
Transcriptional Mutagenesis Induced by 8-Oxoguanine
in Mammalian Cells
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Abstract

Most of the somatic cells of adult metazoans, including mammals, do not undergo continuous cycles of replication. Instead,
they are quiescent and devote most of their metabolic activity to gene expression. The mutagenic consequences of
exposure to DNA–damaging agents are well documented, but less is known about the impact of DNA lesions on
transcription. To investigate this impact, we developed a luciferase-based expression system. This system consists of two
types of construct composed of a DNA template containing an 8-oxoguanine, paired either with a thymine or a cytosine,
placed at defined positions along the transcribed strand of the reporter gene. Analyses of luciferase gene expression from
the two types of construct showed that efficient but error-prone transcriptional bypass of 8-oxoguanine occurred in vivo,
and that this lesion was not repaired by the transcription-coupled repair machinery in mammalian cells. The analysis of
luciferase activity expressed from 8OG:T-containing constructs indicated that the magnitude of erroneous transcription
events involving 8-oxoguanine depended on the sequence contexts surrounding the lesion. Additionally, sequencing of the
transcript population expressed from these constructs showed that RNA polymerase II mostly inserted an adenine opposite
to 8-oxoguanine. Analysis of luciferase expression from 8OG:C-containing constructs showed that the generated aberrant
mRNAs led to the production of mutant proteins with the potential to induce a long-term phenotypical change. These
findings reveal that erroneous transcription over DNA lesions may induce phenotypical changes with the potential to alter
the fate of non-replicating cells.
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Introduction

During replication, DNA lesions exert deleterious effects by

either blocking the DNA polymerase or allowing for mutagenic

bypass of the lesion, which may be of major importance for

evolution, hereditary diseases and cancer [1]. However, outside

the unnatural environment of the laboratory, few cells undergo

continuous cycles of division, and most cells exist instead in a non

replicating state [2]. For example, several of the organs of

multicellular organisms consist principally of non-dividing cells,

the lifespan of which is limited by the functional differentiation

associated with their normal physiology. These cells do not

replicate their genome, but must nonetheless express a large

number of genes for their physiological maintenance, which

depends on the fidelity of both DNA transcription and mRNA

translation. DNA lesions may be caused by a plethora of physical

and chemical agents present in the natural environment. RNA

polymerases would therefore be expected to encounter such lesions

frequently, but much less is known about the interaction of the

transcription machinery with such lesions than about the effects of

these lesions on replication.

Most studies concerning the relationships between RNA

polymerases and DNA lesions focus on bulky or distortive DNA

damages. Such damage generally arrests elongation and is

eliminated by transcription-coupled repair (TCR). This subpath-

way of the nucleotide excision repair pathway removes RNA

polymerase II (RNApolII)-arresting lesions from the transcribed

strand (TS) of genes by recruiting the DNA excision machinery

[3]. However, some DNA lesions are bypassed by an elongating

RNApolII in vitro, which can miscode at the lesion site and produce

mutant transcripts with high efficiency via a process known as

transcriptional mutagenesis (TM) [4,5]. Interestingly, it was

recently reported that even distortive DNA lesions, such as 8,59-

cyclo-29-deoxyadenosine and cyclo-pyrimidine dimer, are by-

passed at low frequency by human RNApolII in vivo, leading to the

production of mutant transcripts [6]. If these events occur in cells,

then each round of transcription of the sequence including the

lesion would result in the production of an mRNA with a targeted

change that will be translated multiple times to produce a

relatively large population of mutant proteins. TM may therefore

induce major phenotypical changes and important biological

outcomes, particularly in cells that are not dividing [4,7].

A frequently occurring DNA lesion results from the direct

oxidation of guanine to generate 7,8-dihydro-8-oxoguanine (8OG)

[8]. In Escherichia coli, 8OG is bypassed by the RNA polymerase,

leading to TM events due to the insertion of adenine or no
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nucleotide opposite to this lesion [9]. Several in vitro studies have

indicated that 8OG could also be the source of TM in human

cells, as it does not represent a strong block for an elongating RNA

polII and, in various experimental conditions, the bypass of this

lesion has been shown to result in the erroneous incorporation of

adenine opposite to the lesion [10–12]. The tendency of 8OG to

induce TM in murine cells was also reported in a recent study

[13]. In this study, we focused on the outcome of 8OG-mediated

TM in mammalian cells, including human cells in particular.

A Photinus pyralis luciferase (Ppluc) reporter system has been used

to examine the occurrence of 8OG-mediated TM in diverse

mammalian cells and to investigate the effects of DNA repair

capacity on these TM events in human and mouse cells. Two types

of construct were used in this study, in which 8OG was introduced

into the transcribed strand of the Ppluc gene, opposite either a

thymine (8OG:T) or a cytosine (8OG:C). In cells, the 8OG:T

mispair constitutes a poor substrate for DNA repair mechanisms.

Consequently, many rounds of transcription over 8OG occur before

the complete removal of this lesion from the transcribed strand of

this type of construct [14,15]. This would result in an amplification

of 8OG-induced TM events, thereby facilitating studies of such

events. However, most of guanine oxidation process leads to 8OG:C

pairs in DNA, which are rapidly processed through hOGG1-

mediated base excision repair (BER) [14]. We therefore also

investigated the ability of 8OG-mediated TM events to induce a

transient phenotypical change with 8OG:C-containing constructs.

