

Rap1 and that Rif1 also associated in the absence of its C-terminal

Rap1-binding domain (Figure 1). If Rap1 was not required,

perhaps other proteins facilitated the recruitment of Rif1 to DNA

damage. Similarly to Rif1, a putative recruiter should associate

with DNA-junctions and/or resection forks. Among candidates

with these characteristics are the Rad24Rad17 checkpoint clamp

loader and the Sgs1 helicase. Rad24Rad17 recruits Ddc1Rad9 (a

protein investigated in Figure 2) as part of the 9-1-1 complex. If

Rif1 has high affinity for Rad24Rad17, it will competitively inhibit

Ddc1Rad9/9-1-1, thus providing an alternative explanation for

some of the anti-checkpoint Rif1-effects. However, we found no

evidence that Rad24Rad17 or Sgs1 are recruiting Rif1 (Figure S1,

discussed in Text S1). The fact that Rif1 had a much stronger

effect when over-expressed (without the need to over-express a

potential recruiter) may suggest that Rif1 does not require a

recruiter to DNA damage.

Previous studies suggested that Rif1 and Rif2 inhibit telomerase

[31,39,40], an enzyme that requires a short ssDNA overhang and

the activities of MRX and Tel1 to load onto DNA [41,42]. Since

Rif2 was found to inhibit an MRX-dependent DNA resection and

the association of Tel1 with DNA damage [43,44], this might

explain how Rif2 inhibits telomerase. However, it cannot explain

why Rif1 is a stronger telomerase-inhibitor than Rif2 (rif1D have

longer telomeres than rif2D cells), since Rif1 has a much weaker

effect on MRX/Tel1 compared to Rif2 [43,44]. Our study shows

that Rif1 associates with ssDNA overhangs at uncapped telomeres

and protects them from RPA and checkpoint proteins. Similarly,

Rif1 may associate with ssDNA overhangs generated during S-

phase at normal telomeres and hide them from telomerase.

Although a molecular function for Rif1 is yet to be established in

higher organisms, our study suggests conserved functions from

yeast to man. We found that yeast Rif1 facilitates proliferation of

cells with dysfunctional telomeres; other studies showed that

mammalian Rif1 may facilitate the proliferation/viability of cells

damaged by DNA polymerase inhibitors or ionizing radiation

[2,21,45,46]. We found that yeast Rif1 appears to move with

resection forks driven by the Sgs1 helicase [18]; other studies

showed that vertebrate Rif1 associates with the Sgs1-homologue,

the BLM helicase, at replication forks [47]. Whether Rif1 and

Sgs1 are acting in the same pathway is discussed in Text S1,

Figure S1.

In conclusion, Rif1 has important and most likely conserved

roles, inhibiting the checkpoint-dependent responses to DNA

damage (ssDNA accumulation). Consequently, Rif1 permits cells

to proliferate with DNA damage, which is a pre-requisite for

chromosomal instability. Moreover, Rif1 is the first protein shown

to inhibit the recruitment of RPA to ssDNA; through this effect,

Rif1 could modulate important RPA-dependent processes, for

example DNA replication. Further experiments will be required to

understand all the consequences of the Rif1-effect in yeast and

mammalian cells.

Methods

Yeast strains
All strains are derivates of W303 and are RAD5+. The cdc13-1

rif1D and cdc13-1 rif2D strains were generated by transformation of

DLY1230 with PCR products using pFA6a-kanMX6 as a

template [48]. RIF1-MYC strains were generated in the same

way, using pFA6a-13Myc-KanMX6 as a template [48]. The last

1695 nt of the RIF1 gene were deleted to generate strains with a

Rif1 C-terminus deletion (Rif1-CD). To over-express Rif1, we

replaced the 0.5 kb genomic DNA upstream of the ATG of RIF1

with the GAL1 promoter, using pFA6a-kanMX6-PGAL1 and

pFA6a-kanMX6-pGAL1-GFP as templates [48]. Other strains were

obtained by genetic crosses between cdc13-1 rif1D and the

following strains: HA2-DDC1 (YLL334 [49] and DDC2-YFP

RFA1-CFP (W3924-11B [50]).

Cell culture, serial dilution, and cell cycle analysis
The YPD medium (Yeast extract, Peptone, and Dextrose) was

supplemented with adenine at 50 mg/l. For experiments testing

the maximum permissive temperature, cells grown overnight at

20uC were diluted to about 1.56107 cells/ml, followed by 5-fold

dilution series set up in 96-well plates. Small aliquots were

transferred to YPD plates using metal prongs. Plates were

incubated for 2.5 days at the indicated temperature. For Rif1

over-expression experiments, cells were grown in YPR medium

(YP with 2% raffinose), followed by a 5-fold dilution series and

transfer to YPD or to YPG plates (YP with 2% galactose). Cell

cycle analysis was performed by fluorescent microscopy, after

staining samples with DAPI and sonicating them, to separate

individual cells. Following fractions were counted: cells without

buds (in the G1 phase), with small buds (in the S-phase), with large

anucleated buds (at the G2/M transition) or with nucleated buds

(in anaphase/telophase). Wild type cells are equally distributed

between these stages of the cell cycle, if growing exponentially.

