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Abstract

BCCIP is a BRCA2- and CDKN1A(p21)-interacting protein that has been implicated in the maintenance of genomic integrity.
To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using
Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and
apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts
(MEFs) of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day.
Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth
delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in
BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant
spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of
chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ,20-fold increase in sister chromatid union (SCU), yet the
induction of sister chromatid exchanges (SCE) was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that
may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have
reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a
unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of
replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU,
which can subsequently impair chromosome segregations in mitosis and cell division.
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Introduction

Loss of genomic integrity is a hallmark for tumorigenesis.

Mammalian cells maintain genomic integrity by ensuring DNA

replication fidelity in S-phase, equal chromosome distribution into

daughter cells during mitosis, error-free repair of sporadic DNA

damage throughout the cell cycle, and a coordinated cell cycle

progression [1]. Homologous recombination (HR) plays roles not

only in repair of DNA double strand breaks (DSB) but also in

replication fidelity [2,3]. When the replication forks stall during S-

phase, one-ended DSBs are produced on one of the sister

chromatids at the stalled replication fork. Subsequently, the HR

machinery uses the 39-end of a single-stranded tail of the one-

ended DSB to invade the intact double-stranded DNA at the

collapsed replication fork, which leads to the resolution of the

stalled fork. Failure to do so causes excessive replication stress,

which is often defined as the inefficient progression of the

replication forks. Replication stress is a status highly susceptible

to genomic instability.

The BRCA2 tumor suppressor gene plays critical roles in HR,

mainly by mediating RAD51 function [4,5], including the strand

invasion step during the resolution of stalled replication forks.

Although mutations of BRCA2 are involved in only a small

percentage of human cancers, the germline BRCA2 mutations are

of high penetrance in malignant neoplasms. This suggests that the

entire molecular network of BRCA2 is critical for cancer

prevention, and defects of other proteins related to BRCA2 may

contribute to additional tumors [6]. Thus analyses of BRCA2-

interacting proteins offers opportunities to identify additional

genetic factors involved in tumorigenesis.

BCCIP is a BRCA2- and CDKN1A(p21)- interacting protein

[7–10]. In human cells, two major isoforms are expressed due to

RNA alternative splicing: BCCIPa and BCCIPb [9]. Although the

human BCCIPa isoform was originally identified as a p21 and

BRCA2 interacting protein, later studies found that the BCCIPb
isoform also interacts with p21 and BRCA2 [10–12]. BCCIP

down-regulation has been reported in cancers [9,13,14]. Human

BCCIP is known to function in HR, G1/S cell cycle checkpoint,
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and cytokinesis [10–12,15–18]. Furthermore, BCCIP deficiency

leads to accumulation of spontaneous DNA damage and single-

stranded DNA in human cells [16]. The Ustilago maydis

homologues of BCCIP and BRCA2 (BCP1 and Brh2) also interact

with each other, and BCP1 deficiency causes replication stress

[19]. However, the in vivo function of BCCIP has not been

determined.

To determine the role of BCCIP in vivo, we established a

conditional BCCIP knockdown transgenic mouse model. We show

that developmental defects in the BCCIP-deficient embryos

occurred before day E6.5, and this was associated with a

significant reduction of cell proliferation. In addition to an

impaired repair of exogenous DNA damage, BCCIP deficiency

significantly induced spontaneous chromatid aberrations that often

associate with replication stress. The chromosome abnormalities in

BCCIP-deficient mouse cells are characterized by the elevated

formation of sister chromatid unions (SCUs) and chromatid

breaks, yet a modest increase of sister chromatid exchange (SCE).

This suggests an essential role of BCCIP in maintenance of

chromatid stability and embryonic development in mice.

Results

Construction of a conditional BCCIP knockdown mouse
model

Although human cells express two major isoforms (BCCIPa and

BCCIPb) due to alternative RNA splicing [9], mouse tissues

appear to express only the BCCIPb isoform. In the previous

studies, human BCCIP has been shown to function in DNA repair,

cell cycle regulation, cytokinesis, and maintenance of chromosome

stability [7,10–12,15–18]. Reduced or absence of BCCIP

expression have been reported in human cancers [9,13,14,20].

To further understand BCCIP’s role in development and

tumorigenesis, we generated a mouse model with BCCIP

deficiency. Similar to the human BCCIP gene structure [9], the

mouse uroporphyrinogen III synthase (UROS) is ‘‘head-to-head’’

with the BCCIP gene, and the UROS promoter is located in the

intron of the BCCIP gene. The mouse DEAD/H box polypeptide-

32 (DDX32) gene is ‘‘tail-to-tail’’ with the BCCIP gene. We adapted

the RNAi based conditional knockdown approach developed by

Coumoul and colleagues [21–23]. Briefly, the U6 promoter that

normally drives the expression of short hairpin RNAs (shRNAs) is

disrupted by insertion of a LoxPneoLoxP cassette, thus is only

functional upon the conditional deletion of the LoxPneoLoxP

cassette (Figure 1A). The conditional shRNA expression construct

against BCCIP gene was integrated into the mouse genome using

standard transgenic mouse techniques. Two founder homozygous

transgenic mouse lines with the conditional expression cassette

were generated. The two independent homozygous transgenic

lines, designated LoxPshBCCIP+/+-4 and LoxPshBCCIP+/+-13, were

fertile, grow normally, and have the same lifespan as wild type

mice. The LoxPshBCCIP+/+ transgenic mice were crossed with a

mouse line expressing Cre recombinase to ‘‘pop-out’’ the

LoxPneoLoxP segment. As reported elsewhere [23], the single

LoxP site left in the U6 promoter after Cre-recombination does

not affect the U6 promoter activity. This reconstitutes the U6

promoter activity, leading to the expression of the anti-BCCIP

shRNA (Figure 1A), to achieve a Cre-dependent conditional

knockdown of BCCIP.

To verify the BCCIP knockdown, MEFs from the two founder

lines were established. As predicted and shown in Figure S1,

mouse cells only express one isoform. Expression of Cre in the

MEFs derived from both mouse founder lines cells efficiently

knocked down BCCIP (Figure S1). These MEF cells, designated

MEF4-LoxPshBCCIP and MEF13-LoxPshBCCIP, were used further

in vitro studies. It should be pointed out that BCCIP can be

knocked down in heterozygous LoxPshBCCIP+/2 cells by expres-

sion of Cre because one copy of the LoxPshRNA cassette is able to

express shRNA against BCCIP.

EIIa-Cre mediated knockdown of BCCIP causes
embryonic lethality

In an attempt to generate mice with BCCIP knockdown, we bred

the FVB/N LoxPshBCCIP+/+-4, and LoxPshBCCIP+/+-13 with the

FVB/N EIIaCre+/2 mouse [24] that carries a Cre transgene under

the control of the adenovirus EIIa promoter. The EIIa promoter

drives the expression of Cre recombinase early in embryogenesis

[24]. As shown in Table 1, breeding between wild type with

EIIaCre+/2 mice resulted in approximately 1:1 ratio of LoxPshBC-

CIP2/2;EIIaCre+/2 and LoxPshBCCIP2/2;EIIaCre2/2 mice. How-

ever, breeding of LoxPshBCCIP+/+ with EIIaCre+/2 mice resulted in

a significantly smaller number of LoxPshBCCIP+/2;EIIaCre+/2 than

LoxPshBCCIP+/2;EIIaCre2/2 newborns. In addition, the litter size

(5.1 for founder line-4 or 6.6 for founder line-13) from the breeding

between LoxPshBCCIP+/+ and EIIaCre+/2 was significantly smaller

than that of wild type (LoxPshBCCIP2/2) mice (10.3/litter). These

data suggest that down-regulation of BCCIP causes embryonic

lethality. Although there were significantly less Cre positive mice

with this breeding scheme, it was noted that some Cre positive mice

were viable. However, further analyses confirmed that some of these

viable LoxPshBCCIP+/2;EIIaCre+/2 newborn mice had lost the

LoxBCCIPshRNA cassette (data not shown). This suggests that the

LoxBCCIPshRNA cassette in mice is subject to spontaneous loss.