An analysis of the relative Ppluc activity expressed from 8OG:T

mispair-containing constructs showed that the extent of 8OG-

mediated TM is, similarly to what has been found for DNA

polymerase, largely dependent on the context sequence and,

probably on the relative distance of the lesion from the promoter.

Ppluc mRNAs expressed from 8OG:T mispair-containing con-

structs were extracted from cells with high levels of TM and

sequenced, to identify the spectrum of RNApolII misinsertion

events induced by transcription over the 8OG lesion. Quantifica-

tion of the Ppluc activities expressed from 8OG:C-containing

constructs confirmed the hypothesis that the extent of TM

depends strongly on the DNA repair capacity of the cell. Such

quantification also showed that TM was a potential source of a

long-term phenotypical change, even in cells with a normal DNA

repair background. With both types of construct, we assessed the

effect of the level of reporter gene expression on TM by modifying

the amount of reporter mRNA produced, using a dose-dependent

doxycycline-responsive promoter. Furthermore, the Ppluc activi-

ties expressed from both types of construct in various TCR-

deficient cells provided insight into the role of this mechanism in

the repair of an 8OG lesion in the transcribed strand of a gene.

These observations may have potentially important implications

for the etiology of diseases, including those affecting non-dividing

cells in particular.

Results

A reporter system for TM
We investigated the effect of 8OG on transcription and

phenotypical change in mammalian cells by using a reporter assay

to measure the levels of active Ppluc generated from expression

constructs derived from the pBDA6 plasmid (Figure S1) and

containing DNA lesions at defined positions on the TS of the gene

(Figure 1). Five sets of three constructs were generated with the

following nomenclature (lesion-free strand (LFS) or 8OG-contain-

ing strand (8OG) / amino acid specified on the NTS)codon number

and composed as follows: (i) a wild-type construct with the wild-type

sequence of the Ppluc gene [(LFS/Lys)5, (LFS/Lys)297, (LFS/

Glu)344, (LFS/Asp)422 and (LFS/Lys)445]; (ii) an 8OG-containing

construct [(8OG/Stop)5, (8OG/Stop)297, (8OG/Ala)344, (8OG/

Ala)422 and (8OG/Stop)445] in which the 8OG was introduced into

the TS of the specified codon and (iii) a mutant construct [(LFS/

Stop)5, (LFS/Stop)297, (LFS/Ala)344, (LFS/Ala)422 and (LFS/

Stop)445] (Figure 1). In three of the mutant constructs, a lysine

codon within the Ppluc gene (codon number 5, 297 or 445) was

replaced by a premature stop codon, resulting in the production of

an inactive C-terminally truncated protein [16]. The other two

mutant constructs, specifying alanine at codon 344 or 422, resulted

in the production of an inactive form, E334A or D422A, of the

Ppluc protein (Branchini, B.R. personal communication). In

transfected cells, expression of the Ppluc gene from these different

constructs was driven by the dose-dependent doxycycline-

responsive Ptight promoter and protein activity was normalized

with respect to the Renilla reniformis luciferase (Rrluc). Both

luciferases are independently translated from the same polycis-

tronic mRNA, with Rrluc translation initiated at an internal

ribosome entry site (IRES) located between the two open reading

frames (Figure S1).

For each assay and for each cell line (Table 1), normalized Ppluc

activities measured after transfection with wild-type constructs was

set as the 100% reference point for quantifying relative Ppluc

activities expressed from the same cell line transfected with mutant

or 8OG-containing constructs. The relative Ppluc activity of the

cell lines transfected with mutant constructs was very low and

varied from 0.001% to 0.022% (Table 2 and Table 3). These

results confirm that the method used to generate the constructs

was appropriate for this study and that expression of the Ppluc

gene from mutant constructs resulted in the production of inactive

proteins. The 104– to 105–fold difference in Ppluc activity between

wild-type and mutant constructs is large enough for measurement

of the intermediate levels of activity potentially generated by the

TM events induced by 8OG.

8OG:T-driven TM depends on the sequence context
The extent of 8OG-induced TM was determined with (8OG/

Stop) constructs, which contain an 8OG:T mispair in codon 5, 297

Author Summary

The DNA molecule is used as a template for duplication, to
transmit genetic information to the progeny of a given
cell, but also as a template for the transcription machinery.
This machinery converts genetic information from the DNA
form to the RNA form used for protein synthesis. Chemical
alterations of the DNA molecule caused by endogenous or
environmental stresses are responsible for the generation
of mutations. Indeed, these lesions can induce replication
errors when DNA is duplicated during cell division. These
mutations have been shown to be responsible for many
genetic diseases and other sporadic diseases, such as
cancer. However, less is known about their effects on
transcription. We report here that a specific DNA lesion
may lead to erroneous transcription events, ultimately
leading to the production of aberrant proteins. The
magnitude of these errors seems to depend largely on
the DNA sequences surrounding the lesion and the
capacity of the cell to repair this lesion. We also show
that the production of aberrant protein from the
erroneous transcription products may affect the pheno-
type of the cells concerned. Lesion-induced transcription
errors may also play a role in the development of
neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s diseases.
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or 445 (Figure 1). Transcription through the lesion and the