Single-stranded DNA (ssDNA) measurements
Single-stranded DNA (ssDNA) measurements at sub-telomeric

and single gene loci were performed by QAOS as previously

described, except that we used asynchronous populations of cells

cultivated at the indicated temperatures [29,51]. Genomic DNA

was extracted, purified and quantified at a centromere-proximal

location (PAC2). SsDNA was quantified by QAOS within the Y9

sub-telomeric repeats (at about 1 kb from chromosome ends) and

at the following single gene loci from the right arm of chromosome

V: YER188W, YER186C and PAC2. Taqman primers and probes

used for QAOS were previously described in [29,51]. Single-

stranded DNA measurements in the TG-telomeric repeats were

performed using the fluorescent in-gel hybridization assay (FIGA)

described in [32], with modifications (described next). Phenol-

extracted DNA samples were diluted to about 800 ng/ml, digested

with Xho1 and hybridized over night with a CA-rich fluorescent

59 [CY5]CCCACCACACACACCCACACCC probe (Sigma). In
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the morning, a fraction of the digested and labelled DNA was

denatured for 2 min at 100uC in a total volume of 30 ml and then

chilled on ice for 1 h. This denaturing time is optimized for DNA

up to 8 mg. DNA was exposed to gel electrophoresis to separate

telomeric fragments and then scanned using a Typhoon Trio

imager (GE Healthcare Fluorescent). Denatured and native DNA

samples were scanned simultaneously, to ensure identical param-

eters/conditions of detection (leading to more realistic results

following normalization of native to denatured DNA signals). The

intensity of the signal in each sample was quantified on the original

image generated by the Typhoon Trio imager, using the ImageJ

(NIH) software. The percentage of ssDNA was calculated as the

signal given by native telomeres (minus the immediately adjacent

background) normalized to the signal given by denatured

telomeres (minus the immediately adjacent background) and

multiplied by 100. Additionally, DNA was stained with SYBR Safe

for informative purposes.

Protein extraction and western blotting
Protein extracts were prepared by a trichloroacetic acid (TCA)

method described in [52]. For western blotting, proteins were

separated on SDS-PAGE and transferred to nitrocellulose

membranes (GE healthcare). Membranes were blocked in 5%

TBST, incubated with antibodies and analyzed by LAS-3000

(Fujifilm). We used the following antibodies: mouse monoclonal

anti-Myc (sc-40, Santa Cruz), mouse monoclonal anti-GFP

(11814460001, Roche), rat monoclonal anti-HA (11867423001,

Roche) and goat polyclonal anti-Rad53 (sc-6749, Santa Cruz),

anti-Sgs1 (sc-11993, Santa Cruz). Secondary antibodies included

rabbit anti-mouse (ab6728, Abcam), donkey anti-goat (sc-2020,

Santa Cruz) and rabbit anti-rat (ab6734, Abcam).

Chromatin immuno-precipitation (ChIP)
Chromatin immuno-precipitation (ChIP) was carried out by

standard methods [53,54].The association of Rif1-MYC, Ddc1-

HA, Ddc2-YFP, Rpa1-CFP and Rif1-HA with chromatin was

detected using antibodies (described above) directed against the

respective tags; YFP and CFP were detected with anti-GFP

antibodies. The association of Rad9 and Rap1 was detected with

anti-Rap1 (sc-6663, Santa Cruz) and anti-Rad9 (sc-50442, Santa

Cruz) antibodies, tested for their specificity by western blotting.

RPA was also detected with specific antibodies PAB13584

(Abnova). Additionally, cells were treated with anti-goat antibodies

(sc-2033, Santa Cruz) to assess the background cross-linking. For

each time point, the background normalized to the input was

subtracted from the immuno-precipitated DNA, also normalized

to the input. Input, immuno-precipitated DNA and background

were quantified by real-time PCR (StepOne Plus, Applied

Biosystems) using genomic DNA standards.

Supporting Information

Figure S1 (a-b) Rad24 and Sgs1 do not affect the association of

Rif1 with DNA damage; (c) Sgs1 and Rif1 affect proliferation of

cdc13-1 cells differently; (d) Rif1 does not affect the amount of

checkpoint proteins in cells. (a–b) Association of Rif1 and RPA

with YER188W in cdc13-1, cdc13-1 rad24D and cdc13-1 sgs1D
strains, after 5 h incubation at 36uC. The reduced Rif1-association

in cdc13-1 rad24D and cdc13-1 sgs1D versus cdc13-1 strains in (a)

corresponds to reduced RPA-association in (b), therefore it can be

explained by reduced DNA damage. (c) Growth of serial dilution

of cdc13-1 cells with or without additional mutations (indicated at

the right of each row) at different temperatures, indicated above

each plate. (d) Western blot detection of checkpoint proteins

(indicated on the right) in cdc13-1 RIF1+ cells (left half of the

picture) and cdc13-1 rif1D cells (right half). Cells were grown at

21uC (time 0) and then incubated for 160 min at 27uC; samples

were collected every 20–40 min.

(EPS)

Text S1 Genetic interactions between RIF1 and SGS1 during

telomere uncapping.
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