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Abstract

DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates
are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation
content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG
methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG)
dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation
maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly
present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic
cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation
patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation
between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels
while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with
these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG
methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these
results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative
sample set.
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Introduction

DNA methylation as a regulatory epigenetic mechanism is a

widespread phenomenon [1]. In vertebrates, the CpG dinucle-

otide is the predominant target for methylation. However, several

murine studies have shown the presence of non-CpG methylation

in ES cells [2] and early embryos [3], but its near complete

absence in somatic tissues [4]. In contrast plants exhibit frequent

non-CpG (CpNpG and CpHpH) methylation and have estab-

lished mechanisms to propagate CpNpG and asymmetric

CpHpH methylation marks. These differences between plants

and mammals can partly be attributed to the presence of distinct

methyltransferases. While A. Thaliana possess specific DNA

MethylTransferase (DNMT) classes that exhibit a strong

sequence preference for either CpG dinucleotides or CpHpG

trinucleotides, mammalian cells lack the latter class of Chromo-

methylase DNA methyltransferases [5]. Instead, there are only

three mammalian DNA methyltransferases exhibiting significant

catalytic activity on DNA [6]. These enzymes show a strong

preference for CpG dinucleotides. However, the murine de novo

methyltransferases Dnmt3a and Dnmt3b also facilitate methyla-

tion of cytosines in non-CpG context at a rate 40–500 fold below

the CpG levels [2,6]. Ectopic expression of murine Dnmt3a in D.

melanogaster suggested that this enzyme is capable of de novo

methylation that includes also non-CpG targets [2]. In line with

these studies, it has been shown that mES cells exhibit detectable

levels of non-CpG methylation and express Dnmt3a and Dntm3b

at higher levels than most somatic cell types [2,7]. A role for

Dnmt3a or Dnmt3b in establishing non-CpG methylation is

further supported by studies of Dnmt3a and 3b double knockout

mES cells that at early passages showed dramatic reduction in

non-CpG, but not CpG, methylation levels globally and in newly

integrated retroviruses [7,8]. In contrast, Dnmt1 KO mES cells

exhibit dramatic loss of CpG methylation while non-CpG

methylation levels were not affected [2]. Therefore the involve-

ment of DNMT1 in the establishment or maintenance of non-
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CpG methylation seems limited. In line with the murine findings,

three studies involving whole genome bisulfite sequencing of

human embryonic stem cells (hESCs) and fibroblasts reported

significant levels of non-CpG methylation in stem cells [9–11]

amounting to approximately 25% of all methylated cytosines.

When calculated against all non-CpG dinucleotides, this

corresponds to an average non-CpG methylation of 1.3%

compared to 55–80% for CpG methylation [9,10]. In addition,

a dramatic reduction of non-CpG methylation frequency in two

somatic cell types, fibroblasts and monocytes, was reported

suggesting the confinement of this phenomenon to the pluripotent

state. A recent study reported several megabase regions that failed

to reestablish non-CpG methylation patterns in human induced

pluripotent stem cells (iPSCs) [11]. However, given the limited

murine studies and the still small number of available human

pluripotent cell methylomes, it remains unclear what the extent,

relevance and inter-sample variation of non-CpG methylation is.

To systematically address these questions, we analyzed cytosine

methylation in a number of published data sets [12] in

combination with 30 new, unpublished genome-scale DNA

methylation maps (Table S1). This large pool of samples enabled

us to characterize non-CpG methylation in a total of 76 data sets

from pluripotent (ES and iPS), pluripotent cell derived and

somatic cells. These results show non-CpG methylation – contrary

to CpG methylation - to be a highly variable and rare

phenomenon. While CpA methylation is by far the dominant

form of non-CpG methylation in pluripotent cell types, non-CpG

methylation in the somatic cells that we investigated is approx-

imately equally distributed at background levels among CpA, CpT

and CpC. We show that this decrease of non-CpG methylation

occurs relatively early upon initiation of differentiation coinciding

with the down-regulation of DNMT3A and DNMT3B gene

expression. Our bioinformatics results suggest that DNMT3,

rather than pluripotency gene expression levels are highly

predictive of non-CpG methylation levels. In further support of

this, we demonstrate that stable knockdown of the de novo DNMTs

leads to a global reduction in non-CpG methylation with no effect

apparent effect on pluripotency gene expression. On the sequence

level we observe CpA methylation to be highly correlated with the

presence of methylated CpGs in close vicinity. Our findings

provide a more comprehensive understanding of the so far sparsely

characterized non-CpG methylation.

Results

Efficient detection of non-CpG methylation by Reduced
Representation Bisulfite Sequencing (RRBS)

The most comprehensive maps of non-CpG methylation in

human cells to date have been generated using whole genome

bisulfite sequencing [9,10,13]. Like methylC-seq [9,10,13] RRBS

is based on bisulfite conversion and capable of detecting CpG and

non-CpG methylation (Figure 1A). However, due to its design to

enrich for CpG rich regions, we first wanted to assess our method’s

ability to measure non-CpG methylation in a representative

fashion. Using a standard 36 bp single-end sequencing protocol,

RRBS enables the investigation of around 3.4 million (6.1% of all)

CpG dinucleotides and about 11.5 million (1.03% of all) non-CpG

dinucleotides when employing a size selection of 40–260 bp

(Figure 1B; Table S1). The RRBS protocol applies the

methylation-insensitive restriction enzyme MspI and thus is by

design biased towards CpG richer regions in the genome

(Figure 1C) while still providing representative coverage of many

key genomic features (Figure S1A). For the other three

dinucleotide combinations, there is either no detectable bias

(CpA, CpT) or a 2-fold enrichment (CpC) (Figure 1C). Compar-

ative analysis of previously published whole genome bisulfite

sequencing data [9] and our RRBS data for the hESC line H1

demonstrates that the overlap of CpGs that are contained in both

data sets and designated methylated is substantial (Figure 1D, top).

In addition, a significant fraction of methylated non-CpGs

reported earlier [14] are also captured using RRBS (Figure 1D,

bottom). Methylated non-CpGs in the whole methylome and

RRBS data from the same DNA (H1 p25 [14]) exhibit an overlap

of approximately 32% (p,2.2e-16 Fisher exact test, Figure 1D).

Notably, this observation is in line with the overlap of non-CpG

methylation between the two whole methylome replicates

previously reported [9]. In order to further validate the capacity

of RRBS to capture non-CpG methylation, we compared the

spatial distribution of CpG and CpA methylation levels across key

genomic features to whole genome bisulfite sequencing (WGBS)

data for hESCs generated in our laboratory. This comparison

provides additional evidence that RRBS is capable of recapitulat-

ing genome-wide methylation trends in CpG and non-CpG

methylation (Figure S1D). Finally, we confirmed our observations

of elevated CpA methylation levels in our RRBS data by locus-

specific bisulfite sequencing (Figure S2). Taken together, these

results demonstrate that RRBS is suitable to accurately capture a

small, but representative fraction of non-CpGs throughout the

genome.

Non-CpG methylation is predominately found in
pluripotent cells

We have selected 70 RRBS data sets of pluripotent and

differentiated cells for our initial analysis. This data set comprises

32 distinct pluripotent lines (20 ESC and 12 iPSC lines; 42 samples

in total that include different passage numbers of the same lines)

and 20 distinct differentiated samples. These include 10 ESC or

iPSC derived embryoid bodies (EB) and 10 somatic cell types or

tissues (Table 1 and Table S1), adding up to n = 52 distinct cell or

tissue types and 70 samples in total. A detailed summary of all the

samples, their bisulfite conversion rates and which data sets have

been previously published is provided in Table S1 (all data are

publically available through the NIH Roadmap Epigenomics

Project: http://www.roadmapepigenomics.org/).