To confirm that BCCIP knockdown causes embryonic lethality,

embryos from crosses between LoxPshBCCIP+/+-4 and EIIaCre+/2

were analyzed at day E11.5. As exemplified by Figure 1B–1D,

among a total of seven embryos of the same litter, four (labeled as

No. 1–4 in Figure 1B) were abnormal and three (labeled as No. 5–

7 in Figure 1B) were normal. The abnormal embryos have the

EIIaCre-positive genotype, while the normal embryos are

EIIaCre-negative (Figure 1C). As expected, the expression of

BCCIP in the abnormal embryos was clearly down-regulated,

Author Summary

BCCIP is a BRCA2- and p21-interacting protein. Studies
with cell culture systems have suggested an essential role
of BCCIP gene in homologous recombination and sup-
pression of replication stress and have suggested that
BCCIP defects causes mitotic errors. However, the in vivo
function(s) of BCCIP and the mechanistic links between
BCCIP’s role in suppression of replication stress and mitotic
errors are largely unknown. We generated transgenic
mouse lines that conditionally express shRNA against the
BCCIP, and we found an essential role of BCCIP in embryo
development. We demonstrate that BCCIP deficiency
causes the formation of a unique type of structural
abnormality of chromosomes called sister chromatid union
(SCU). It has been noted in the past that impaired
homologous recombination and resolution of stalled
replication forks can have detrimental consequences in
mitosis. However, the physical evidence for this link has
not been fully identified. SCU is the product of ligation
between sister chromatids, likely formed as a result of
unsuccessful attempt(s) to resolve stalled replication forks.
Because the SCU will progress into chromatin bridges at
anaphase, resulting in mitosis errors, it likely constitutes
one of the physical links between S-phase replication
stress and mitotic errors.
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while the healthy embryos expressed normal levels of BCCIP

protein (Figure 1D). Analysis of Cre-dependent conditional

knockdown embryos derived from another founder line (LoxPshBC-

CIP+/+-13) is shown in Figure S2. Altogether, these data suggest

that down-regulation of BCCIP during embryogenesis causes

embryonic lethality prior to day E11.5. Figure 1, Figure S1, and

Figure 1. Construction of a LoxP-Cre mediated conditional BCCIP knockdown mouse line. Panel A shows the strategy for LoxP-Cre
mediated conditional BCCIP knockdown in mice (see text for details). Panels B–D show the Genotyping and BCCIP expression in embryos resulted
from breeding between LoxPshBCCIP+/+ (founder line-4) and EIIaCre+/2. At day E11.5, the mouse embryos were dissected, individual embryos are
photographed, and shown in Panel B (number 1–4 are abnormal embryos, and number 5–7 are normal). Then, half of each of the embryos was used
to extract DNA for genotyping the conditional shRNA expression and the Cre-expressing cassette (panel C). The other half was used to extract the
total proteins, which were used to detect mouse BCCIP expression and b-actin as a loading control (panel D).
doi:10.1371/journal.pgen.1002291.g001

Table 1. Genotype distribution of newborns from cross-breeding between the two conditional LoxPshBCCIP+/+ mouse lines with
the EIIaCre+/2 mice.

No. (%) of (EIIaCre2/2)
newborns

No.(%) of (EIIaCre+/2)
newborns

Total No. of
newborns Average litter size

Wild type (7 litters) 35 (49%) (LoxPshBCCIP2/2) 37 (51%) (LoxPshBCCIP2/2) 72 (100%) 10.3

LoxPshBCCIP+/+-4 (15 litters) 68 (89%) (LoxPshBCCIP+/2) 8 (11%) (LoxPshBCCIP+/2) 76 (100%) 5.1

LoxPshBCCIP+/+-13 (14 litters) 68 (74%) (LoxPshBCCIP+/2) 24 (26%) (LoxPshBCCIP+/2) 92 (100%) 6.6

doi:10.1371/journal.pgen.1002291.t001

BCCIP in Embryogenesis and Chromosome Stability
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Figure S2 also illustrate that our conditional knockdown strategy

indeed achieved the anticipated down-regulation of BCCIP upon

expression of Cre-recombinase in the conditional transgenic mice.

Development retardation starts at approximately day
E6.5 in BCCIP-deficient embryos

Given our observations that BCCIP down-regulation causes

developmental arrest at day E11.5, we anticipate the anomaly in

embryonic development initiates a few days prior. To define the

precise timeframe for the effects of BCCIP knockdown in early

embryogenesis, we analyzed embryos at different timepoints,

including embryonic days E6.5, E7.5, and E8.5. As shown in

Figure 2A–2C, wild type embryos were well developed during this

period. By E6.5, wild-type embryos (Figure 2A) displayed normal

growth and egg cylinder elongation, extraembryonic and embry-

onic ectoderm and pro-amniotic cavities. By day E7.5 (Figure 2B),

wild-type embryos underwent gastrulation; the amniotic cavity was

sealed off and three distinct cavities (amniotic cavity, exocoelom,

and ectoplacetal cleft) were well developed. The neural plate, a

developed notochord, a confined head and tail folds were visible at

day E8.5 in a wild type embryo (Figure 2C). The mid-trunk region

remained apparently attached to yolk sac, which is consistent with

normal mouse embryo development [25,26]. However, in the

BCCIP knockdown embryos, there was a significantly delayed and

abnormally developed embryos as evidenced by the mass size of

the embryonic tissues at day E6.5 (Figure 2D). At day E7.5 and

E8.5 (Figure 2E and 2F), the BCCIP knockdown embryos were

developmentally retarded. There was no apparent formation of

Figure 2. Histological sections of wild-type and BCCIP knockdown embryos. The uteri of female were dissected between 6.5–8.5 days after
homologous LoxBCCIPshRNA+/+-4 mice were mated with EIIaCre (+/2) heterozygous mice. All uterine decidual were sectioned transversely. Serial
5 mm sections were prepared. Shown are image of HE stains at with 10610 fold magnification. A–C: wild-type embryos; D–F: BCCIP knockdown
embryos. A and D: E6.5 embryos; B and E: E7.5 embryos; C and F E8.5 embryos. eee: extra embryonic ectoderm; pac: proamnotic cavity; al: allantois;
am: amnion; ch: chorion; ee: embryonic ectoderm; em: embryo mass; e: ectoplacental cavity; a: amnonic cavity; ex: exocoelom; p: primitive streak; hf:
head fold; tf: tail fold; np: neural plate; nt: notochord. The rest of the tissues are decidual tissue.
doi:10.1371/journal.pgen.1002291.g002

BCCIP in Embryogenesis and Chromosome Stability
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amniotic cavity, and no mesoderm differentiation at day E7.5

(Figure 2E). Also, development of the neural plate and notochord

was not evident at day E8.5 (Figure 2F). These morphological

observations suggest that the developmental defects caused by

BCCIP knockdown in the analyzed mouse embryos are likely

initiated before day E6.5.

During mouse embryogenesis, mesoderm development occurs

around day E6.5. Brachyury can be used as a marker of the primitive

streak, nascent mesoderm, the node and notochord [27–29]. To

confirm that the developmental delay occurs prior to day E6.5, we

examined the expression of the Brachyury protein by immunohis-

tochemistry (IHC) at day ,E6.5. As shown in Figure S3A, the

Brachyury expression was readily detectable in the primitive streak

and mesoderm in wild-type embryos, which is a sign of mesoderm

differentiation (Figure S3A). However, in BCCIP deficient embryos

of the same age, little Brachyury expression was detected (Figure

S3B). This confirms that the embryonic development retardation in

BCCIP deficient mice was likely initiated prior to day E6.5.

BCCIP deficiency impairs embryonic cell proliferation
As shown in Figure 2 and Figure S3, the BCCIP knockdown

embryos display histological development defects around day

,E6.5. Ki67 expression is commonly regarded as a proliferation

marker. To determine whether cellular proliferation is impaired in

BCCIP deficient embryos at about the same time, Ki67 expression

in embryonic tissues was assessed by IHC (Figure 3A). A

proliferative index, defined as the ratio of the number of Ki67-

positive nuclei in the embryo tissue preparations over the total

nuclei number, was determined (Figure 3B). As shown in Figure 3A

and 3B, there was only a slight reduction of Ki67 expression in

BCCIP knockdown embryos when compared to wild type

embryos at day E6.5. However at day E7.5, the proliferation

index was significantly reduced, from ,80% in wild type to ,11%

in the BCCIP knockdown embryos (Figure 3B).

To confirm the cell proliferation assessment data, incorporation of

5-bromo-29-deoxyuridine (BrdU) into DNA during the S phase of the

cell cycle was measured at days E6.5 and E7.5. As shown in Figure 3C

and 3D, there was little difference in labeling index at day E6.5

between wild type and BCCIP knockdown embryos. However at day

E7.5, wild type embryos had 52% BrdU-positive nuclear staining

compared to 10% in BCCIP knockdown embryos (Figure 3D). These

results strongly suggest that the proliferation defects of BCCIP

deficient embryos are initiated by day E6.5, consistent with the data

from histological analyses (Figure 2 and Figure S3).