insertion of adenine or cytosine opposite to the 8OG would result

in a Ppluc mRNA encoding lysine or glutamine at the

corresponding codon. The insertion of a lysine residue at this

position results in fully active wild-type Ppluc, whereas the

insertion of a glutamine residue at position 5, 297 or 445 leads

to the production of a Ppluc protein with activity levels 5% to

315% that of the wild-type Ppluc (Table 2). Alternatively, base

excision repair (BER) of this 8OG would result in the production

of a Ppluc mRNA containing a premature stop codon, which

would therefore not give rise to an active Ppluc (Figure 2).

Ppluc activities were 100 to 1,000 times higher in normal cells

transfected with (8OG/Stop) constructs than in normal cells

transfected with (LFS/Stop) constructs. The relative Ppluc

activities expressed from (LFS/Stop) constructs were very low

and similar in all cell lines tested, whereas the relative activity of

Ppluc measured in normal human (MRC5V1 and VA13) and

murine (MEF) cells transfected with (8OG/Stop) constructs

depended strongly on the position of the lesion in the TS of the

Ppluc gene (Table 2). These relative activities are indeed ranging

from less than 1%, if the 8OG was located at codon 5, to more

than 50% if the 8OG was located at codon 445 (Table 2). In cells

transfected with (LFS/Stop) constructs, activities of the coex-

pressed Rrluc were systematically high and similar to those

Figure 1. Ppluc gene modification inducing transcriptional mutagenesis and phenotypical change in mammalian cells. Five codons of
the Ppluc gene were modified, to investigate the effects of the presence of an 8OG residue in the transcribed strand (TS) of a gene. (A) Codons 5, 297
and 445 were modified to specify lysine (K) (LFS/Lys), a stop codon (LFS/Stop) or lysine through transcriptional mutagenesis (TM) and glutamine (Gln)
through faithful transcription (8OG/Stop). (B) Codon 344 was modified to encode glutamic acid (LFS/Glu)344 or alanine (LFS/Ala)344 leading to the
production of an active or an inactive E344A Ppluc, respectively. Codon 422 was modified to specify either aspartic acid (LFS/Asp)422 or alanine (LFS/
Ala)422, leading to the production of an active or an inactive D422A Ppluc, respectively. In (8OG/Ala) constructs, transcriptional bypass of the 8OG
leads to the production of active Ppluc through TM or the production of inactive Ppluc through faithful transcription.
doi:10.1371/journal.pgen.1000577.g001

Table 1. Cell lines used in this study.

Cell line
Complementation
group/phenotype Source Reference

MRC5V1 Normal C. Arlett [48]

VA13 Normal P.C. Hanawalt [49]

CS3BE-S3G1 CS-A A. Sarasin [50]

CS1AN-SV CS-B C. Arlett [50]

XPCS2BA-SV XP-B/CS W.J. Kleijera [51]

XP-CS2-SV XP-D/CS A. Sarasin [52]

XPCS1LV-SV XP-G/CS Corriela [53]

HCT116 MLH1 F. Praz [54]

DLD-1 MSH6 F. Praz [55]

LoVo MSH2 F. Praz [56]

MEF Normal S. Boiteux [17]

MEF ogg1 2/2 Null mOgg1 S. Boiteux [17]

aPrimary cell strains were immortalized, in our laboratory, by transfection with
the pLAS-wt plasmid carrying the TAg from SV40, as previously described [44].

doi:10.1371/journal.pgen.1000577.t001
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measured in cells transfected with wild-type constructs, thus ruling

out the involvement of nonsense-mediated decay in the modula-

tion of relative Ppluc activity, because the same transcript encodes

both luciferases. The repair of 8OG:T mispairs in normal cells

therefore seems to depend largely on the sequence context and,

possibly, on the distance between the promoter of the transcribed

gene and the mispair.

TM does not depend on expression level
Differential 8OG:T mispair repair in a transcribed gene could

potentially be affected by the level of expression of the gene. We

tested this hypothesis by lowering the level of Ppluc/Rrluc mRNA

production by decreasing the amount of doxycycline in the

recovery medium for transfected cells (Table 2). A comparison of

Rrluc activities shows that production of the reporter mRNA

under control of the pTight promoter decreased by a factor of

about 10 when the concentration of doxycycline wasdecreased

from 2 mg/ml to 1 ng/ml (data not shown). The relative Ppluc

activities expressed in MRC5V1 cells transfected with (8OG/Stop)

constructs were similar for both doxycycline concentrations.

Similar results were also obtained with 8OG:C-containing

constructs (Table 3). Taken together, these results indicate that,

over the range tested, the expression level of the mRNA does not

affect the 8OG repair process and that 8OG-induced TM events

occur at similar frequency whether the gene is strongly or weakly

expressed.