Starting with the H1 (passage 25) ESCs [14], we found that

among the three possible non-CpG dinucleotides (CpA, CpT and

CpC) that CpA methylation is the most frequent (,12%), followed

Author Summary

Epigenetic modifications including DNA methylation at the
position 5 of the cytosine base provide regulatory
information to the genome sequence. The primary target
of cytosine methylation in mammals is the CpG dinucle-
otide. However, previous studies in the mouse and more
recent work in humans have highlighted the presence of
non-CpG methylation in pluripotent cells. Currently, little is
known about the role of this type of DNA methylation. We
sought to further characterize non-CpG methylation by
employing a comprehensive data set of genome-scale
methylation maps across various human cell types. Our
analysis reveals that non-CpG methylation varies dramat-
ically between pluripotent cells and is closely linked to
CpG methylation. Moreover, we show that depletion of the
de novo DNA methyltransferases results in a global
reduction of non-CpG methylation levels. Taken together,
these findings further advance our understanding of
cytosine methylation and describe its distribution among
a large number of human cell types.

Distribution and Variance of Non-CpG Methylation
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by CpT (,2.6%) and CpC (1.2%) methylation (Figure 1E). These

ratios are consistent with previous non-bisulfite based reports in

the mouse [2,8]. To investigate this further we picked six different

passages of the H1 ESCs and calculated the methylation levels of

the four dinucleotides (Figure 1F). As before, most CpGs are

methylated, while CpA shows substantially lower levels followed

by CpT and CpC. The total number of CpT sites that show above

threshold methylation levels (see Materials and Methods) in any

one of the H1 samples is only 101,600. CpC methylation occurred

at an even lower frequency than CpT methylation, constituting

only 13,213 sites across the six H1 samples (Figure 1F).

Furthermore, CpC methylation levels were also not correlated

across multiple samples (Figure S3A), suggesting that the majority

of CpC methylation more likely to be an artifact of bisulfite

conversion. We next compared the levels among all 70 data sets

and found that consistent with previous studies, we observe a

dramatic decrease of non-CpG methylation in somatic cell types

(Figures 1G, 1H). In contrast to pluripotent cells, most of the

somatic cell types included in this study show almost complete

absence of non-CpG methylation. Some, but not all, day 16 EBs

retain slightly higher, though clearly reduced non-CpG methyl-

ation levels (Figure 1G). In pluripotent cells (n = 42), cytosines in

the non-CpG contexts on average constituted 12.7% to all

methylated cytosines. Though slightly lower this number is overall

consistent with previous reports using whole methylome data

[9,10]. The differences might be attributed to the fact that RRBS

enriches for CpG dense regions including CG islands (which are

mostly unmethylated) or alternatively could be caused by differing

conversion rates between the previous studies and our data sets

here.. On average, across all our pluripotent cell lines, approxi-

mately 9.3% of all methylated cytosines occur in the CpA context,

corresponding to approximately 6.8% of all CpAs covered

(Figure 1G). In contrast, more than 85% of methylated cytosines

occur in the CpG contexts indicating that about 68.1% of covered

CpGs are methylated (Figure 1G).

To better understand the dynamics as well as the sensitivity of

RRBS to detect these changes, we investigated the reduction of

non-CpG methylation in ESC/iPSC derived EBs (n = 10) and

Figure 1. Global distribution of CpG and non-CpG methylation in human cell types. (A) Schematic of RRBS data visualization and a
selected 36 bp read. Blue lines indicate covered cytosines (CpN), black lines MspI restriction sites (middle). One selected RRBS read in this region is
shown (bottom). Red circles indicate CpGs, light red boxes CpTs, dark red boxes CpAs and yellow boxes CpCs. Filled circles and boxes indicate
dinucleotides with detectable levels of methylation. The percent below indicate the methylation levels by averaging the methylation state of a given
cytosine over all reads that cover its position. (B) Venn diagrams show the theoretical RRBS coverage compared to the whole genome for CpGs (top)
and non-CpGs (bottom) based on a 40–260 bp size selection. (C) Enrichment of cytosine dinucleotide frequency for RRBS relative to the whole
genome. (D) Venn diagrams show the overlap of methylated CpGs (top) as well as methylated non-CpGs (bottom) exhibiting above threshold ($10%
and $5%) methylation in the whole methylome (WM) data by Lister et al. 2009 and our RRBS data for the same cell line and passage. Only those
dinucleotides were considered that were covered in both data sets simultaneously by at least 5 reads. Numbers below the venn diagrams indicate
overlap of both dinucleotide sets. (E) Pie chart of sequence context distribution of methylated cytosines in the human ESC line H1 (passage 25) and
human fibroblasts 18 (passage 7). (F) Boxplots of the methylation levels as assessed by RRBS across six biological replicates of hESC line H1. Boxplots
are based on all cytosine dinucleotides that show any evidence for methylation in H1 (median methylation $0.1% over all six replicates). Boxes are
25th and 75th quartiles, whiskers indicate most extreme data point less than 1.5 interquartile range from box and black bar represents the median. n
indicates the number of dinucleotides covered in all and methylated in at least one of the six samples. (G) Distribution of methylated ($10%) cytosine
dinucleotides in human ES cells (ES, n = 30), iPS cells (n = 12), embryoid bodies (EB, n = 10) and 10 somatic cell types (n = 18). Percentages are
methylated cytosine dinucleotides divided by corresponding total number of each cytosine dinucleotide with $5x coverage. (H) Barplot showing the
average reduction in the number of methylated cytosine dinucleotides in EBs (n = 10) and somatic cells (n = 18) relative to pluripotent cells (n = 42). (I)
Distribution of distinct CpG (left) and CpA (right) methylation levels for all CpA and CpG dinucleotides averaged over all hES samples (n = 30). The
medians of the CpA methylation level distribution are fitted by the exponential distribution (yellow circle). Boxplots are defined as in (F).
doi:10.1371/journal.pgen.1002389.g001

Table 1. Summary statistics for samples included in this study.

Sample name uniqueSeqMotifCount (million) %mCN/CN

CpG CpA CpC CpT CpG CpA CpC CpT

HUES (n = 30) 3.16 3.70 5.19 4.43 67.85% 6.68% 0.63% 1.48%

iPS (n = 12) 3.07 3.63 5.17 4.42 68.31% 7.81% 1.05% 1.99%

EB (n = 10) 3.24 3.70 5.03 4.34 70.40% 1.74% 0.35% 0.57%

NPC 3.34 3.66 5.55 4.78 57.04% 0.35% 0.18% 0.18%

Pancreatic islet 3.06 3.32 4.94 4.13 61.15% 1.52% 0.17% 0.40%

Fibroblasts (n = 6) 3.10 3.59 5.09 4.33 66.52% 1.09% 0.68% 0.74%

Rectal mucosa 2.89 2.93 4.20 3.60 60.59% 0.18% 0.05% 0.05%

Rectal smooth muscle 2.76 2.67 3.96 3.35 54.64% 0.34% 0.05% 0.10%

Skeletal muscle (n = 2) 2.90 2.93 4.20 3.62 62.90% 1.70% 0.15% 0.43%

Stomach muscle 2.91 2.96 4.18 3.60 62.13% 0.30% 0.04% 0.08%

Blood CD19 3.25 3.78 5.59 4.75 66.79% 1.36% 0.74% 1.00%

Blood CD34 (n = 2) 3.25 3.77 5.66 4.79 65.30% 1.65% 0.59% 0.89%

Whole Blood (n = 2) 1.51 1.67 2.14 1.97 63.85% 1.40% 0.74% 1.04%

Sample categories with corresponding sample number n and median number of distinct cytosine dinucleotides covered. In addition, the percentage of methylated
cytosines ($10%) covered by $5x is shown for each cytosine dinucleotide category (%mCN/CN).
doi:10.1371/journal.pgen.1002389.t001
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somatic cells (n = 18) compared to pluripotent cells (n = 42).

Clearly, CpA and CpT methylation experience the most dramatic

change with reduction by 85% and 80% respectively (Figure 1H).