Figure 3. Proliferation defects in BCCIP deficient embryos. At E6.5 and E7.5, embryo tissue sections were prepared to stain for cell
proliferation markers. In panels A and B (Ki67 staining): embryo sections were immuno-stained with anti-Ki67 antibody. Panel A shows a set of
representative staining of Ki67 for control and BCCIP deficient (indicated on the top) mice at the ages E6.5 and E7.5 (indicated on the left). Panel B
shows the percentage of embryo cells with positive Ki67 staining, and error bars represent the standard deviation of 3–5 individual counting of slides.
In panel C and D (BrdU incorporation): one hour after the pregnant mice were injected with BrdU, the embryo tissues were processed to stain for
BrdU (see Materials and Methods for details). Panel C shows a set of representative staining of the embryo tissue for control and BCCIP deficient
(indicted on the top of the panel) at days E6.5 and E7.5 (indicated on the left of the panel). Brown nuclei are BrdU positive staining, blue nuclei are
negative staining. Panel D shows the percentage of embryo cells with positive BrdU incorporation and error bars represent the standard deviation of
3–5 individual counting of slides.
doi:10.1371/journal.pgen.1002291.g003
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BCCIP knockdown causes apoptosis around day E7.5
To determine if the growth defect of BCCIP deficient embryos

is associated with an excessive level of programmed cell death,

embryo serial tissue sections at days E6.5 and E7.5 were analyzed

by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP

nick end labeling assay (TUNEL) and anti-cleaved caspase-3

staining. At day E6.5, there was little apoptotic and caspase-3-

positive cells in the wild type and the BCCIP deficient embryos

(Figure 4). However, at day E7.5, clear apoptotic signals were

detected in BCCIP deficient but not in wild type embryos

(Figure 4). This indicates that programmed cell death in BCCIP

knockdown embryos is increased as early as day E7.5, which is in

strong agreement with the impaired embryo development around

this time as shown in Figure 2.

BCCIP knockdown causes blastocyst growth retardation
in vitro

In early mouse embryogenesis, prior to the implantation, the

inner cell mass (ICM) inside the blastocysts forms one of the

earliest structures of embryos, and eventually give rise to the

definitive structures of the embryo. In vitro Blastocyst outgrowth

offers an opportunity to observe ICM growth and to assess the

early post-implantational development. To assess the role of

BCCIP in embryonic development prior to day E6.5, LoxPshBC-

CIP+/+ mice were bred with EIIaCre+/+ mice (breeding between

LoxPshBCCIP+/+ and with EIIaCre2/2 as the control). Blastocysts

were collected by uterine flushing at day E3.5, and cultured in vitro.

The growth of ICM from the blastocysts was monitored daily

while in culture. The numbers of blastocysts analyzed are

summarized in Table S1. Among 71 BCCIP knockdown

blastocysts, 28 (or 39%) successfully attached to the culture dish,

which was a slightly lower frequency than the control blastocysts

(28/58, or 48%). For the attached blastocysts, there was little

morphological difference between control and BCCIP deficient

blastocysts after one day in culture (equivalent to day E4.5 in vivo).

Figure 5A illustrates the representative growth morphology of the

blastocysts in culture at days 2, 4, and 5. Normally, the blastocysts

hatch from the zona pellucida around day 1 to 2 in culture. As

shown in Figure 5A, there was little apparent morphological

difference at day 2 shortly after blastocysts hatching in vitro. After

day 2 in culture, growth of the ICM from the BCCIP deficient

blastocysts was clearly defective, although the difference in

trophoblast giant cell growth between control and BCCIP

deficient cells appears to be less significant (Figure 5A). To

quantify the growth of the ICM in vitro, the relative areas of ICM

were calculated using the ImageJ program. As shown in Figure 5B,

the growth of BCCIP deficient ICM was significantly impaired

when compared with wild type blastocysts starting at day 3

(equivalent to day 6.5 in vivo) in culture. These results imply that

BCCIP defects affect the ICM growth, which is consistent with the

in vivo observation of growth retardation in BCCIP knockdown

embryos as described in Figure 2.

Figure 4. Apoptosis in BCCIP deficient embryos. At days E6.5 and E7.5, embryo tissue sections were prepared to stain for apoptosis markers.
TUNEL (panel A) and anti-cleaved caspase-3 (panel C) staining were performed on embryonic tissue sections at days E6.5 and E7.5 (indicated on the
left of the panels). At this stage, the surrounding the embryos are the decidual tissues that normally undergo apoptosis, and the embryonic tissues
are marked with red lines. The percentage of apoptotic cells are shown in panel B and D. Panel E is a Western blot showing the increase of cleaved
caspase-3 in the BCCIP deficient embryos.
doi:10.1371/journal.pgen.1002291.g004

BCCIP in Embryogenesis and Chromosome Stability
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Down regulation of BCCIP impairs growth of the MEFs
The in vivo and in vitro data above have shown growth

retardation in BCCIP knockdown embryos, suggesting that the

mouse BCCIP is essential for cell proliferation and growth. To

investigate the underlying mechanism(s), we used the MEF4-

LoxPshBCCIP cells. At passage 1, the MEF4-LoxPshBCCIP cells

were infected with retroviruses expressing Cre-recombinase to

reconstitute the functional U6 promoter in order to achieve

BCCIP knockdown. The control groups were infected with

retrovirus expressing the YFP. As shown in Figure 6A, the

MEF4-LoxPshBCCIP cells infected with Cre-virus grew slower

than those infected with YFP expressing virus (Control). This

slowed growth of BCCIP knockdown MEF cells is coincident with

a reduced level of PCNA (a proliferation marker) and increased

level of p21 (Figure 6B). We also observed an increase of Ser-15-

phosphorylated p53 in the BCCIP knockdown MEFs (Figure 6B),

suggesting a spontaneous activation of DNA damage signaling in

the BCCIP deficient cells.

BCCIP-deficient MEFs are sensitive to radiation damage
and replication stress

We further assessed the roles of mouse BCCIP in DNA

damage sensitivity. Because of poor colony formation by the

primary MEF culture, a clonogenic survival assay was technically

Figure 5. Proliferation defects of BCCIP-deficient blastocysts. Panels A and B: wild-type (control) blastocysts and BCCIP deficient blastocysts
were cultured in vitro. Panel A shows representative images of the cultured wild-type (control, top row) and BCCIP deficient blastocysts (bottom row)
at days 0, 2, 4 and 5 in vitro (equivalent to E3.5, E5.5, E7.5 and E8.5 in vivo). ICM: inner cell mass; TG: trophoblast. Panel B illustrates the average area of
inner cell mass (ICM) formed in culture by the control and BCCIP deficient blastocysts. Shown are the averages of 28 blastocysts from each group, and
error bars indicate the standard errors of the averages. There is no significant difference on day 2 (p = 0.18), but all p-values are less than 1.0E-06 for
days 3, 4, and 5 in culture.
doi:10.1371/journal.pgen.1002291.g005

Figure 6. Characterization of BCCIP-deficient mouse embryo fibroblasts (MEF). The MEF4-LoxPshBCCIP (passage 1) cells with the
conditional BCCIP knockdown cassette were infected with control retro-viruses that express YFP, and the Cre-expressing retrovirus to activate the
knockdown of BCCIP. Then, the cells were selected by puromycine, re-plated, and the numbers of cells were counted each day thereafter. Panel A
shows the relative number of cells after Cre-expression. Panel B shows the expression of BCCIP, Cre-recombinase, total p53, Ser-15 phosphorylated
p53 (p53-Ser15-P), p21, and PCNA in the MEF cells at different time after the virus infection. The p-value of t-test are indicated as (*): p,0.05 and
(**): p,0.01.
doi:10.1371/journal.pgen.1002291.g006

BCCIP in Embryogenesis and Chromosome Stability
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infeasible. Thus, we performed growth inhibition assay to assess

the MEF’s response to modest dose of irradiation. As shown in

Figure 7A, BCCIP knockdown cells exhibited greater growth

inhibition by irradiation compared to control MEFs. Irradiation

with 1–4 Gy of c-rays showed a similar trend of inhibition of cell

growth (Figure S4).

Under physiological conditions, without exogenous DNA

damage, HR is thought to play a major role in relieving

replication stress. We treated the MEF cells with low concentra-

tions of alphidicolin (APH). After washing off the APH, cells were

immediately incubated with Bromodeoxyuridine (BrdU) in APH-

free medium. At various time points, the fraction of cells with

BrdU incorporation was scored after immunofluorescent staining

(see Materials and Methods), which reflects the recovery from

replication blockage. As show in Figure 7B, when normalized to

the un-treated cells, the re-incorporation of BrdU was less efficient

among BCCIP knockdown cells than the control MEFs, reflecting

a delayed recovery from replication stress. Figure 7C shows

representative fields of BrdU-labeled cells. Together, these data

suggest that the BCCIP deficient cells are not only more sensitive

to DNA damage but also less efficient to recover from replication

stress than control cells.