MMR and BER are involved in 8OG:T mispair repair
The Ppluc relative activity expressed in cells transfected with

(8OG/Stop) constructs is directly correlated with the efficiency of

8OG:T mispair repair. It has been shown in vitro that 8OG can be

removed from an 8OG:T mispair-containing DNA molecule by

either hOGG1-driven BER or by the mismatch repair system

(MMR), in an hMSH2/hMSH6-dependent manner [14,15].

The role of OGG1-driven BER in the differential 8OG:T repair

efficiency was deciphered by quantifying the relative Ppluc activity

Table 2. Relative luciferase activity 24 h after transfection of the various cell lines with constructs with lesions at codons 5, 297 and
445.

Constructs (LFS/Stop) NTS 59 … TAA … 39a

TS 39 … ATT … 59

Cell line Codon 5 Codon 297 Codon 445

MRC5V1 0.002b 0.022 0.004

Constructs (LFS/Gln) NTS 59 … CAA … 39a

TS 39 … GTT … 59

Cell line Codon 5 Codon 297 Codon 445

MRC5V1 315b 63.5 4.97

Constructs (8OG/Stop) NTS 59 … T AA … 39a

TS 39 … G*TT … 59

Cell line Codon 5 Codon 297 Codon 445

MRC5V1 0.52b 21.44 51.26

VA13 0.38 16.45 50.99

CS3BE-S3G1 0.21 12.33 45.26

CS1AN-SV 0.19 16.43 43.06

XPCS2BA-SV 0.91 15.71 49.45

XP-CS2-SV 0.88 9.97 54.56

XPCS1LV-SV 0.22 11.65 46.26

HCT116 0.25 15.94 38.00

DLD-1 0.41 14.25 20.76c,d

LoVo 0.79 38.5 72.43d,e

MEF 0.15 8.21 56.00

MEF ogg1 2/2 0.76d, f 22.61d, f 59.73

MRC5V1 (low)g 0.10 17.26 41.52

aNTS: nontranscribed strand; TS: transcribed strand ; G*: 8OG.
bValues are expressed as [(RLUPp/RLURr)construct/(RLUPp/RLURr)100%]6100 in the same cell line. Each value is the mean of at least six replicate samples. RLU: relative light

units.
cp values for the Mann-Whitney U test are 0.0374 and 0.0250 for comparisons with the relative luciferase activities of MRC5V1 or VA13 cells transfected with the same
construct, respectively.

dDistributions were considered to be significantly different when p,0.05.
eBoth p values for the Mann-Whitney U test are ,0.0001 for comparisons with the relative luciferase activities of MRC5V1 or VA13 cells transfected with the same
construct.

fp values for Mann-Whitney U test are ,0.0001 and 0.0022 for comparisons with the relative luciferase activities of MEF cells transfected with (8OG/Stop)5 and (8OG/
Stop)297, respectively.

gThe dose of doxycycline was reduced from 2 mg/ml to 1 ng/ml.
doi:10.1371/journal.pgen.1000577.t002

8-Oxoguanine Mediated Transcriptional Mutagenesis

PLoS Genetics | www.plosgenetics.org 4 July 2009 | Volume 5 | Issue 7 | e1000577



expressed from normal (MEF) or Ogg1-deficient (MEF ogg1 2/2)

murine cell lines transfected with (8OG/Stop) constructs [17]. No

significant difference in relative Ppluc activity was observed between

MEF and MEF ogg1 2/2 cells transfected with the (8OG/Stop)445

construct, whereas the relative Ppluc activities of MEF ogg1 2/2 cells

transfected with (8OG/Stop)5 or (8OG/Stop)297 were significantly

higher by factors of 5 and 2.7, respectively, than those of MEF cells

transfected with the same constructs (Table 2). The impact of MMR

on the differential repair efficiency of an 8OG:T mispair was

assessed by using our constructs to transfect hMLH1- (HCT116),

hMSH6- (DLD-1) or hMSH2-deficient (LoVo) cells. Relative Ppluc

activities expressed in hMSH2-deficient cells transfected with (8OG/

Stop) constructs were higher than those in normal cells, whereas the

relative activities of hMSH6- and hMLH1-deficient cells were lower

than those in normal cells (Table 2). The only significant differences

with respect to normal cells (MRC5 and VA13) were obtained for

hMSH2- and hMSH6-deficient cells transfected with the (8OG/

Stop)445 construct, indicating a possible key role of these proteins in

the 8OG MMR-dependent repair pathway. These results indicate

that both MMR and BER are involved in repairing 8OG:T mispairs

in vivo.

Base-specificity of 8OG-driven TM
The high relative Ppluc activities expressed in cells transfected

with the (8OG/Stop)445 construct and the consistently high levels of

Rrluc activity in cells transfected with (8OG/Stop), in which Rrluc

activity levels were similar to those in cells transfected with wild-type

constructs, suggest that the presence of an 8OG on the TS of a gene

does not block transcription and that the human and murine

RNApolII enzymes incorporate adenine or cytosine opposite to

8OG. However, detectable enzyme activity cannot be viewed as

direct evidence for TM, as both nucleotide insertions result in the

production of Ppluc enzymes with various degrees of activity.