CpC methylation is also reduced, but only decreases by 65% in

both EBs and somatic cells. The difference in reduction of

methylation levels in combination with comparable methylation

abundance of all non-CpG sequence contexts in differentiating

and somatic cells might allow for a conservative assessment of the

noise level (incomplete conversion) in methylation measurements.

Notably, the intermediate non-CpG methylation levels in a subset

of differentiating cells (EBs) show that RRBS is capable of

detecting even subtle differences in non-CpG methylation

(Figure 1G, 1H).

In addition to the striking difference in overall abundance, the

distribution of methylation levels are quite distinct between non-

CpGs and CpGs (Figure 1I, shown only for CpG and CpA) [9]. As

reported previously, CpG methylation levels follow a bimodal

distribution in nearly all cell types [9,15,16] with the two means

representing low (,10%) and high (.85%) methylation levels

(Figure 1I, left panel). In contrast, CpA methylation levels follow

an exponential distribution with a very narrow tail towards high

methylation levels (Figure 1I, right panel). In combination with the

low overall number of CpAs showing methylation it suggests that

CpA methylation is a rare event. As noted above, CpT and CpC

methylation occur at even lower frequencies than CpA methyl-

ation and are subject to a high level of noise. Since the analysis of

CpT and CpC did not provide any additional insights we decided

to focus the data presentation on CpG and CpA methylation

comparisons.

CpA methylation exhibits little conservation across
several passages

Before comparing CpA methylation levels across different

samples we wanted to test whether any particular regions of the

genome possess enrichment for non-CpG methylation. Global

investigation of the distribution across several genomic features

revealed no particular hot spots (Figure S3B). We next analyzed

CpA methylation in 20 ES cells lines (30 data sets) on more than

1.7 million consensus CpAs (defined as having $2x coverage in

$80% of the samples). Consistent with previous reports [9,10],

CpA methylation levels vary dramatically between samples

(Figure 1G, Figure S3C) while individual CpG methylation levels

are more robust (Figure 1G, Figure S3D).

The impact of this variation becomes even more evident when

considering the conservation of CpA methylation between

different samples: While the average Pearson correlation coeffi-

cient (PCC) between different ES cell lines is about r = 0.37 for

CpA methylation (Figure 2A, lower triangle), it is greater than

r = 0.90 for CpG methylation (Figure 2A, upper triangle). To

assess the levels of CpA methylation over several passages we used

six biological replicates of the H1 ESCs as well as biological

replicates from HUES8 and HUES1. Notably, CpA methylation

levels in the H1 samples yield an average PCC of only r = 0.35.

Interestingly, the variation in CpA methylation between different

ES cell lines is about as large as the variation between different

passages of the same cell line. However, two specific cell lines that

are just one passage apart (HUES8 p29 and p30 and HUES1 p28

and p29) had slightly higher correlation (r = 0.54), while further

increasing the passage number reduced the correlation to average

levels (r = 0.36, Figure 2B, lower triangle). In contrast, CpG

methylation levels in samples from the same ESC line at different

passages generally exhibit the lowest fluctuations (Figure 2A, 2B;

upper triangles). These findings are further highlighted by the

strong variation in methylation levels that individual CpAs exhibit

over the 30 ES cell samples. While the average coefficient of

variation is less than 0.5 for CpGs, it is around 3 for methylated

CpAs (Figure 2C). These observations highlight the variability in

levels of CpA methylation.

Non-CpG methylation patterns are similar in ESC and
iPSCs

It has been previously shown that non-CpG methylation

patterns reappear upon reprogramming of somatic cells to iPSCs

[9,11]. To further expand on this we determined CpA methylation

levels in 12 iPSC lines comprising passage numbers ranging from

14 up to 44 (Figure 2D, Table S1) [17]. Overall, iPSCs exhibit

CpA methylation levels and patterns comparable to ESCs

(Figure 2A, 2D), confirming previous reports [11]. Only two iPSC

lines in our set, 11a and 27e, showed slightly elevated CpA

methylation levels. We next asked, whether these differences in

CpA methylation levels are associated with specific genomic

features. To this end, we determined the average levels across

features using the six samples of the H1 ESCs and the two iPSC

lines that exhibited elevated CpA methylation levels (11a and 27e).

While no specific region class exhibited particularly elevated levels

of CpA methylation, introns and SINE repeats showed the highest

CpA methylation levels (Figure 2E). In contrast, CpG island

promoters and CpG islands were depleted of CpA methylation.

The latter finding is consistent with the generally observed low

CpG methylation levels in high CpG promoters (HCPs) and CpG

islands [15] (Figure S3F) and higher methylation levels in CpG

poorer regions. The comparison of the average CpA methylation

levels in the H1 samples to the iPSC lines 11a and 27e revealed

that the elevated CpA methylation levels in the two iPS cell lines

did not affect any unique region class. Instead all region classes

exhibited higher methylation levels. These observations are in line

with previous reports, confirming no broad differences in terms of

DNA methylation between ESC and iPSCs [11,12]. Despite the

overall similarity, it has been observed that iPSCs exhibit distinct

non-CpG methylation patterns in specific genomic regions

(hypomethylated DMRs) compared to the ESC lines H1 and H9

[11]. To assess whether this is a more general phenomenon, we

took advantage of our 20 ESC and 12 iPSC lines and investigated

four non-CpG DMRs reported in the previous study [11] that had

representative RRBS coverage. While we find that some iPSC

lines show reduced methylation levels in multiple of these regions

compared to the ESC methylation distribution, the majority of the

iPSCs clearly resemble the CpA methylation pattern of ESCs

within these large blocks (Figure 2F). Moreover, several ESC lines

also exhibit reduced CpA methylation levels compared to the

RRBS based ESC average (Figure 2F, black bar indicates the

median of all 20 ESC lines).

As an additional independent confirmation we selected a small

subset of samples (n = 8) and investigated their CpG and non-CpG

patterns using the Illumina Infinium HumanMethylation450 array

[18]. The array captures the methylation status of approximately

482,000 CpG dinucleotides and 3200 non-CpG dinucleotides. We

found the median methylation levels of all CpGs covered by the

array to be slightly lower than measured by RRBS with an average

of 70% (Figure S4A, Figure S3D and S3E) and found little

variation between this subset of samples. In contrast, non-CpG

methylation levels varied by more than 15% between the samples

regardless of whether they are ESCs or iPSCs. Notably, median

non-CpG methylation levels lay between 30% and 50% (Figure

S4B), which is on average more than 30% higher compared to

RRBS measurements (Figure 2D, Figure S3D). Interestingly, the

trend in total non-CpG methylation levels is conserved between

the array and RRBS data: Samples exhibiting high non-CpG

Distribution and Variance of Non-CpG Methylation
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methylation levels according to the array show also elevated CpA

methylation levels according to the RRBS data and vice versa

(Figure S4B, Figure 2D, Figure S3D). To compare the Infinium

array and RRBS results more quantitatively, we restricted our

subsequent analysis to genomic regions that can be queried by

both methods. Given the relatively small number of sites on the

array it is not surprising that the direct overlap between the array

and RRBS is only moderate for CpG and non-CpG sites (Figure

S4C, S4D). We had previously shown that methylation levels for

individual CpGs on the Infinum platform were generally well

correlated with their neighboring sites [19]. To increase the

number of dinucleotides that can be compared between RRBS

and the array we applied a similar approach here. The median

number of regions around Infinium probes (100 bp on either side)

sufficiently covered by RRBS was 185,658 for CpG and 60 for

CpA probes. The restriction to this set of cytosines yields good

agreement for CpG methylation levels measured by RRBS and

Infinium (Figure S4E). In contrast, non-CpG methylation exhibits

only little correlation between RRBS and the Infinium array

(Figure S4F) while non-CpG methylation is well correlated among

the Infinium samples. It is important to note that CpG

methylation has been shown to be consistent in regions thereby

allowing the above analysis, whereas non-CpG methylation

appears at single loci in part explaining the lower correlation. In

conclusion, RRBS inferred methylation levels of CpGs are in

excellent agreement with the Infinium assay whereas due to small

overlap and biased selection of probes on the array CpA

methylation does not exhibit consistency between both methods.