Impaired DSB repair in BCCIP-deficient MEFs
To directly assess the DSB repair capability, we measured the

kinetics of cH2AX removal following irradiation. As shown in

Figure 8A, 15 min after irradiation, all cells have a similar level of

cH2AX. However, at 4 and 8 hours after irradiation, the BCCIP

knockdown MEFs have significantly more cH2AX nuclear foci

than the control MEF cells. Similarly, the fractions of cells with 5

or more cH2AX foci were higher in the BCCIP knockdown cells

than the controls (Figure 8B). Figure S5 shows representative

cH2AX foci at different times after irradiation. These observations

indicate that the control cells remove DSBs more efficiently than

BCCIP knockdown MEFs, and that down regulation of BCCIP

impairs DSB repair after irradiation. In addition, an alkaline

comet assay revealed more residual DNA damage at 4 hours after

irradiation in the BCCIP deficient MEFs when compared to

control cells (Figure 8C and 8D). These data strongly suggest an

impaired repair capability in the BCCIP deficient cells, consistent

with the slower growth of the BCCIP knockdown MEFs after

irradiation (Figure 7A).

Because human RAD51 focus formation is associated with

BCCIP [10,30], we further assessed the potential role of BCCIP in

mouse Rad51 response to radiation. As shown in Figure 9A,

BCCIP deficiency resulted in a significant reduction of Rad51 foci

in response to radiation. Furthermore, there was a reduction of

Rad51 protein level in BCCIP deficient cells compared to control

cells (Figure 9C). This is consistent with a role of BCCIP in HR

dependent DSB repair.

Spontaneous and DNA damage induced structural
instability of chromosomes in BCCIP-deficient cells

The human BCCIP interacts with BRCA2, and BCCIP

deficiency reduces endogenous level of Rad51 (Figure 9). Both

BRCA2 and Rad51 are key proteins involved in HR. Under

physiological condition, a key function of HR is to resolve stalled

replication forks [2,3], and impaired HR would cause spontaneous

structural chromosome alterations. Thus, we investigated whether

BCCIP deficiency would cause spontaneous chromosome abnor-

Figure 7. BCCIP-deficient MEF cells are more sensitive to irradiation and replication stress. The primary MEF culture from the conditional
BCCIP knockdown mice were infected with virus expressing Cre-recombination (BCCIP-KD). Control was infected with viruses expressing YFP. Two
days after the infection, the cells were selected with puromycin for 2 days to remove the un-infected cells. The infected cells were re-plated for
radiation sensitivity and replication stress testing. Panel A shows the relative numbers of viable cells at different days after irradiation with 2 Gy of Cs-
137 c–rays, normalized to the same cells without irradiation. Panel B shows the ratio of BrdU incorporated cells between treated and non-treated cells
after 30 hours of 0.4 mM alphidicolin treatment. Panel C are representative images of DAPI (blue color) and BrdU labeled cells (pink color) at different
hours after release from alphidicolin treatment. The p-value of t-test are indicated as (*): p,0.05 and (**): p,0.01.
doi:10.1371/journal.pgen.1002291.g007
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malities. First, Giemsa-stained chromosome metaphase spreads

were prepared from control and BCCIP-deficient MEFs. As

represented in Figure 10A–10B, we observed two types of

spontaneous chromatid aberrations in BCCIP knockdown MEFs:

single chromatid breaks with un-paired chromatid fragments, and

SCU (sister chromatid union). We also observed some paired sister

chromatid fragments (pSCF) that may be companions with SCU

(when the SCU is formed by fusion of telomere-less broken

chromatid arms). Figure 10G summarizes the spontaneous

frequencies of the types of chromosome abnormalities caused by

BCCIP-deficiency. BCCIP-deficiency results in a 3.5-fold increase

on single chromatid breaks, and 3.4-fold increase in occurrence of

paired sister chromatid fragments. The most dramatic increase is

in SCU occurrence. While there was little SCU in the control cells,

there was ,20-fold increase of SCUs in BCCIP knockdown cells.

Because the BCCIP knockdown MEF population has more

polyploid cells than control MEF, the frequencies of chromosome

abnormalities were normalized to the number of chromosomes.

The frequency of abnormality, normalized to number of

metaphase cells, can be found in Figure S6.

The chromatid break is indicative of failed restart of collapsed

replication forks, which generates one-ended DSBs. We further

measured whether BCCIP deficiency causes increased sister

chromatid exchange (SCE), which is seen in Bloom syndrome

and several genetic disorder related to replication stress [31–33].

Consistent with the results from Giemsa-stained chromosome

metaphase spreads, we observed the induction of SCUs alone with

chromatid breaks in BCCIP-deficient cells (Figure 10C and 10D).

However, the increase of SCE in BCCIP deficient cells is modest

(Figure 10H). This may reflect a potential role of BCCIP in

Figure 8. BCCIP-deficient MEF cells have impaired repair of DNA damage induced by ionizing radiation. MEF cells infected with control
(YFP) and Cre-expressing viruses were irradiated with 2 Gy of Cs-137 c-rays. At various time after the irradiation, the cells were stained for gH2AX foci.
The single cell gel electrophoresis alkaline Comet assay was used to assess the residual level of DNA damage at 0.5 h and 4 h after 2 Gy of irradiation.
The comet images were captured by fluorescence microscope and quantified for at least 100 cells per slide with the Cometscore software to calculate
the ratio of DNA in the tails with that of the heads, which represent the relative level of residual damaged DNA. Panel A shows the average number of
cH2AX foci per cells based on scoring 100–300 individual cells per sample. The p-value for each time points are: 0.17 (0 hr), 0.20 (1/4 hr), 0.85 (1 hr),
2.1E-07 (4 hr), and 2.8E-14 (8 hr). Panel B shows the percentage of cells with 5 or more cH2AX foci. Panel C shows representative comet images at
different time after 2 Gy of radiation. Panel D shows the average ratio of DNA content in between the tails and the bodies based on analyses of
individual cells in each group. The p-values for each time points are: 0.024 (0 hr, representing spontaneous DNA damage), 0.69 (1/2 hour), and 1.5E-
08 (4 hr). As shown here, shortly after the irradiation, the amounts of damaged DNA (ratio of tails to heads) were similar. After 4 hours of repair, there
is more residual damaged DNA in the BCCIP knockdown cells than the control.
doi:10.1371/journal.pgen.1002291.g008
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supporting Rad51-dependent strand invasion during the restart of

replication forks (see Discussion for details), which is consistent

with the observation that BCCIP deficiency causes Rad51 down

regulation (Figure 9).

The formation of SCUs is a unique phenotype in BCCIP

deficient cells. To our best knowledge, the earliest literature that

described this form of chromatid alteration was in 1938 with

Drosophila by Kaufmann [34], but has been rarely described since

then. We reasoned that SCUs may be produced by two

mechanisms: telomere fusion between the sister chromatids; or

the re-ligation of the broken sister chromatids. Although the

second possibility is suggested by the presence of paired chromatid

fragments in the BCCIP deficient cells, telomere FISH was

performed to distinguish these possibilities. As can be seen in

Figure 10E and 10F, the SCUs were associated with loss of

telomere signals and were not caused by telomere fusion. We often

observed paired telomere signals from the acentromeric chromatid

fragments in the same cells with SCUs. These observations suggest

SCU as a consequence of ligation of two broken telomere-less

sister chromatids, and unlikely a fusion after telomere erosion.

With the same telomere FISH experiments, we observed induction

of chromatid breaks with single sister chromatid fragment (sSCF)

in BCCIP deficient cells (Figure 10F). We also found an increase in

percentage of chromatids that have lost telomere FISH signals

(Figure 10I). Altogether, these data (Figure 10) strongly suggest

that BCCIP deficiency causes spontaneous chromatid aberrations

associated with replication.

We further analyzed chromosome abnormalities at 2 and

8 hours after 2 Gy of c-irradiation. Again, there was a significant

increase of spontaneous chromosome abnormalities, including

SCU (Figure 11). At 2 hours after the irradiation, SCU frequency

is significantly higher in the BCCIP knockdown cells than the

control cells, but the other forms of damages are not significantly

different between the BCCIP knockdown and control cells. The

control cells exhibited significantly less chromosome abnormalities

at 8 hours, than at 2 hours after irradiation, indicating repair of

DNA damages associated with these forms of abnormalities.