As mentioned above, the 8OG:T mispair in the (8OG/Stop)445

construct constitutes a very poor substrate for DNA repair and

many rounds of transcription occur before the removal of the lesion

from the DNA template. Thus, analyses of Ppluc mRNA sequences

produced in cells transfected with the (8OG/Stop)445 construct

should provide an accurate description of the spectrum of

misinsertion events occurring during transcription over an 8OG

lesion. We identified the nucleotides inserted opposite 8OG by the

human RNApolII by sequencing partial cDNA subclones obtained

from RNA extracted from MRC5V1 cells transfected with the

(8OG/Stop)445 construct. The major cDNA type (85%) harbors an

AAA lysine codon at position 445, the expected sequence when

adenine is incorporated opposite to 8OG through TM (Figure 1 and

Figure 2). The other two minor cDNA types contain a TAA stop

codon (3%), reflecting the transcription of repaired (8OG/Stop)445

molecules, or a CAA glutamine codon (12%). Thus, in human cells,

RNApolII can generate mutated transcripts containing an adenine

residue at the position corresponding to the lesion during

transcription over 8OG.

8OG:C-driven TM induces phenotypical change
The use of (8OG/Stop) constructs provided important insight

into the repair of an 8OG:T mispair in cells and the spectrum of

Table 3. Relative luciferase activity 24 h after the transfection of various cell lines with constructs with lesions at codons 344 and
422.

Constructs

NTS 59 … GCG … 39a NTS 59 … GCC … 39a

Cell line TS 39 … CGC … 59 TS 39 … CGG … 59

MRC5V1 0.005b 0.001

VA13 0.006 0.001

MEF 0.002 0.004

Constructs

NTS 59 … GC G … 39a NTS 59 … GC C … 39a

Cell line TS 39 … CG*C … 59 TS 39 … CG*G … 59

MRC5V1 0.76b 0.28

VA13 2.13 1.25

CS3BE-S3G1 0.30 0.16

CS1AN-SV 1.00 0.75

XPCS2BA-SV 0.65 0.31

XP-CS2-SV 0.43 0.29

XPCS1LV-SV 0.74 0.27

MEF 0.41 0.23

MEF ogg1 2/2 14.94c, d 17.09c, d

MRC5V1 (low)e 0.38 0.18

aNTS: nontranscribed strand; TS: transcribed strand ; G*: 8OG.
bValues are expressed as [(RLUPp/RLURr)construct/(RLUPp/RLURr)100%]6100 in the same cell line. Each value is the mean of at least six replicate samples. RLU: relative light

units.
cp values for Mann-Whitney U test are 0.0022 for comparisons with the relative luciferase activities of MEF cells transfected with the same construct.
dDistributions were considered to be significantly different when p,0.05.
eThe dose of doxycycline was reduced from 2 mg/ml to 1 ng/ml.
doi:10.1371/journal.pgen.1000577.t003
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nucleotide insertions occurring opposite to the 8OG lesion during

in vivo transcription by human RNApolII over this lesion.

However, 8OG:T mispairs occur only rarely in vivo, because

guanine oxidation mostly generates 8OG:C pairs. The ability of

8OG to induce a phenotypical change through TM was

investigated with (8OG/Ala) constructs containing an 8OG:C

pair at codon 344 or 422 (Figure 1). Active Ppluc proteins can be

produced from these constructs only through the insertion of an

adenine residue opposite to the 8OG, resulting in the production

of an mRNA with the wild-type Ppluc gene sequence. Although

8OG:C pair is a good substrate for OGG1-mediated repair, levels

of relative Ppluc activity in human (MRC5V1 and VA13) and

murine (MEF) cell lines transfected with (8OG/Ala) constructs

were from 57- to 1300-fold higher than those obtained following

transfection of these same cell types with (LFS/Ala) constructs

(Table 3). Thus, in vivo, the murine and human RNApolII enzymes

can transcribe through an 8OG lesion, inducing the misincorpora-

tion of adenine opposite to this lesion, resulting in a significant

phenotypical change.

BER can modulate 8OG-driven phenotypical change,
whereas TCR cannot

The magnitude of this phenotypical change may depend on the

DNA repair capacity of the cells, as repair of the 8OG would

convert codon 344 or 422 to an alanine codon, leading to the

production of inactive Ppluc. We assessed the extent to which the

phenotypical change depended on the DNA repair capacity of the

cells by transfecting mouse cells lacking OGG1-mediated BER

with (8OG/Ala) constructs [17]. The relative Ppluc activities of

MEF ogg1 2/2 cells transfected with (8OG/Ala)344 or (8OG/

Ala)422 were 36.4- and 74.3-fold higher, respectively, than those

for the normal parental cell line (MEF) transfected with the same

constructs (Table 3). These findings thus demonstrate that the

impact of TM on the phenotype depends on the DNA repair

capacity of the cells (Table 3).