To extend our RRBS based findings on the putative non-CpG

DMRs, we also included the previously published data that were

used to identify them, i.e. whole methylome (WM) data for H1

passage 25 [9] and ADS iPS cells [11] as well as our HUES64 WM

data. To ensure comparability of all data sets, we reprocessed the

raw data for H1 WM and ADS iPS WM using our own alignment

and analysis pipeline. This extended comparison revealed high

concordance between RRBS, the ADS iPS WM and the HUES64

WM in putative DMRs. Both the ADS iPS WM and the HUES64

WM fall within the reference corridor established by the 20 RRBS

ESCs profiles (Figure 2F). In contrast, the H1 WM shows

significantly increased methylation in the four putative DMRs.

This trend can also be observed in other putative DMR region

with lower, though still informative, RRBS coverage (Figure S5A).

Methylation levels of the latter DMR regions are predicted

remarkably well by RRBS despite the lower coverage. Investiga-

tion of the spatial organization of methylation patterns within

these putative DMRs again shows high consistency in the

distribution of methylation in ESCs and iPSCs (Figure 2G, Figure

S5B). Notably, H1 WM data give rise to dramatically higher

methylation levels across all of the regions. One possible

explanation for this observation might be the generally higher

cytosine methylation levels in the H1 WM data. Interestingly,

nearly all of these mega-DMR regions were characterized by

reduced CpA methylation levels compared to the surrounding

DNA segments in ESC and iPSCs (Figure 2G and Figure S5B–

S5D). Additionally, almost all potential DMRs exhibit a sharp

drop in CpG density at the beginning of each region, followed by

an increase towards the end (Figure S5E), while CpA density

exhibited only small fluctuations. Taken together, these observa-

tions suggest that some iPSCs may deviate from a reference ESCs

but in general they cannot solely be distinguished from ESCs

based on non-CpG methylation patterns.

CpA methylation levels correlate with de novo
methyltransferase activity

We next compared the presence of CpA methylation in

pluripotent cells closely with those found in somatic cells. We

therefore analyzed DNA methylation patterns in 10 somatic cell

types (n = 18) representing all three germ layers (Figure 3A). As

expected almost all cell types under consideration exhibit virtually

no or very low levels of CpA methylation (nor any CpT or CpC

(see also Figure 1G)).

To investigate the dynamics of CpA methylation during ESC/

iPSC differentiation, we used day 16 EB samples derived from 10

of the pluripotent cell lines. As expected, CpA methylation levels

decreased upon EB formation, albeit to variable degrees among

lines (Figure 3A, 3B), While CpA methylation levels in some EBs

drop to somatic levels, others still exhibit intermediate levels

(Figure 3B). In contrast, global differences in CpG methylation

were only marginal (Figure 3C). With the exception of H1 p38 and

iPS27e, in all pluripotent cell - EB pairs the reduced CpA

methylation was accompanied by the downregulation of pluripo-

tency marker genes as well as the de novo DNA methyltransferases

DNMT3A and DNMT3B (Figure 3B). Interestingly, EBs derived

from our H1 p38 still showed higher levels of CpA methylation

despite more than 6-fold down-regulation of OCT4. When we

compared the distribution of methylation levels across multiple

genomic regions it revealed no change of CpA methylation levels

(Figure 3D). Notably, the de novo DNA methyltransferase

DNMT3A, which is implicated in non-CpG methylation [2],

remained expressed at ESC levels while DNMT3B expression

experienced a 3-fold decrease (Figure 3B). In contrast, the iPS 27e

cell line retained high levels of pluripotency gene expression upon

EB differentiation and appears to be locked in the pluripotent state

based on earlier studies [12,17]. However, even though the

majority of cells in the iPS27e EB population may still exhibit

molecular pluripotency, a notable proportion may have experi-

enced downregulation of the DNMTs (Figure 3B). These

Figure 2. CpA methylation shows little conservation over several passages. (A) Heatmap of pearson correlation coefficients for CpG (upper
triangle) and CpA (lower triangle) methylation patterns in all pairs of pluripotent cell lines. Selected lines are highlighted. (B) Heatmap showing the
pearson correlation coefficients for CpG (upper triangle) and CpA (lower triangle) methylation levels in pairs of pluripotent cell lines assessed at
consecutive passages. (C) Distribution of the coefficient of variation over all individual CpG and CpA methylation levels across all ESC samples (n = 30).
(D) Boxplot of CpA methylation levels in 7 ESC and 12 iPSC lines. Boxplots are based on 205623 CpAs that show more than 0.1% of median
methylation in the selected ESC lines (n = 7). Boxes are 25th and 75th quartiles, whiskers indicate most extreme data point less than 1.5 interquartile
range from box and black bar represents the median. (E) Distribution of CpA methylation levels in different genomic region classes averaged over a
representative set of pluripotent cell lines at different passages (n = 12: H1, HUES1, HUES3, HUES6, HUES8, HUES45, H9, iPS 15b). HCPs are defined as
promoters overlapping with a CG island, LCPs are promoters without a CG island. For a detailed definition of the regions see Materials and Methods.
(F) Boxplot of CpA methylation levels across four genomic regions over all distinct ESC lines (n = 20) assessed by RRBS. These regions were reported to
be consistently hypomethylated between five iPSC and two ESC lines [11]. In addition methylation levels from previously published whole genome
bisulfite sequencing (WM) for H1 [9], iPSC ADS [11] as well as our HUES64 WM are shown. Boxes are 25th and 75th quartiles, whiskers indicate most
extreme data point less than 1.5 interquartile range from box and black bar represents the median. (G) CpA methylation profile of one selected DMR
(framed by black lines) on chromosome 22 based on a 1 kb tiling. The CpA methylation levels based on RRBS are shown for the median of all ESCs
(n = 20) and all iPSCs (n = 12) as well as WM levels for H1p25, iPS ADS and HUES64.
doi:10.1371/journal.pgen.1002389.g002
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Figure 3. CpA methylation dynamics are closely linked to DNMT3 gene expression levels. (A) Number of CpAs (y-axis; value 6104)
methylated ($5% methylation) in various somatic cell types and median number of methylated CpAs in EBs. Median number of methylated CpAs in a
representative subset of ESCs (n = 11) is shown as reference. Whiskers indicate 25th and 75th quartiles. (B) Distribution of CpA methylation levels in 7
pluripotent cell samples and matching 16 day EBs (top). Boxes are 25th and 75th quartiles, whiskers indicate most extreme data point less than 1.5
interquartile range from box and black bar represents the median. Below are normalized absolute log2 gene expression levels of DNMT3A, DNMT3B
and OCT4 in the corresponding samples (measured using Affymetrix GeneChip HT HG-U133A microarrays; Table S1). Left sample in each pair
corresponds to the undifferentiated state and right sample to the matching EB state. (C) Distribution of CpG methylation levels in 7 pluripotent cell
lines and matching 16 day EBs. (D) CpA methylation levels of various genomic region classes in ESC line H1p38 and matching 16 EBs. (E) CpA
methylation levels of various genomic region classes in iPSC line 27e matching day 16 EBs.
doi:10.1371/journal.pgen.1002389.g003
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observations are in line with the reduced overall CpA methylation

levels in the matching EBs (Figure 3B) as well as the unbiased

reduction of CpA methylation in various genomic regions

(Figure 3E). To investigate the relationship between non-CpG

methylation and pluripotency associated genes more closely, we

derived a linear model predicting the mean non-CpG methylation

levels based on expression levels of selected marker genes in a

representative subset of our samples (n = 37) for which matching

DNA methylation and gene expression data were available (Table

S1). Consistent with our analysis in EBs, this highly predictive

linear model (r2 = 0.55, p = 0.0002) identifies DNMT3A and

DNMT3B gene expression levels as being most associated with

total sample CpA methylation levels. In contrast, pluripotency

associated marker genes like OCT4, SOX2 or NANOG did not

contribute significantly to predictive power. These results suggest

that expression of pluripotency genes (molecular pluripotency) is

not a necessary precondition for the presence of non-CpG

methylation. Instead, these examples suggest an uncoupling of

the core pluripotency network and non-CpG methylation levels

and point towards DNMT3A and DNMT3B as a key effectors of

the latter.