However, there remained a significantly higher level of chromo-

some abnormalities in the BCCIP knockdown cells than the

control cells at 8 hours. Noticeably, the SCU level at 8 hours

Figure 9. Reduced Rad51 protein level and focus formation in BCCIP-deficient MEFs. At 2, 4, and 8 hours after 2 Gy of irradiation, the
mouse Rad51 was stained and the numbers of Rad51 nuclear foci were scored. Panel A shows the average number of Rad51 foci per cell at different
time after 2 Gy of irradiation. Panel B shows the percentage of cells with 5 or more Rad51 foci. Panel C is a Western blot illustrating reduced Rad51
protein level of whole cell extract in the non-irradiated (0 hr) and irradiated cells at different times after irradiation.
doi:10.1371/journal.pgen.1002291.g009
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remains as high as at 2 hours, suggesting that the BCCIP deficient

cells repaired little damages leading to SCU during the 2–8 hours

following irradiation. These data support the notion that BCCIP is

not only required to repair different forms of DNA damages but

also has a significant role in protecting the cells against SCU.

p53 deficiency cannot rescue the embryonic lethality in
BCCIP-deficient mice

Because BCCIP deficiency spontaneously activates p53 Ser-15

phosphorylation in the MEFs (Figure 6B), and it has been shown

that p53 deficiency can partially delay the embryonic lethality

conveyed by BRCA1 and BRCA2 deficiency in mice [35], we

measured the in vitro growth rates of the p53 mutant and wild type

BCCIP deficient MEFs. As shown in Figure S7, deletion of p53

can only partially rescue the growth retardation of BCCIP

deficient cells. Next we asked whether p53 deficiency can

completely rescue the embryonic lethality in BCCIP deficient

mice. We used three different strategies to breed the constitutive

p53 null mice originally generated by Jacks et al [36]. Table 2

shows the distribution of genotypes among viable newborns after

breeding: 1) between (p53+/+;LoxPshBCCIP+/+;EIIaCre2/2)

and (p53+/+; LoxPshBCCIP2/2;EIIaCre+/2), 2) between

(p53+/2; LoxPshBCCIP +/+;EIIaCre2/2) and (p53+/2;

LoxPshBCCIP 2/2;EIIaCre+/2), and between (p53+/2;

LoxPshBCCIP +/2;EIIaCre2/2) and (p53+/2; LoxPshBCCIP

2/2;EIIaCre+/2). As shown in Table 2 (see Table S2 for

detailed breeding data), p53 deletion retain approximate 1:1 ratio

between EIIaCre(+/2) and EIIaCre(2/2)mice in LoxPshBC-

CIP(2/2) background. The EIIaCre(+/2) and EIIaCre(2/2)

ratio was significantly less than 1 (16:86) in p53 wild type mice,

and this reduced ratio was not increased in p53 deficient or p53

heterozygous background (0:24 and 11:72 respectively). These

data suggest that p53 deletion failed to completely rescue the

Figure 10. Spontaneous chromosome aberrations in BCCIP-deficient MEFs. The MEF4-LoxPshBCCIP (passage 1) cells with the conditional
BCCIP knockdown cassette were infected with control retro-viruses that express YFP, and the Cre-expressing retrovirus to activate the knockdown of
BCCIP. Then, the metaphase chromosome spreads (panels A and B), sister chromatid exchange assay (panels C and D), and telomere FISH (panel E
and F) were produced (see Materials and Methods) to score chromosome abnormalities. Representative sister chromatid union (SCU), sister
chromatid exchanges (SCE), chromatid break with single chromatid fragment (sSCF) Panel B), and chromosome fragments are shown in panels A-F.
Panel G showed the frequency of three type of chromatid abnormality in 109 control and 137 BCCIP-knockdown cells. Panel H shows the frequency
of sister chromatid exchanges in 41 controls and 21 BCCIP knockdown cells. Panel I illustrates the frequency of loss of telomere signals in 31 controls
and 37 BCCIP knockdown cells.
doi:10.1371/journal.pgen.1002291.g010
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embryonic lethality induced by BCCIP knockdown, suggesting

that DNA damage activated p53 signaling cannot fully account for

the embryonic death completely.

Discussion

BCCIP is a BRCA2 interacting protein in human and Ustilago

maydis [7–10,19]. In this study, we have found that BCCIP

deficiency causes chromatid abnormalities especially a dramatic

induction of sister chromatid unions (SCUs), and impairs mouse

embryo development.

Defective DNA repair and replication stress in
BCCIP-deficient cells

In addition to DSB repair, a major function of the HR

machinery is to preserve genomic integrity via resolving replication

blockage to reduce replication stress, which is loosely defined as

the inefficient progression or stalling of replication forks [3,37,38].

During replication, replication forks may be stalled by encounter-

ing single-strand breaks or damaged nucleotides that are not by-

passed by DNA translesion synthesis. This often produces a one-

ended DSB, which can be processed to yield a single stranded 39-

end to initiate a strand invasion and form a single Holliday

junction at the stalled replication fork. After branch migration (or

replication fork regression) and resolution of the Holliday junction,

the stalled replication fork can be re-started. It is believed that

many factors of the HR pathway, including BRCA2 and

associated proteins, are required in this process.

Replication stress is often manifested by excessive levels of

spontaneous single-stranded DNA (ssDNA), or DNA strand

breaks. On the cytogenetic level, excessive level of chromatid

Figure 11. BCCIP deficiency increases radiation induced chromosome aberrations. At 2 and 8 hours after 2 Gy of irradiation, the cells were
processed to score major types of chromosome aberrations. Shown are the aberration frequencies. Error bars are standard errors. (*) indicates p,0.05
and (**) indicate p,0.01 when comparing the BCCIP knockdown (BCCIP-KD) and control MEFs at the same dose and time point by student t-test.
doi:10.1371/journal.pgen.1002291.g011

Table 2. Number of viable newborns resulting from crossing LoxPshBCCIP with EIIaCre with or without p53 deletion.

LoxPshBCCIP(2/2)

P53 +/+ p53+/2 p532/2 Total

EIIaCre 2/2 6 31 9 46

EIIaCre +/2 8 32 11 51

Total 14 63 20 97

LoxPshBCCIP (+/2)

P53 +/+ p53+/2 p532/2 Total

EIIACre 2/2 85 72 24 181

EIIACre +/2 16 11 0 27

Total 25 83 24 208

The founder line LoxPshBCCIP+/+-4 was used for this breeding. See text and Table S2 for details.
doi:10.1371/journal.pgen.1002291.t002
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breaks and SCEs is a signature of replication stress. It has been

suggested that endogenous replication stress induced by HR

defects may not be detected by the S-phase checkpoint machinery.

Thus cells with excessive replication stress can enter mitosis to

cause mitotic errors [37]. In a previous report, it was shown that

BCCIP deficiency results in accumulation of spontaneous DNA

strand breaks and single-stranded DNA in human cells [16]. In

this study, we have observed an increase of spontaneous chromatid

breaks and SCUs in BCCIP deficient cells (Figure 10), and

impaired repair of radiation damages that lead to SCU formation

(Figure 11). These results are consistent with a role of BCCIP in

suppressing replication stress and repair of DNA damage.

Sister chromatid exchanges and breaks in BCCIP deficient
cells

We have observed a significant spontaneous increase in sister

chromatid breaks (3.5-fold) yet a modest increase of SCE (,1.5

fold) in BCCIP deficient cells (Figure 10). These abnormalities

have often been used as markers for genomic instability. Although

the molecular mechanisms for SCE formation are complex, it is

generally believed that the 39-end of the one-ended DSB of the

stalled replication fork initiates the process with strand invasion

[31]. Once strand invasion is initiated to form the Holliday

junction, branch migration (or fork regression) and resolution of

the Holliday junction would produce a SCE (Figure 12A).

Therefore, factors that increase the production of one-ended

DSBs (e.g. excessive levels of SSBs or inability to carry out

translesion synthesis) have the potential to stimulate SCE [31].

Additionally, deficiencies in proteins involved in branch migration

of the Holliday junction (e.g. BLM and RecQL5) may favor SCE

upon Holliday Junction resolution [31–33].

On the other hand, defects in proteins involved in strand

invasion may have different consequences on SCE. It has been

shown that BRCA2 and RAD51 defects do not significantly

increase spontaneous SCE in mammalian cells [31,39–41]. Since

strand invasion is a critical step to produce SCE, defective RAD51

and its accessory factors may reduce or only modestly increase

SCE due to ineffective strand invasion even in the context of

excessive one-ended DSB and replication stress. As a consequence,

this would significantly increase chromatid breaks (Figure 12B). In

this study, we observed reduced basal level of mouse Rad51

protein and focus formation in the BCCIP deficient cells (Figure 9).

This observation is consistent with the increase in chromatid

breaks and formation of paired sister chromatids in BCCIP-

deficient cells and the reduction of RAD51 focus formation in

BCCIP deficient human cells [10,30]. A possible mechanism for

the formation single chromatid breaks is illustrated in Figure 12B.

A question is how BCCIP deficiency may cause reduced Rad51

protein level. It is known that Rad51 preferably expresses in S

phase cells. A tempting explanation is that reduction of S-phase

Figure 12. Potential mechanisms to produce SCE (panel A), chromatid breaks (panel B), and SCU (panel C) upon replication fork
blockage. BCCIP may function to promote the Rad51-dependent strand invasion (thus SCE) and reduce the probability of further collapse of
replication forks to form the 3-ended DNA double strand break ends (panel C) that would lead to the formation of SCU, or permanently form the one-
ended DSB structures (panel B) that lead to the formation of single chromatid breaks (see text for more details).
doi:10.1371/journal.pgen.1002291.g012

BCCIP in Embryogenesis and Chromosome Stability

PLoS Genetics | www.plosgenetics.org 13 September 2011 | Volume 7 | Issue 9 | e1002291



cell fraction may reduce the overall Rad51 level in the BCCIP

deficient cell population. However, this is unlikely the case because

BCCIP deficiency causes replication stress but did not cause

overall reduction of S-phase fraction ([11] and data not shown).