An 8OG lesion in a TS might also be repaired by pathways other

than OGG1-mediated BER, possibly including TCR, as cells from

patients with Cockayne syndrome have been shown to be defective

for both TCR and the repair of oxidative lesions [18]. Nonetheless,

the role of TCR in the repair of oxidative lesions, such as 8OG,

remains debatable, as several papers addressing this question have

recently been retracted [19–21]. In our system, the TCR-mediated

repair of 8OG should be revealed by a higher level of phenotypical

change in TCR-deficient cells transfected with (8OG/Ala) constructs

and higher relative Ppluc activities in cells transfected with (8OG/

Stop) constructs. However, the relative Ppluc activities expressed from

CS- and XP/CS-derived cells transfected with (8OG/Ala) or (8OG/

Stop) constructs fell within the same range as those for normal cells

Figure 2. 8OG-driven transcriptional mutagenesis in human cells. We provide here a schematic diagram of the fate of an 8OG:T mispair at
codon 445. After transfection with (8OG/Stop)445, the DNA molecule can be repaired by various DNA repair pathways (see text for details). Depending
on the pathway, transcription of the repaired molecules leads to the production of an mRNA molecule containing either a C or a U as the first base of
codon 445, thus generating a stop codon or encoding a glutamine, respectively. The transcription of unrepaired molecules is the source of 8OG-
driven TM events. We assessed the frequency of such events by extracting total RNA from MRC5V1 cells transfected with the (8OG/Stop)445 construct
24 hours after transfection. A portion of the Ppluc mRNA was amplified and RT-PCR fragments were subcloned into pUC18 for sequencing. The
numbers of each type of cDNA are indicated for each type of base insertion.
doi:10.1371/journal.pgen.1000577.g002
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transfected with these constructs (Table 2 and Table 3), ruling out the

possibility of TCR-mediated repair of 8OG.

Evolution in the 8OG-driven phenotypical change over
time

The change in phenotype observed for normal cells transfected

with (8OG/Ala) should not be permanent, as the 8OG lesion

responsible for inducing this change should be repaired over time.

We evaluated the magnitude of the phenotypical change induced

by 8OG over time by assessing the production of active Ppluc at

various times after the transfection of MRC5V1 cells.

Higher levels of active Ppluc were consistently expressed from

(8OG/Ala) constructs than from (LFS/Ala) constructs, over a

period of at least seven days after transfection (Figure 3). The

observed differences were significant for up to four days after

transfection, but the difference observed on day 7 was not

significant as, for each construct, only one of the six replicates

displayed levels of Ppluc activity above the background, a

phenomenon similar to the so-called ‘‘mutagenesis jackpot’’ [22].

Similar decreases in Ppluc activities were observed with wild-type

and (8OG/Ala) constructs, but these results clearly indicate that

the TM process induced by 8OG can lead to a long-term

phenotypical change in the affected cells.

Discussion

In the present study, we investigated the in vivo consequences of

the presence of an 8OG moiety in the transcribed strand (TS) of

the Ppluc reporter gene in human and murine cells. Enzyme

activity measurements and mRNA sequence analysis results

showed that transcription over the 8OG on the template strand

(TS) generated mutated transcripts, leading to a long-term

phenotypical change. Furthermore, the magnitude of the observed

phenotypical change depended strongly on the DNA repair

capacity of the cells, but not on the level of expression of the gene.

8OG-mediated TM in human cells
In vitro studies have shown that 8OG does not block the

progression of the mammalian RNApolII and that non mutagenic

cytosine insertions opposite to this lesion are favored, although the

insertion of a certain number of adenine residues is also detected

[10–12,23]. Analysis of the cDNA population generated from the

Ppluc mRNA produced in MRC5V1 cells transfected with the

(8OG/Stop)445 construct revealed that in vivo transcription of

8OG generates two distinct populations of transcripts. The largest

of these two populations consisted of mutated mRNA molecules

containing an adenine residue incorporated opposite to the 8OG

during transcription. The other population consisted of transcripts

in which a cytosine residue was incorporated at the position

corresponding to the lesion, probably due to non mutagenic

transcription over 8OG. This type of cDNA could potentially

result from faithful transcription over across the 8OG lesion, but

may also result from the transcription of (8OG/Stop)445 molecules

repaired by MMR. Indeed, it has been shown that the binding of

hMSH2/hMSH6 to an 8OG:T mispair can promote excision of

the 8OG-free strand and that adenine and cytosine are inserted

with similar efficiencies opposite to the 8OG during repair

synthesis, resulting in 8OG:A- or 8OG:C-containing molecules

Figure 3. The pattern of 8OG-driven phenotypical change over time. MRC5 cells were transfected with (LFS/Glu)344 (open triangles, solid lines),
(LFS/Asp)422 (open circles, solid lines), (8OG/Ala)344 (closed triangles, solid lines), (8OG/Ala)422 (closed circles, solid lines), (LFS/Ala)344 (open triangles,
dashed lines) or (LFS/Ala)422 (open circles, dashed lines). Ppluc and Rrluc activities in transfected cells were quantified at different time points after
transfection at time 0. Each experimental point corresponds to the mean of six replicates6the standard error of the mean. RLU: relative light units.
doi:10.1371/journal.pgen.1000577.g003
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[15]. For 8OG:A, a two-step pathway has been proposed in which

the incorporated adenine is excised by hMYH and a cytosine is

inserted during repair synthesis [1,24]. The resulting 8OG:C-

containing DNA is then used as a substrate for hOGG1 [25],

which can replace the 8OG by a guanine residue, creating a

glutamine codon (39-GTT-59) in the TS of the Ppluc gene

(Figure 2). Saxowsky et al. recently reported cytosine incorporation

to be the major event observed during 8OG bypass by murine

RNApolII, with adenine incorporation observed in about 10% of

transcripts [13]. This apparent discrepancy may be due to

differences in sequence context. As reported above, our results

clearly indicate that sequence context may have a major influence

on the outcome of 8OG-induced TM in mammalian cells. The

nature of the nucleotide paired with the 8OG in the DNA

template may also account for this difference. Indeed, if 8OG is

placed opposite a cytosine residue, about 28% of the transcripts

contain an adenine at the position corresponding to the lesion after

the expression of their reporter gene in MEF ogg1 2/2 cells [13].