Depletion of DNMT3A results in global reduction of non-
CpG methylation

In order to experimentally support these bioinformatics models

we decided to stably knockdown DNMT3A in hESC line

HUES48 using shRNAs. Infected HUES48 ESCs showed an

undifferentiated morphology and remained molecularly pluripo-

tent as confirmed by OCT4 staining (Figure 4A) and gene

expression profiling (Figure 4B). Next, we assessed the knockdown

efficiency for DNMT3A and found an approximate reduction of

70% by quantitative real-time PCR (Figure 4C, Figure S6A). We

observe mild differences for the other DNMTs between the

original, uninfected HUES48 and the infected cell lines (shRNA

control and shRNA DNMT3A), which are likely due to clonal

expansion post infection. To evaluate the impact of DNMT3A

knockdown on the abundance of non-CpG methylation, we

analyzed HUES48 WT, HUES48 infected with control shRNA

Figure 4. Knockdown of DNMT3A in hESCs causes global reduction of non-CpG methylation. (A) OCT4 immunostaining of representative
ES cell line HUES48 infected with a control shRNA and a shRNAs against DNMT3A. (B) Expression of various pluripotency associated genes in HUES48
infected with shRNAs against DNMT3A and controls as assessed by the Nanostring nCounter. (C) qRT-PCR of DNMT3A in HUES48 WT, HUES48
infected with shRNAs against DNMT3A and control shRNA against GFP. Expression values are normalized to b-Actin levels. (D) Percentage of
methylated ($10%) cytosine dinucleotides in HUES48 treated with shRNAs against DNMT3A and control samples. P-value was determined using
Wilcoxon-rank test.
doi:10.1371/journal.pgen.1002389.g004

Distribution and Variance of Non-CpG Methylation

PLoS Genetics | www.plosgenetics.org 9 December 2011 | Volume 7 | Issue 12 | e1002389



and HUES48 infected with shRNA against DNMT3A using

RRBS. As expected we do not observe notable changes in global

CpG methylation levels. However, we find a 28% reduction in the

number of methylated CpAs compared to the control sample (p-

value = 2.497 10211 Wilcoxon-rank test, Figure 4D). This

reduction is also reflected in the number of methylated CpTs

and CpCs. It should be noted that the reduction of non-CpG levels

might become even more dramatic with increased passage

numbers given our incomplete knockdown of DNMT3A. To

confirm our findings, we repeated the knockdown in hES cell line

H1. Consistent with the results for HUES48, we observed a 33%

reduction in the number of methylated CpAs while CpG

methylation levels were not affected (Figure S6B). Additionally,

we utilized a shRNA against DNMT3B to probe its role in non-

CpG methylation (Figure S6B,C) and observed a 82% reduction

in the number of methylated CpAs while CpG methylation was

again not affected (Figure S6B). These results clearly show that

both de novo methyltransferases are significant sources of non-CpG

methylation in hESCs.

CpA methylation is spatially correlated with CpG
methylation

Our data confirmed the presence of non-CpG methylation in

pluripotent cells, however little is known about the relevance of

this modification and whether it plays any regulatory role. This is

difficult to experimentally test, but we wanted to computationally

assess if CpA methylation might constitute an independent

regulatory mechanism. Towards this end, we employed a linear

regression model for the prediction of the CpA methylation state

of a 1 kb tiling of all regions covered by RRBS. Out of eight

features (see Materials and Methods) tested for each region, CpC

methylation, CpG methylation and the presence of a histone

modification proved to be significant and predictive with an

overall variance explained of r2 = 0.3 (Figure 5A, left). Out of these

three features, the CpG methylation state is by far the most

predictive (Figure 5A, left), as assessed by ANOVA. The tri-

methylation state of lysine 36 in histone 3 (H3K36me3) which has

been shown to be enriched in gene bodies of transcribed genes

[20] ranked second. On the background of our findings on

Figure 5. Genomic context and attributes of CpA methylation. (A) Significant and most influential features predictive for CpA methylation in
a linear model based on a 1 kb tiling of the human genome covered by RRBS (n = 32300 tiles). The linear model included classical sequence features
(but excluding CpG density) as well as methylation of CpG, CpT, CpC, H3K36me3 methylation and conservation of CpA methylation state. F-statistics
reported for 9 and 32291 degrees of freedom. (B) Feature importance for prediction of CpA methylation according to three machine learning
approaches. Depicted are logistic regression and linear SVM weights (black and dark grey, respectively) as well as feature Mean Decrease in Gini Index
(MDG, light grey) according to random forests (rescaled such that the largest MDG corresponds to 1). Significant features characterized by a p-value
,0.05 for logistic regression or a z-score .1.96 for linear SVM are marked (***). A detailed description of features is given in Table S2. (C) Sequence
context of consistently highly methylated (mean $15%) CpAs (n = 5551) over all ES cell lines n = 30.
doi:10.1371/journal.pgen.1002389.g005
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DNMT3A’s role in establishing non-CpG methylation patterns

and recent reports showing recruitment of murine Dnmt3a

through its interaction with H3K36me3 through the PWWP

domain [21] these findings might provide an explanation for the

previously reported correlation of non-CpG methylation levels in

gene bodies and gene expression [9]. However, given the

moderate predictive performance of the linear model, the high

inter-sample variability of CpA methylation and the fact that CpG

methylation is widely present without CpA methylation, we next

reversed the question and tried to predict CpG methylation based

on CpA methylation levels and sequence features. This second

linear model proved to be of superior predictive performance with

r2 = 0.5 (Figure 5A, right). Interestingly, CpA methylation levels

turned out to be the most influential predictor of CpG

methylation, followed by CpA density and conservation of CpA

methylation levels across multiple samples (Figure 5A, right). The

observation that CpA methylation is a strong predictor of CpG

methylation (r2 = 0.32) suggests a strong link of CpG and CpA

methylation. In combination with the dramatically lower predic-

tive performance of CpG methylation for CpA methylation, these

findings point towards a possible dependence of CpA methylation

on CpG methylation.

We next applied a comprehensive classification approach in

order to characterize traits determining CpA methylation and

computationally analyzed the genomic and epigenomic context in

which CpA methylation occurs. We employed multiple statistical

learning procedures known for their predictive potential and

interpretability, and assessed the resulting models using 10-fold

cross-validation. Analysis of the Area Under ROC Curves (AUC)

revealed high predictive power and information content of the

inferred models (Figure S7D, mean AUC = 0.78 (logistic regres-

sion and linear kernel SVMs) and 0.83 (random forest). The

methylation state of CpGs in close vicinity, the distance to the

closest CpG as well as the preferential flanking sequence of

DNMT3A [6,22] appear among the most predictive features

across methods (Figure 5B). In particular, the sequence context of

highly methylated CpAs (.15%) that are also more conserved

between samples is reminiscent of the weak sequence preference of

DNMT3A (Figure 5C) [6,22]. Interestingly, this particular

sequence motif has recently been reported to be enriched around

highly methylated CpAs in whole genome bisulfite sequencing

data located at splicing sites [23]. In summary, our findings point

toward a close link of CpG and non-CpG methylation in terms of

their spatial distribution.

Discussion

RRBS offers the opportunity to investigate methylation states of

a representative fraction of cytosines in the genome across large

numbers of samples. In this study, we utilized a large data set

comprising pluripotent and differentiated human cell types to

investigate patterns of non-CpG methylation. Our analysis

allowed us to assess the intrinsic variability in different classes of

cytosine methylation and identify possible effectors.