Although we cannot rule out the possibility that Rad51 protein

stability is altered in BCCIP deficient MEFs, we found that the

BCCIP deficient MEF cells had reduced Rad51 mRNA level

based on RT-PCR analysis (data not shown), suggesting that a

down-regulated Rad51 transcription may contribute to the Rad51

protein level.

SCU is a unique phenotype in BCCIP-deficient cells
A characteristic structural chromosome alteration in the BCCIP

deficient MEFs is SCU, which is not only induced spontaneously

but also remains high 2–8 hours after irradiation (Figure 10 and

Figure 11). The telomere FISH experiments have suggested that

SCUs are likely the consequence of ligation between two broken

sister chromatids. We envision that SCU may be caused by the

following scenario (Figure 12C). When one-ended DSB resection

and subsequent strand invasion fails, an excessive level of single

sister chromatid breaks and further collapse of the replication fork

result in three one-ended DSBs (as shown in Figure 12C). Then,

SCU may occur upon re-ligation of the sister chromatid DSB

ends. The proximate DNA fragment may resume replication due

to the presence of multiple replication origin sites. This produces

paired chromatid fragments. However, we would like to

emphasize that alternative mechanisms to produce SCU are

possible. For example, late S-phase cells with failed resolution of

HR intermediates and/or replication termination structures may

form DSB on sister chromatids, thus SCU. Although erosion of

telomeres in telomerase deficient cells may expose the chromtid

ends to form SCU, this scenario is unlikely to be the cause of SCU

in BCCIP deficient MEF cells, because the BCCIP deficient cells

were cultured in vitro for only a few passages. It would be

interesting to investigate whether eroded telomere ends can form

SCU in Tert deficient cells after long-term culture.

Nevertheless, the SCUs will likely form chromatin bridges

between daughter nuclei at anaphase. It is expected that this form

of structural abnormality will result in chromosome segregation

errors and numerical chromosome instability in daughter cells.

Embryonic lethality of BCCIP-deficient mice
The phenotypes of BCCIP deficient embryos are consistent with

BCCIP’s orthologs in lower eukaryotes, and its interaction partner

BRCA2 [35]. Several BRCA2 knockout mouse models have been

developed. Depending on the specific regions deleted in the

knockout model, the embryonic phenotype of BRCA2 mutant

mice varies [35]. However, most mouse models with large

deletions on BRCA2 produce embryonic lethality [35]. In this

study, we have established a LoxP-Cre based conditional BCCIP

knockdown mouse model. Using this model, we have shown that

the mouse BCCIP gene is essential for embryonic development.

Although many mechanisms may contribute to embryonic

abnormality of BCCIP-deficient mice, the accumulation of

spontaneous DNA damage, excessive replication stress, and

formation of lethal chromatid aberrations in BCCIP deficient cells

are considered the major initiating factors. Down regulation of

BCCIP has been shown to cause spontaneous DNA damage in

human cells [16]. In this study, we observed spontaneous

activation of p53 together with up-regulation of p21 in BCCIP

deficient MEFs (Figure 6B), and increased cell death through

apoptosis at day E7.5 follows reduction in cell proliferation

(Figure 5). These observations are consistent with the scenario that

BCCIP deficiency leads to accumulation of spontaneous DNA

damage, thus growth inhibition and cell death, which lead to

embryonic lethality. However, the accumulation of spontaneous

DNA damage along with activation of p53 may not fully account

for embryo lethality, as the p53 deletion did not completely rescue

the embryonic lethality of BCCIP deficiency despite that it can

partially rescue the growth retardation of BCCIP deficient MEFs

in vitro (Figure S7). Second, BCCIP deficiency may inhibit

proliferation by disrupting cell division in mitosis. We found that

BCCIP-deficient cells had significantly increased levels of

spontaneous chromatid breaks and SCUs at metaphase

(Figure 10). It is anticipated that the chromatid breaks will cause

a net loss of chromosomal materials after mitosis, and the SCUs

will evolve into chromatid bridges at anaphase and telophase to

disrupt chromosome segregation, both scenarios are potentially

lethal to the cells and can contribute to the embryo development

defects.

Conditional knockdown as an effective and alternative
approach to conventional knockout

The conditional knockdown approach offers advantages over

conventional knockout approach. It may avoid interference with

the overlapping genes. Second, while the conventional knockout

approach would only offer either homozygous or heterozygous

gene ablation, the knockdown approach may grant us the ability of

mimicking abnormal protein expression that might occur in

human diseases. Down regulation of BCCIP has been shown in

cancers [7,9,13,14]. Considering the strong genomic instability

phenotype in BCCIP deficient cells and the multiple functions of

BCCIP [10,11,15–18]. It is likely that BCCIP deficiency may

contribute to tumorigenesis in mice. Because the EIIa-Cre

mediated BCCIP knockdown causes embryonic lethality, tissue

specific conditional knockdown is in process to address whether

BCCIP down-regulation contribute to tumorigenesis.

In summary, our study suggests a critical role of mouse BCCIP

gene in maintaining genomic stability and embryonic develop-

ment. The formation of characteristic sister chromatid union in

BCCIP deficient cells may reflect a unique molecular function of

BCCIP in resolving stalled replication forks, and may contribute

significantly to embryonic development defects.

Materials and Methods

Ethics statement
The animal works presented in this study were approved by

Institutional Animal Use and Care Committee of Robert Wood

Johnson Medical School-UMDNJ. We follow our institutional

guideline regarding to animal welfare issues.

Generation of conditional transgenic mice expression
shRNA against the mouse BCCIP

The pBS/U6-pLoxPneo vector [23] was kindly provided by Dr.

Chuxia Deng (National Institute of Diabetes and Digestive and

Kidney Disease, NIH). A pair of mouse BCCIP specific

oligonucleotide (59-GGATGAAGATGAGATCTTTGGTTCAA-

GAGACCAAAGATCTCATC TTCATCCTTTTTT-39 and 59-

AATTAAAAAAGGATGAAGATGAGATCTTTGGTCTCTT-

GAACCAAAGATCTCATCTTCATCCGGCC-39) were an-

nealed, and then ligated into the pBS/U6-pLoxPneo vector

digested with ApaI and EcoRI. This results in the conditional

mouse BCCIP knockdown vector designated pBS/U6-pLoxPneo-

shBCCIP. The effectiveness of this vector to knockdown mouse

BCCIP was confirmed by stably transfecting vectors into mouse

NIH3T3 cells, and then transiently expressing the Cre recombi-

nase in the cells.
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The conditional BCCIP knockdown vector (pBS/U6-pLoxP-

neo-shBCCIP) was digested by KpnI and NotI. The linearized

2.3 kb DNA fragment containing the conditional LoxPshRNA

expression cassette was injected into pronuclei of fertilized oocytes

isolated from superovulated FVB/N mice. Then the injected

oocytes were implanted into pseudopregnant recipient females.

Genomic DNA was extracted from tail biopsies of the resulting

litters and analyzed by PCR and Southern blot. Among the 27

mice obtained from the injections, 7 were found to be positive for

the LoxPshBCCIP transgene cassette. The U6-LoxP-shBCCIP

positive mice were crossbred with FVB/N wild type mice to

identify the mouse lines capable of germline transmission.

Through this procedure, two founder lines with high germline

transmission were identified. They were designated as LoxPshBC-

CIP-4 and LoxPshBCCIP-13, and both were successfully bred into

homozygsity (LoxPshBCCIP+/+). By breeding with wild type mice,

the homozygous transgenic mice (LoxPshBCCIP+/+) is distinguished

from heterozygous mice (LoxPshBCCIP+/2) because the homozy-

gous transgenic mice are able to produce 100% of LoxPshBCCIP

positive newborns while the heterozygous mice (LoxPshBCCIP+/2)

can produce only 50% of LoxPshBCCIP positive mice. The PCR

primer pairs used for genotyping were: 59-TCTAGAACTAGTG-

GATCCGAC -39, and 59-TCGTATAGCATACATTATACG-

39. The probe used for Southern blot was generated by a PCR

amplification of the conditional knockdown vector using the

following primers: 59-ATTGAACAAGATGGATTGCACGCA,

and 59-TCAGAAGAACTCGTCAAG AAGG-39.