Our findings are consistent with those of Saxowsky et al., because

we found that 15 to 20% adenine-containing transcripts were

produced when 8OG:C pair-containing constructs were expressed

in MEF ogg1 2/2 cells (Table 3). Therefore, these results indicate

that, in vivo, adenine insertion by human RNApolII during

transcription across an 8OG lesion is a major event. Our findings

clearly demonstrate that TM can be induced during transcription

over an 8OG lesion in vivo. Consequently, 8OG must be removed

from the DNA before RNApolII encounters this lesion, to avoid

the production of mutant transcripts and mutant proteins.

Significant DNA repair pathway activity is therefore required in

conditions of non-growth in the absence of DNA replication.

TM–induced phenotypical change and evolution over
time

The use of an 8OG:T mispair-containing construct was crucial

for analysis of the specificity of base incorporation opposite to this

lesion during transcription by RNApolII. This mispair probably

occurs rarely in cells, because guanine oxidation in DNA mostly

results in the production of 8OG:C pairs, the best substrate for

OGG1-mediated repair [26]. However, even in cells not deficient

for any of the known DNA repair pathways, significant amounts of

active Ppluc protein were expressed in cells transfected with

8OG:C pair-containing constructs. Thus, in mammalian cells, the

oxidation of a guanine residue in the TS of a gene may lead to

major phenotypical changes, as the only difference between the

(LFS/Ala) and (8OG/Ala) constructs is the replacement of a

normal guanine residue by 8OG (Figure 1). This simple and only

difference allows for cells transfected with (8OG/Ala) constructs to

express non negligible amounts of active Ppluc protein through

TM, rendering them phenotypically different from the same cells

transfected with (LFS/Ala) constructs, which produce no active

Ppluc protein. Thus, when there is an 8OG residue present in the

TS of an expressed gene, RNApolII continually produces

transcripts containing a G to A base substitution at the same

position, potentially leading to a phenotypical change. The long-

term consequences of this phenotypical change for the cell depend

on the time required to repair the lesion inducing them and,

particularly, the half-life of the mutant protein produced (Figure 4).

Unexpectedly, we continued to detect active Ppluc protein (the

‘‘mutant’’ form in this case) for up to seven days after transfection

with (8OG/Ala) constructs. Knowing that Ppluc is not a very

stable protein, as its half-life was estimated to be of no more than

Figure 4. Speculative biological outcomes of TM. In normal conditions (left part), the expression of a gene in non-dividing cells results in the
production of normal proteins. When a DNA lesion (e.g. 8OG) occurs in the transcribed strand of a gene (on the right), multiple RNA polymerase
bypasses of the lesion result in misincorporation events (e.g. A instead of C opposite to 8OG, open circle on the mRNA) at the same position in most
of the mRNA molecules produced before the DNA is repaired. A large population of mutated mRNA molecules can then be translated multiple times
to generate large amounts of mutated protein, which may induce a transient phenotypical change. However, if the mutated proteins are resistant to
protein degradation and have a dominant effect, the phenotypical change may be prolonged or even permanent. For example, the mutated proteins
may be more likely to form aggregates, providing a nucleation point for the recruitment of normal proteins produced after the DNA lesion is repaired.
These protein aggregates may therefore mimic a dominant-negative effect ultimately resulting in cell degeneration, as observed in
neurodegenerative diseases.
doi:10.1371/journal.pgen.1000577.g004
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four hours in mammalian cells [27], TM must therefore continue

for a prolonged period of time in human cells. This finding has

important implications concerning the role of TM in the etiology

of diseases, particularly those affecting non-dividing cell popula-

tions, caused by the generation of mutant proteins by TM.

Phenotypical change is modulated by BER, but not by
TCR

In mammalian cells, the main pathway for the removal of 8OG

from DNA involves the OGG1 glycosylase protein. It has been

shown that ogg12/2 mice accumulate 8OG lesions in their DNA

with aging, leading to a moderate tissue-specific increase in

spontaneous mutation rate; these findings demonstrate the

antimutator role of the OGG1 BER pathway [17,28]. The

relative activity of Ppluc expressed in MEF ogg1 2/2 cells

transfected with (8OG/Ala) constructs reflects the higher level of

mutant transcript production in these cells, leading to a more

pronounced phenotypical change than observed in the normal

parental cells. This implies that a deficiency or decrease in the

activity of this enzyme, as observed in several diseases [29,30],

may induce a phenotypical change in some cells of the body,

contributing to the etiology of the disease.