Overall our study finds non-CpG methylation to be a rare and

highly variable modification. We confirmed previous reports that

non-CpG methylation levels are high in pluripotent cells and that

somatic cell types exhibit low levels of non-CpG methylation

[2,7,9]. We further confirm that non-CpG methylation patterns

are generally reestablished upon transcription factor induced

reprogramming [11], but find no consistent differences between

ESCs and iPSCs in terms of non-CpG methylation when

comparing more than 30 pluripotent cell lines. We also show that

in general non-CpG methylation is lost relatively early during EB

formation. However, our results indicate that non-CpG methyl-

ation might not be attributed directly to the pluripotent state but

rather linked to the de novo methyltransferases DNMT3A and

DNMT3B as key effectors. We further support this hypothesis by

knockdown of DNTM3A and DNMT3B in hESCs, which results

in a global reduction of CpA methylation levels while molecular

pluripotency was unaffected. Both DNMT3A and DNMT3B are

highly expressed in human ESCs and iPSCs and downregulated

during normal differentiation. Previous murine data showed that

early passage 3a/3b double knockout mouse ES cells, which lack

non-CpG methylation, are still capable of differentiation using

various assays and retain their self-renewing capacity [24]. In

agreement with these experimental results, our findings suggest

that non-CpG methylation is dispensable for pluripotency.

We also find that CpA methylation does not appear to be

generally decoupled from CpG methylation and genomic

determinants thereof. This is consistent with a recent report in

murine early embryos that not only showed non-CpG methylation

within or near regions of high CpG methylation at DMRs, but also

its absence from unmethylated regions such as the associated

paternal allele [25]. Interestingly, we observe high correlation of

CpA methylation with the presence of methylated CpGs in close

vicinity. Considering the current evidence, it seems likely that the

majority of the observed CpA methylation is of stochastic nature

due to unspecific activity of DNMT3A and 3B. However, a small

fraction of the highly methylated non-CpGs exhibits high

conservation of methylation levels across samples and might be

of functional relevance. One specific function might be in the

transient silencing of low CpG density repeats during genome wide

remodeling processes (Figure S7E). It would be interesting to test

this hypothesis in more detail to uncover functional roles of non-

CpG methylation or to characterize non-GC methylation as a

consequence of unspecific DNMT3 activity. The global presence

of non-CpG methylation indicates that the de novo methyltransfer-

ases operate in a widespread manner in addition to a contained

recruitment to specific loci. This observation is consistent with

previous reports of gradual global loss of DNA methylation upon

long-term culture of Dnmt3a/3b double knockout mouse ES cells

[24] and the suggested additional role of DNMT3A/3B in the

correction of errors made by DNMT1 [26].

In summary our data provides new insights into the genomic

distribution of DNA methylation in a large sample set of human

pluripotent and differentiated cells. Better understanding of the

non-CpG methylation landscape helps clarify recently raised

questions about its role in human pluripotency and will provide a

useful basis for future experimental validations.

Materials and Methods

Cell lines and samples
A total of 20 human ES cell lines, 12 human iPS cell lines, as

well as 10 distinct somatic cell types were investigated in this study

(Table S1). The ES cell lines were originally obtained through the

Human Embryonic Stem Cell Facility of Harvard University (17

ES cell lines) and from the WiCell Research Institute’s WISC

Bank (3 ES cell lines) [12]. The iPS cell lines were derived by

retroviral transduction of OCT4, SOX2, and KLF4 in dermal

fibroblasts [17]. All pluripotent cell lines have been characterized

by conventional methods [27,28] and were grown under

standardized conditions as described before [12]. Embryoid bodies

(EBs) and fibroblast samples were also taken from the previous

study [12] (Table S1). The material for the rectal mucosa, rectal

smooth muscle, skeletal muscle and stomach smooth muscle

samples was obtained from MGH Pathology under the NIH
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Roadmap Epigenomics Program and processed by the Broad’s

Reference Epigenome Mapping Center (REMC). The H9 derived

NPC sample was obtained from ArunA biomedical under the NIH

Roadmap Epigenomics Program and processed by the REMC.

Human blood CD19 and CD34 samples were obtained from

Shelly Heimfeld’s lab as part of the REMC. Pancreatic islet

samples were retrieved from the islet donor network and supplied

by Stuart Schreibers group at the Broad. All data sets and

additional (matched) chromatin maps that are generated as part of

the NIH Roadmap project and not included in the manuscript are

publically available (http://www.roadmapepigenomics.org/).

DNA methylation mapping and data processing
RRBS was performed according to a previously published

protocol [29], incorporating some optimizations for small cell

numbers [30]. Raw sequencing reads were aligned to the Msp-I

digested and in silico size selected human genome using MAQ’s

bisulfite alignment mode [31]. DNA methylation calling was

performed using custom software [30]. For all covered cytosines

DNA methylation levels of individual cytosine dinucleotides were

assessed by the fraction of reads exhibiting an unconverted

cytosine over total number of reads.

For comparison of RRBS and whole methylome (WM) data

[9,10], published raw data was retrieved and processed by a

custom software [19]. For WM and RRBS, cytosines were filtered

for 5x minimum read coverage. Subsequently, methylated non-

CpGs in WM and RRBS data were defined as those exhibiting a

methylation ratio above 5%. For CpGs, the cutoff was set to a

30% methylation ratio. Based on these definitions, the comparison

of methylated CpGs and non-CpGs in Figure 1D and Figure S1B

was performed on the set of cytosine dinucleotides fulfilling the

minimum coverage criteria in WM and RRBS data. Bisulfite

conversion rate was assessed through the global mean levels of

CpC methylation and methylation levels in a subset of promoters

overlapping with CG islands for each individual sample (Table

S1).

Comparing different coverage cutoffs, we find that CpA

methylation distributions differ compared to the distribution

computed only on those CpAs with more than 50x coverage.

Based on this analysis we chose a coverage cutoff of 5x in 80% in

pluripotent and differentiated cells yielding 1.7 million in

pluripotent and 1.6 million CpAs in differentiated cells respec-

tively. While resulting in a reasonable number of CpAs for

analysis, this cutoff is associated with a slight deviation from the

.50x coverage regime. However, due to sequencing and

processing bias the 50x cutoff distribution is not representative

of the true distribution either. Due to the large number of sampled

CpAs the confounding effect of the 5x coverage threshold is likely

to be attenuated. In order to investigate the distribution of

methylated cytosines and avoid domination of the population by

the unmethylated cytosines, we imposed a minimal methylation

threshold on cytosine dinucleotides (relevant for Figure 1F,

Figure 2D, Figure 3B and 3C, and Figure S3C–S3E). This

partitioning is particularly important when investigating non-CpG

methylation since the vast majority of the non-CpGs doesn’t show

any evidence for methylation. The threshold was set to 0.1%

median methylation for CpG as well as non-CpG dinucleotides

over all pluripotent samples. Based on CpAs and CpGs fulfilling

these criteria, we computed the coefficient of variation (standard

deviation divided by mean) for the methylation level of individual

dinucleotides over all ES cell samples (n = 30) in Figure 2C.

To analyze the sequence context of highly methylated non-CpG

dinucleotides with $10x coverage in $80% of all ES cell samples,

we identified CpAs showing more than 15% mean methylation

over all ES cells lines (n = 30), Figure 5C. Subsequently, we

computed base frequencies around the 5551 identified CpAs and

created Figure 5C using WebLogo [32].

Infinium analysis was performed by the Genetic Analysis

Platform at the Broad Institute. A total of 1 mg of genomic DNA

per sample was bisulfite-treated according the manufacturers

protocol and hybridized onto Human InfiniumMethylation 450

bead arrays (Illumina). Raw data was processed using the Illumina

GenomeStudio software. Probes with a detection p-value .0.05

were discarded. For comparing RRBS assayed methylation to the

array data, the mean RRBS methylation level in a region of

100 bp up and downstream of the Infinium probe was taken into

account.

Gene expression data
Microarray gene expression data were taken from our

previously published data set [12] and normalized to the mean

expression levels in ES cells (n = 20).