Cross-breeding of conditional BCCIP knockdown mice
with EIIa-Cre transgenic mice

The homozygous FVB/N-Tg (EIIaCre+/+) C5379Lmgd/J mice

(Lakso, 1996), were purchased from Jackson Laboratory (stock

number: 003724), and crossed with wild type FVB/N mice to

obtain EIIaCre+/2 heterozygous mice. Then the LoxPshBCCIP+/+

homozygous mice were bred with the EIIa-Cre+/2 heterozygous

mice. Theoretically, this will generate offspring with two genotypes:

[LoxPshBCCIP+/2;EIIaCre+/2] with BCCIP knockdown, and

[LoxPshBCCIP+/2; EIIaCre2/2] as a control at a 1:1 ratio. If the

knockdown of BCCIP is lethal during embryogenesis, reduced

newborn ratio of [LoxPshBCCIP+/2; EIIaCre+/2] to [LoxPshBC-

CIP+/2; EIIaCre2/2] is anticipated. The PCR primers to genotype

EIIaCre were 59CCTGTTTTGCACGTTCACCG39 and

59ATGCTTCTGTCCGTTTGCCG39, which results in a PCR

product of ,270 bp. The animal works were approved by

Institutional Animal Use and Care Committee of Robert Wood

Johnson Medical School.

Antibodies, Western blot, and immuno-fluorescent
staining of cultured cells

To generate rabbit anti-mouse BCCIP antibodies, mouse cDNA

coding for C-terminal 292aa was cloned into pET28 vector

(Novagen, Madison, WI). Recombinant (66His)-tagged mouse

BCCIP protein was expressed and purified with BL21 (DE3) cells,

and the GST-mouse BCCIP protein was expressed and purified in

BL21 cells using pGEX vector as previously described [42,43].

The HIS-tagged BCCIP was injected into rabbits to produce

polyclonal antibodies, and GST-mouse BCCIP was used for

affinity purification of polyclonal anti-BCCIP antibodies. Anti-

PCNA (PC-10), p21 (F-5), p53 (FL-393), and c-myc monoclonal

antibody were purchased from Santa Cruz Biotechnology (Santa

Cruz, CA). Anti- cH2AX, phospho-p53 (Ser15) and anti-cleaved

caspase-3 antibodies from Cell Signaling (Danvers, MA); anti-

pericentrin antibody from Covance Research Products Inc

(Berkeley, CA), anti-c tubulin antibody from Sigma (St, Louis,

MO), and anti-Brachyury and anti-Ki67 from Abcam (Cam-

bridge, MA). Western blots were performed with procedures as

described previously [7,11,15,16,18,44].

Histological analysis and BCCIP immunohistochemistry
Uteri from female mice were isolated at days E6.5–8.5, the

individual decidual swellings were isolated transversely according

to the methods of Smith (Smith, 1985), rinsed with cold PBS, fixed

overnight in 4% paraformaldehyde at 4uC, then embedded in

paraffin. Serials of 5 mm sections were cut and stained with

hemotoxylin and eosin. Anti-BCCIP polyclonal antibody (1:100),

anti-Ki67 polyclonal antibody (1:300), anti-cleaved caspase3

polyclonal antibody (1:100), and anti-Brachyury (1:100) antibodies

were used for immuno-histochemical staining of the corresponding

proteins using previously developed protocols [20].

In situ detection of incorporated BrdU by
immunohistochemistry

To measure DNA synthesis in embryo mouse tissues, BrdU

(100 mg/g of body weight) was intraperitoneally injected into

pregnant female mice. One hour later, the entire uteri were

removed, and the individual decidual swellings were isolated, fixed

in 4% paraformaldehyde at 4uC overnight, embedded in paraffin,

and sectioned (5 mm). To stain incorporated BrdU, the sections

were de-paraffinized, treated with 2 N HCl for 30 min at 37uC,

incubated with anti-BrdU monoclonal antibody (Becton Dickinson,

Franklin Lakes, NJ) at a 1:500 dilution for 2 hr at 37uC, and then

incubated with anti-mouse-HRP secondary antibody for 1 hr. 3,39-

Diaminobenzine tetrahydrochloride hydrate (DAB) color devel-

oped. BrdU positive cells are visualized by their brown color with

DAB, and BrdU negative cells display blue color by hematoxylin.

TUNEL assays with tissue sections
Paraffin embedded tissue sections (5 mm) were used to detect

apoptotic cells using DeadEnd Fluorometric TUNEL System

(Promega, Madison, WI). Briefly, sections were rinsed 3 times with

distilled H2O, once in PBS, and permeabilized with 200 mg/ml of

Proteinase K in PBS for 15 min. The permeabilized sections were

incubated with equilibration buffer for 10 min at room temper-

ature. DNA strand-break labeling and colorization were per-

formed according to the manufacturer recommended procedures,

mounted with VECTASHIELD fluorescent mounting media with

DAPI, and the results were recorded with fluorescent microscope.

In vitro culture of pre-implantation blastocysts
Homozygous BCCIP female FVB/NJ mice (3.5–4 week old)

were given 5 IU of pregnant mare’s serum gonadotropin by

intraperitoneal injection between 3–4 pm. At 46–48 h post-PMSG

injection, they were treated with 5.0 IU of human chorionic

gonadotrophin (hCG) by intraperitoneal injection, and then mated

with wild type and EIIaCre+/+ male mice individually. Next

morning, the female mice with positive mating-plugs were

separated from male mice. At embryo day 3.5 (E3.5), blastocysts

were collected by flushing the uteri of female mice, and

individually cultured for 5 days in 24-well plates in ES cell culture

media without leukemia inhibitory factor (Liu, 1996, Suzuki, 1997)

with 5% CO2 at 37uC. The growth of the cultured blastocysts was

monitored daily and photographed.

Establishment of primary mouse embryo fibroblast (MEF)
culture

Primary mouse embryo fibroblast (MEF) cells were generated

from day 13.5–14.5 embryos of LoxPshBCCIP+/+ female mice
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(founder line 4) mated with LoxPshBCCIP+/+ homozygous male

mice according to the protocols by Hertzog [45]. The MEF cells

were counted and plated into 10 cm dishes at a density of 0.5–

16105 per cm2 in DMEM medium containing 10% FBS, and

incubated at 37uC with 5% CO2. After 24 hr, the medium,

cellular debris, and any unattached cells were removed. The

attached MEF cells were designated as passage 0. After 2–3 days of

culture, each 10 cm plate of cells was split into 3–5 of 10 cm

plates, and the split cultures were then designated as MEF cell

passage 1. All in vitro experiments, except specifically noted, were

carried out with the first passage MEF cells.

Cell culture and retrovirus infection
A retroviral packaging cell line specific for mouse cell lines

(QEco), and mouse embryo fibroblast cells (MEF), were cultured in

DMEM medium supplement with 10% fetal bovine serum,

100 U/ml of penicillin, 100 mg/ml of streptomycin, and 1% of

glutamine. The QEco cells were transfected with pLXSP-YFP and

pLXSP-myc-Cre retrovirus vector separately. Forty eight hours

after transfection, transfected cells were selected by puromycin

(1 mg/ml) for 2 days. Then the cells were grown to 80–90%

confluence in regular culture medium. Virus suspensions were

collected, filtered with 0.45 sterile syringe filters, and mixed with

8 mg/ml of polybrene (Sigma, St, Louis, MO). The MEF cells

were infected 3-times with the virus during a 2 day period, and

then selected with 2.5 mg/ml puromycin for 2 days prior to

phenotype analyses.

For cell growth analysis, cells were counted using a Coulter

counter (Beckman Coulter, Fullerton, CA). Cells were initially

seeded onto 6 cm dish at a density of 0.16106 per dish, then cell

number was determined daily for the next 5 days after the initial

plating. Triplicates for each group at each time point were used in

the measurements.

Replication recovery after Aphidicolin (APH) treatment
To assess the ability of MEFs to recover from replication

blockage, 0.16106 MEF cells were grown on 18 mm cover slides

in 6-well plate. Cells were treated with 0.4 mM APH in DMEM

media for 37uC for 30 hours. After removing APH containing

media by rinsing with sterile PBS, the recovery of replication of

was measured by measuring Bromodeoxyuridine (BrdU) incorpo-

ration. Briefly, BrdU was added to each well to a concentration of

10 mM and slides were fixed at 0, 2, 3, 4, and 5 hours after adding

BrdU using 4% paraformaldehyde for 10 minutes at room

temperature. The fixative was removed by washing the cover

slides three times with 16PBS. The slides in the wells were treated

with 1 M HCl for 10 min in ice, 10 min at room temperature, and

40 min at 37uC to denature DNA. Acid was removed and

neutralized by washing the cover slides three times with borate

buffer (pH 8.5). Cover slides were then washed three times in

PBS+ 0.05% Tween 20 [PBS/T20], blocked with 1 ml of PBS/

T20/2% normal goat serum at 37uC for 30 minutes. Cells were

immuno- stained with mouse anti-BrdU antibody (1:200 in 0.1 ml

of PBS/T20/2% normal goat serum) and incubating at room

temperature for 1 hour or at 4uC overnight. The cells were

washed three times with PBS+ 0.05% Tween-20 and stained with

donkey anti-mouse Rhodamine conjugate diluted to 1:500 in

0.1 ml PBS+ 0.05% Tween-20 with 3% BSA and incubated at

room temperature for 1 hour. Cover-slides were washed three

times with PBS/T20, and mounted on glass slides using Vecta

shield+DAPI mounting media. Slides were evaluated using

immunofluorescent microscopy and the percentage of BrdU

positive cells were counted by counting BrdU positive and DAPI

stained cells on each slide.