Genomic features
Cytosine methylation levels were calculated for distinct classes of

genomic features: Promoters were defined as a 25 kb to +1 kb

sequence window surrounding the annotated transcription start

site of Ensembl-annoted genes [33]. CG islands were defined

according to CAP-seq results reported in [34]. Promoters

overlapping with a CpG island were defined as CG island

promoters, others as Non-CG island promoters, imprinting control

regions were manually curated based on published results, intron

and exon regions were downloaded from the USCS (http://

genome.ucsc.edu/) for all ensembl genes. SINE and LINE element

annotation was taken from the Repeat Masker/Repbase informa-

tion provided by the USCS genome browser.

Non-CpG DMRs
Regions that were reported to be consistently hypomethylated

in 5 iPS cells compared to the H1 human ES cell line were taken

from [11] and investigated in ES (n = 20) and iPS cells (n = 12)

utilizing our RRBS data set. Each region was tiled into 1 kb

intervals and the methylation state of each segment was

determined based on all CpAs exhibiting a minimum read

coverage of 5x in all samples in order to insure comparability.

Subsequently, only those regions with at least 0.5% of all CpAs

covered were retained and analyzed (Figure S5A).

For these regions, the median methylation was calculated based

on the 1 kb region tiling and depicted in Figure 2F and Figure S5A.

In Figure 2G the CpA methyalation state of each 1 kb window over

a selected, 2 Mb DMR on chromosome 22 as well as its vicinity is

shown. Trend lines were added based on spline smoothing. The

average CpG content profile for each of the 22 DMRs reported in

[11] was computed (Figure S5E) by dividing each region into 30

equally long sequence intervals and calculating the CpG content of

each interval. Subsequently, matching intervals from all regions

were averaged and plotted. In addition, the average CpG content

for 30 kb up- and downstream of each region was averaged in 1 kb

intervals for all regions and plotted as well.

Analysis of CpA methylation in differentiated cells
For all differentiated cell samples we determined a consensus set

of 1.6 million CpAs with a minimum coverage of 5-fold in 70% of

all samples within this class. In addition, these CpAs were also

covered by at least 5x in a set of 11 reference ES cell samples. All

CpAs with a methylation level of $5% were counted as

methylation events and are depicted in Figure 3A.
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Linear model and ANOVA analysis
In order to determine the relationship between non-CpG

methylation, pluripotency and DNMT gene expression levels, we

employed a linear model trained on 32 pluripotent and 10 EB

samples for which we had DNA methylation and microarray data.

Using as the response variable the median methylation level of 1.5

million CpA’s consistently covered in all samples we trained a

linear model on the gene expression levels of DNMT3A/B,

DNMT1, OCT4, SOX2 and NANOG. Following this analysis we

performed ANOVA utilizing the statistical programming language

R (http://www.r-project.org/) with built in functions.

A second linear regression model was employed to determine

the potential of CpA methylation to constitute an independent

regulatory mechanism. Using the linear model, we simultaneously

controlled for other classical predictive genomic features such as:

A,C,G,T content, repeat content and CpA content as well CpA-

CpG ratio. We specifically excluded CpG density related variables

from our prediction approach to avoid dominance of this highly

predictive feature of DNA methylation. In addition, we computed

a methylation conservation score over 10 representative ES cell

lines for each individual CpA. For this, we determined the

coverage weighted mean and standard deviation over all

pluripotent samples (n = 42). To balance high and low coverage

contributions, we limited the maximum coverage contribution of

an individual CpA to 25. The conservation score was then defined

as the ratio of the weighted standard deviation and the weighted

mean. Subsequently, we investigated the predictive power of these

genomic features to infer CpA methylation status on 32,000 1 kb

regions with a minimum of two CpA dinucleotides per region

consistently covered more than 5x between all 10 samples. This

analysis was again followed by ANOVA. Subsequently we used the

same approach to predict CpT and CpG methylation based on the

same features but now incorporating CpA methylation levels as

predictor variable.

Determining traits of CpA methylation using a
classification approach

For CpA dinucleotides with coverage of at least 15 reads in all of

5 representative samples we determined 30 features (see Table S2).

Sequence features were computed for a window of 10 basepairs

upstream and downstream of the respective CpA. A threshold of

5% was applied to group the data into methylated and

unmethylated dinucleotides respectively. In order to remove the

data set’s bias towards unmethylated CpAs, unmethylated

datapoints were randomly sampled to match the number of

methylated ones. This resulted in data sets of sizes 37628, 77474,

44010, 104512 for the ‘‘hES H1 p25’’, ‘‘hES H1 p34’’, ‘‘hES H9

p58’’, ‘‘hiPS 15bp33’’ and ‘‘hiPS27e p32’’ samples respectively.

Subsequently, three classification methods were used: (1) logistic

regression, (2) support vector machines employing a linear kernel,

and (3) random forests with the number of trees set to 500

(summarized in [35]). All three methods were applied to each of

the 10-fold cross-validation subsets and mean AUCs were

computed among the 10 subsets.

Feature contributions were calculated from models derived

from the full training set. For logistic regression and linear SVMs

they were assessed as the variable coefficients. Z-scores were used

to infer statistical significance. For random forests, the mean

decrease in Gini Index served as importance measure.

The R statistical programming language (version 2.12) with the

e1071, randomForest and ROCR packages was used to conduct

the analysis. The genome version used was UCSC hg18 from the

BSgenome package of Bioconductor.

Data processing was performed by custom Python (http://

python.org/) and R scripts.

Knockdown of DNMT3A and DNMT3B
DNMT3A was stably knocked down in hESC HUES48 using

shRNAs from The RNAinterference consortium (TRC; http://

www.broadinstitute.org/rnai/trc).

shRNA against DNMT3A (TRCN0000035755; target: CCGG-

CTCTTCTTTGAGTTCTA)

shRNA against DNMT3B (TRCN0000035684; target: GC-

CTCAAGACAAATTGCTATA)

control: anti GFP (TRCN0000072199; target: TGACCCTG-

AAGTTCATCTGCA).

HUES48 and H1 were infected and selected for 10 days with

puromycin. Cells were passaged 5 times before material for qRT-

PCR, Nanostring and RRBS profiling was collected.

Quantitative RT–PCR
RNA was extracted using RNeasy kit (QIAGEN). The cDNA

was synthesized from 2 mg of total RNA using RevertAidTM First

Strand cDNA Synthesis Kit (Fermentas). The primers used for

quantification were as follows:

DNMT3A forward (F): 59-GCTCTTTGAGAATGTGGTGG-

39, and reverse (R): 59-CTTTGCTGAACTTGGCTATCC-39;

DNMT3B F, 59-GAGTCCATTGCTGTTGGAACCG-39, and

R, 59-ATGTCCCTCTTGTCGCCAACCT-39, DNMT1 F1

59-GGGAAGACCTACTTCTACCAG-39 and R1 59-ACAG-

CTTGATGTTGAACGTG-39, DNMT1 F2 59 AGTTTGTGA-

GCAACATAACCAG-39 and R2

59-CACTCATGTCCTTACAGATGTG-39, b-ACTIN F

59-TTTGAGACCTTCAACACCCCAGCC-39 and R 59 AA-

TGTCACGCACGATTTCCCGC-39.

Gene expression levels were measured using an ABI 96 well

Step 1 Plus RT PCR System and SYBR Green PCR Reagents

(Applied Biosystems).

Nanostring profiling
RNA was extracted using the RNeasy kit (QIAGEN).

Subsequently, 500 ng of RNA was profiled on the NanoString

nCounter system according to manufacturer’s instructions. A

custom nCounter codeset was used which covers 556 genes;

subsequent data analysis was performed according to a previously

published protocol [12].

Supporting Information

Figure S1 Characteristics of non-CpG methylation in pluripo-

tent cells. (A) Percentage of key genomic features covered by

RRBS. (B) Venn diagrams show the overlap of methylated CpGs

(top) as well as non-CpGs (bottom) in HUES64 (p19 and p36) that

exhibit above threshold ($10% and $5% methylation) methyl-

ation in whole methylome and RRBS data of the same sample.

Only those dinucleotides were considered that were covered in

both data sets simultaneously by at least 5 reads in order to

estimate the conservation of methylation events. Numbers below

venn diagram indicate overlap of both dinucleotide sets. (C)

Distribution of CpA dinucleotide coverage in RRBS data over all

pluripotent samples. (D) Spatial distribution of CpG (black) and

CpA (red) methylation levels over various genomic features for

RRBS (dashed line) and whole methylome data (HUES64).

(TIF)

Figure S2 Locus-specific bisulfite sequencing confirms RRBS

based CpG and non-CpG methylation state of selected genomic

Distribution and Variance of Non-CpG Methylation
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regions. (A) Methylation state of CpAs located in the NPPA gene

on chromosome 1 according to RRBS (top) and locus-specific

bisulfite sequencing (bottom). Shown on top are the locations of

CpGs (dark red) and CpAs (red) as well as the number of

methylated/total reads covering a particular position. Shown in

the middle are the locations of MspI (black rectangle) sites as well

as the location and extend of sequencing reads. Depicted below

are bisulfite sequencing results indicating the methylation state of

CpGs (circles) and CpAs (rectangles). Methylation data are shown

for individual clones with solid black forms corresponding to

methylated cytosines. (B) Methylation state of CpAs located in the

Krt17 gene on chromosome 17 according to RRBS (top) and

locus-specific bisulfite sequencing (bottom). (C) Methylation state

of CpAs located in the PTP4A3 gene on chromosome 8

according to RRBS (top) and locus-specific bisulfite sequencing

(bottom).

(TIF)

Figure S3 Distribution of non-CpG and CpG methylation in

pluripotent cells. (A) Pearson correlation coefficients of individual

CpC dinucleotide methylation levels in six replicates of H1. (B)

Overall chromosomal distribution of CpA methylation levels in

H1p25. (C) Boxplots show CpA methylation levels for all ESC

samples on a set of 290,462. CpAs with coverage of at least 5x in

more than 80% of all ESC samples and median methylation of

$0.1%. Boxes are 25th and 75th quartiles, whiskers indicate most

extreme data point less than 1.5 interquartile range from box and

black bar represents the median. (D) Boxplots show CpG

methylation levels for all ESC samples on a set of 2 million CpGs

with coverage of at least 5x in more than 80% of all ES cell

samples. Boxplots are defined as in C. (E) Distribution of CpG

methylation levels in 12 iPSC lines and 7 ESC lines as a reference.

Boxplots are based on ,1.4 million CpGs that show more than

0.1% median methylation levels of 0.1% in the representative ES

cell lines (n = 7). Blue boxes indicate samples with the two highest

CpA methylation levels relative to the average over all pluripotent

cell lines. Boxplots are defined as in C. (F) CpG methylation levels

in different genomic region classes in ESC line H1 (p25, p30, p34,

p37 and p38; n = 6, white) and iPSC lines 11a, 27e showing high

overall CpA methylation levels (n = 2, blue). Genomic features are

defined in the Materials and Methods.

(TIF)

Figure S4 Analysis of methylation in pluripotent cells using the

Illumina Infinium 450K array. (A) Distribution of CpG methyl-

ation levels in ESCs and iPSCs. Boxes are 25th and 75th quartiles,

whiskers indicate most extreme data point less than 1.5

interquartile range from box and black bar represents the median.

(B) Distribution of CpA methylation levels in ESCs and iPSCs.

Boxes are defined as in A. (C) The venn diagrams show the CpG

and CpA dinucleotides covered by RRBS and Infinium 450 K

array based on a 40–260 bp size selection. (D) RRBS read

coverage distribution for matching samples profiled by Infinium

450 K and RRBS as well as HUES64 WM data. Boxes are

defined as in A. (E) Heatmap showing pearson correlation

coefficients of CpG methylation levels for matching pluripotent

samples based on regions harboring CpGs covered by both RRBS

and Infinium 450 K. (F) Heatmap showing pearson correlation

coefficients of CpA methylation levels for matching pluripotent

samples based on regions harboring CpAs covered by both RRBS

and Infinium 450 K. (G) CpG methylation levels of various

genomic features according to the Infinium 450 K array. (H) CpA

methylation levels of various genomic features according to the

Infinium 450 K array.

(TIF)

Figure S5 ESCs and iPSCs show no consistent differences in

putative DMR regions. (A) CpA methylation levels for 21 putative

DMRs reported by Lister et al. 2011 using 20 ESCs (RRBS,

boxplots) as a reference, HUES64 WM as well as previously

published H1 and iPS ADS WM data [9,11]. A. (B–D) CpA

methylation profile of selected DMRs (framed by black lines)

reported by Lister et al. 2011 based on a 1 kb tiling. The CpA

methylation levels based on RRBS are shown for the median of all

ESCs (n = 20) and all iPSCs (n = 12) as well as for H1p25 WM, iPS

ADS WM and HUES64 WM. Regions were selected based on

sufficient RRBS coverage (see Materials and Methods). (E) CpG

density averaged over all putative DMRs based on a 100 bin tiling

for each region. Black bars indicate start and end of putative

DMRs.

(TIF)

Figure S6 Knockdown of DNMT3A and DNMT3B. (A)

Location of PCR primers and shRNA target region in the

DNMT3A and DNMT3B gene. (B) Percentage of methylated

($10%) cytosine dinucleotides in H1 treated with shRNAs against

DNMT3A, DNMT3B and control samples. (C) qRT-PCR of

DNMT3A in H1 WT, H1 infected with shRNAs against

DNMT3A, DNMT3B and control shRNA against GFP. Expres-

sion values are normalized to b-Actin levels.

(TIF)

Figure S7 The bona fide DNMT3A target region upstream of

H19 shows high CpA methylation levels. (A) Spatial distribution of

CpA methylation levels for two ESC lines upstream of the H19

locus. (B) Number of CpAs associated as a function of CpG density

based on a genome wide 1 kb tiling. (C) Feature ranking for linear

model predicting CpT methylation levels based on ANOVA Only

the three most significant features are shown (p-value#0.000187).

Same feature combination as for Figure 5A, 5B was used

(Materials and Methods). F-statistics was computed on 9 and

32291 degrees of freedom. (D) Repeat class LTR43 showing the

highest CpA methylation levels observed while exhibiting

extremely low CpG density. Mean CpG (top) and CpA (bottom)

methylation levels obtained from aligning RRBS reads to a

pseudogenome consisting prototypic repeat elements (RepBase

Update) [19] are shown for 8 representative samples. Coloring

corresponds to methylation level (dark red: unmethylated, light

red: methylated). Labels in boxes represent percentage of

methylation and read covereage. To the right, mean methylation

levels across the 8 samples are given along with their odds ratio. (E)

ROC curves of three machine learning methods to classify CpA

methylation levels. mean AUCs across 10-fold cross-validation was

0.78 for logistic regression and linear support vector machine

prediction and 0.83 for random forests. Error bars represent

standard deviations. log.reg: logistic regression, smv.lin: linear

SVM, rf: random forest.

(TIF)

Table S1 Quality measures and summary information for all

individual samples included in this study. Informative reads are

defined as successfully aligned reads that passed all quality controls

and contained at least one of the indicated cytosine dinucleotides.

UniqueSeqMotifCount specifies the number number of unique

cytosine dinucleotide patterns observed in the genome based on

the informative reads. Global methylation mean gives the mean

methylation level over all cytosine dinucleotides covered for each

sample. For the conversion rate, two estimates are given: one

based on the global CpC methylation level and one computed

through the average methylation level of 30 high CpG density

promoters in each sample.

(XLSX)
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Table S2 Extended features used to train three machine-

learning methods for the prediction of the methylation state of

individual CpAs.

(XLSX)
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