Chromosome analysis
To prepare metaphase chromosome spreads (Brown, 2000; Ko,

2008), cells at 80–90% confluence were subcultured into fresh

medium, and incubated at 37uC for 24 hours. Colcemid (Sigma,

St. Louis, MO) was added at final concentration of 0.2 mg/ml and

incubated at 37uC for 4 hours. Cells were trypsinized, and

suspended in 75 mM KCl hypotonic solution at 37uC for

15 minutes, and then fixed in fresh 3:1 methanol/acetic acid.

After 3–4 times of additional fixation, suspended cells were

dropped onto cold wet slides, allowed to dry at room temperature,

and stained with 1% Giemsa. At least 50 metaphase cells were

analyzed under 10006 magnification with microscope for each

group. Gross chromosome aberrations were scored. Statistical

analyses for frequency of aberrations were performed using t-test,

and a P value of ,0.05 was considered significant.

Telomere FISH analysis
The methods developed by Williams et al were used [46,47]. In

brief, after the MEF cells were subcultured into fresh medium and

cultured for 24 hours, 0.2 mg/ml Colcemid was added for 6 hours

to accumulate mitotic cells. Cells were trypsinized with Trypsin-

EDTA (Gibco, Carlsbad, CA) and suspended in 75 mM KCl

hypotonic solution at 37uC for 15 minutes before fixation. After

four times of repeated fixation in fresh 3:1 methanol/acetic acid,

cells were dropped onto cold slides and allowed to dry slowly in a

humid slide box. A probe to telomeric DNA was prepared by

synthesizing an oligomer having the sequence (CCCTAA)7 and

was labeled by terminal deoxynucleotidal transferase tailing

(Roche, Florence, SC) with SpectrumRed-dUTP (Vysis, Des

Plaines, IL) according to the manufacturer’s instructions. A

hybridization mixture containing 0.4 mg/ml probe DNA in 30%

formamide and 26SSC (16SSC is 0.15 M NaCl, 0.015 M sodium

citrate) was applied to slides that had been denatured in 70%

formamide, and 26 SSC at 70uC for five minutes. Following an

overnight hybridization at 37uC in a moist chamber, the slides

were washed in 26SSC at 42uC (5 times, 15 min each) twice, and

then placed in PN Buffer (100 mM Na2HPO4, 50 mM

NaH2PO4, 0.1%Triton X-100) at room temperature for 5 minutes

and mounted in fluorescence mounting medium with DAPI.

Metaphase cells examined with a Zeiss fluorescence microscope

and images were captured with HAL100 camera. At least 20

metaphase cells were analyzed for each group. Chromosome

aberrations (breaks, fragments, and sister chromatid union) were

scored. Statistical analyses for frequency of aberrations were

performed using t-test.

SCE (sister chromatid exchange) analysis
The method developed by Wang et al. was modified [48]. The

MEF cells were cultured with medium containing 10 mM

bromodeoxyuridine (BrdU) for 24 hour and then cultured in

growth medium for another 24 hour, and treated with 0.2 mg/ml

of colcemid 6 h before collection. The harvested cells were treated

with 75 mM KCl hypotonic solution at 37uC for 15 minutes, and

fixed with fresh 3:1 methanol/acetic acid. The cell suspension

were dropped onto slides and air-dried. The slides were incubated

with 10 mg/ml Hoechst 33258 in ddH2O for 20 min, and rinsed

with MacIlvaine solution (164 mM Na2HPO4, 16 mM citric acid

pH 7.0) for three times. The slides were mounted in MacIlvaine

solution, and exposed to UV light for 45 min. After washing with

PBS for 3 times, the slides were incubated in 26 SSC (0.3 M

NaCl, 0.03 M sodium citrate) solution at 62uC for 1 hour, and

then stained with 1% Giemsa solution at pH 6.8 for 20 min.

Metaphase cells were examined with Olympus microscope and

images were captured with PictureFrame. At least 20 metaphase
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cells were analyzed for each group. Statistic analyses for frequency

of aberrations were performed using t-test.

Breeding of p53 mice with BCCIP conditional knockdown
mice

The heterozygous p53 knockout mice [36] were crossed with

LoxPshBCCIP+/+-4 mouse and EIIaCre+/+ mouse respectively to

generate p53+/2;LoxPshBCCIP+/2, and p53+/2;EIIaCre+/2 mice.

The PCR primers used to genotype p53 are: p53ex6F: 59-

GTATCCCGAGTATCTGGAAGACAG-39, p53neoF: 59-

GCCTTCTATCGCCTTCTTGACG-39, p53ex7RN: 59-AAG-

GATAGGTCGGCGGTTCATGC-39. The same PCR primer

pairs as described earlier in this report were used for

BCCIPshRNA and EIIaCre genotyping. The p53+/2;LoxPshBC-

CIP
+/+

mice were obtained by crossing p53+/2;LoxPshBCCIP+/2

females with p53+/2;LoxPshBCCIP+/2 males. The p53+/2;

LoxPshBCCIP+/+ or p53+/2;LoxPshBCCIP+/2 mice were crossed

with p53+/2;EIIaCre+/2 mice respectively.

Supporting Information

Figure S1 Western blot confirming the effectiveness of Cre-

mediated BCCIP knockdown in the mouse embryo fibroblast

(MEF) from two conditional founder mouse lines. MEF cells were

established from the conditional knockdown mouse founder lines 4

and 13. Then the MEF were infected with adenovirus that express

Cre recombinase, and Western blot performed 3 days after the

infection. As can be seen here, the mouse BCCIP protein can be

efficiently knocked down by expression of Cre, with line 4 (Panel

A) exhibiting a slightly better knockdown efficiency than line 13

(panel B). Lane 1: no infection; Lane 2: control virus- no Cre

expression(1:500); and Lane 3: Cre-expressing virus (1:500).

(TIF)

Figure S2 Genotyping and BCCIP expression in embryos

resulted from breeding between LoxPshBCCIP+/+ (founder line-

13) and EIIaCre+/2. At day E11.5, the mouse embryos were

dissected, individual embryos are photographed, and shown in

Panel A (number 1–4 are abnormal embryos, and number 5–9 are

normal). Then, half of each embryo was used to extract DNA for

genotyping the conditional shRNA expression cassette that is

present in all embryo (panel B1), and the Cre-expressing cassette

(panel B2) that is only present in the abnormal embryos. The other

half was used to extract the total proteins, which were used to

detect mouse BCCIP expression (panel C1). Anti-actin blot (panel

C2) was used as a loading control.

(TIF)

Figure S3 Immunohistochemical analysis of Brachyury expres-

sion (E6.5–7.0) in wild-type and BCCIP mutant embryos. A: wild-

type embryos; B: BCCIP mutant embryos. Arrow point out dark

brown brachyury positive cells in primitive streak and mesoderm

in wild-type embryos, no expression is detected in mutant

embryos.

(TIF)

Figure S4 Growth inhibition of control and BCCIP deficient

MEF cells by different doses of c-irradiation. Control and BCCIP

knockdown MEF cells were irradiated with 1–4 Gy of c-rays.

Three days after the irradiation, the number of viable cells were

counted, and normalized to the group without irradiation. Shown

are the relative numbers of viable cells at the time of analysis.

(TIF)

Figure S5 Representative images of immuno-fluorescent stain-

ing of cH2AX at indicated time points. See Figure 8A and 8B for

quantification.

(TIF)

Figure S6 Spontaneous chromosome aberrations in BCCIP

deficient MEFs. Shown are the frequencies of three types of

chromatid abnormalities in 109 controls and 137 BCCIP-

knockdown cells.

(TIF)

Figure S7 Partial rescue of growth retardation by p53 deletion

in BCCIP deficient MEFs. Panel A shows the growth curves of

BCCIP wild type (YFP) and knockdown (Cre) MEFs with wild

type p53 (red lines) or null p53 (black lines). Data are average of 3

independent measurements, and each measurement had three

replicas. As shown here, the p53 deletion resulted in a better

growth in both control (YFP) and BCCIP knockdown (Cre) MEFs.

However, with the p53 null background, the Cre-expressing

(BCCIP knockdown) cells still grew slower compared to the

controls. Panel B shows the ratios of cell numbers between p53

null and p53 wild type control (black line) and BCCIP deficient

(red line) cells. As can be seen here, this ratio is higher for BCCIP

deficient MEFs than that of the YFP control MEFs, suggesting a

preferred stimulation of cell growth by null p53 in the BCCIP

deficient cells than the control.

(TIF)

Table S1 Number of blastocysts analyzed.

(DOC)

Table S2 Number of viable newborns obtained from three

different breeding strategies.

(DOC)
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