We also investigated the role of TCR in the repair of 8OG

lesions in the TS in vivo. The role of this process in removing non

bulky oxidative lesions, such as 8OG, from the TS is, as

aforementioned, quite controversial [19–21]. It is thought that

repair events of this type involve the blockage of RNApolII

elongation by a lesion on the TS, providing a signal for the

recruitment of the TCR machinery. In this regard, the role of

TCR in the removal of 8OG from a TS has been investigated in

several studies focusing on RNApolII interactions at sites

containing this lesion [10–12,23]. These studies concluded that,

both in vitro and in vivo, 8OG only weakly blocks elongation by the

mammalian RNApolII. In this study, the two luciferases were

generated by independent translation from the same polycistronic

mRNA, with the translation of Rrluc initiated at an IRES located

between the two open reading frames. A blockage of RNA polII

elongation during the transcription of this mRNA would thus

result in very weak Rrluc luminescence. However, the observation

that cells transfected with 8OG-containing or wild-type constructs

had similar levels of Rrluc protein activity strongly suggests that, in

vivo, 8OG does not represent a strong block to an elongating

mammalian RNApolII. Furthermore, in the five TCR-deficient

human cell lines obtained from patients with Cockayne syndrome

or XP/CS, the relative Ppluc activities resulting from the

expression of (8OG/Ala) constructs were not significantly different

from those in cells with normal DNA repair capacities. This

suggests that the 8OG lesion in these constructs was repaired

equally efficiently in TCR-deficient and normal cells. These results

represent direct evidence that TCR does not play an important

role in the repair of 8OG lesions in human cells, consistent with

the most recent results obtained in vitro [11,12,31]. Furthermore,

Saxowsky et al. also reported that 8OG was repaired equally

efficiently in murine TCR-deficient and normal cells [13]. These

independent in vivo observations are clarifying a controversial area

of the DNA repair field.

The relative activity of Ppluc expressed in MEF ogg1 2/2 cells

transfected with (8OG/Ala) constructs suggests that other DNA

repair activities may also be involved in the repair of 8OG:C pairs

in cells. The activities involved may include that of hNTH1, as this

BER N-glycosylase has been shown to cleave duplex oligonucle-

otides containing 8OG [32]. Alternatively, 8OG may be removed

from the DNA by glycosylases of the NEIL family [33,34].

Expression level has no impact on the magnitude of TM
Accessibility to 8OG may influence the efficiency of lesion

repair and, consequently, the magnitude of 8OG-mediated TM

events. In our system, the reporter gene is under the control of a

dose-dependent doxycycline-responsive promoter, facilitating the

modulation of expression levels. The relative activity of Ppluc

expressed in MRC5V1 cells cultured with low doses of doxycycline

were similar to that obtained in the presence of high doses of the

transcription inducer. This observation reveals that expression

level and thus accessibility to the lesion does not play a major role

in the modulation of TM-mediated events occurring in cells.

Insights from the TM induced by an 8OG:T mispair
It has frequently been reported that 8OG:T mispairs may be

processed by both OGG1-mediated repair and MSH2/MSH6-

dependent MMR pathways [15,26]. Nonetheless, the difference in

affinity of the OGG1 protein and of the MSH2/MSH6 complex

for an 8OG:T mispair suggests that mispairs of this type are most

likely to be processed in an MSH2/MSH6-dependent manner

[15]. The relative activity of Ppluc expressed in OGG1-deficient or

MMR-deficient cells transfected with 8OG:T-containing con-

structs suggests that both pathways play a role in the repair of this

type of mispair in mammalian cells. However, the efficiency of

8OG:T mispair repair depends on its location within the

transcribed gene. It therefore seems likely that the recognition of

this mispair, by MSH2/MSH6 or OGG1, and the efficiency of its

removal by MMR or BER may depend strongly on sequence

context. We cannot rule out the possibility that the efficiency of

these mechanisms also depends on transcription factors, as the

efficiency of 8OG:T repair seemed to be correlated with the

distance of this mispair from the transcriptional initiation sequence

of the gene, creating a polarity gradient. A similar polarity

gradient phenomenon has been reported during meiotic gene

conversion in fungi. Indeed, the non reciprocal transfer of

information from one chromatid to another during yeast meiosis

often varies linearly from one end of the studied gene to the other

(for review see [35]). This phenomenon was shown to be initiated

from promoter-containing regions of the chromosome and to be

dependent upon MMR. It remains unclear whether the observed

polarity gradient along a transcribed reporter gene is a general

feature of DNA repair mechanisms or due exclusively to the

specific sequence context at codons 5, 297 and 445 of the Ppluc

gene. It would also be interesting to use this reporter system to

investigate whether the great variability of 8OG-induced TM is

correlated with similar levels of variability in DNA polymerase

errors during replication.

Speculation on biological outcomes of TM
The potential outcomes of TM include a number of deleterious

events initiated by mutant proteins, such as cell death and changes

in cellular physiology [5,7]. An ‘‘error catastrophe’’ scenario [36],

in which age-related cell death may result from the corruption of

genes required for normal cellular function and viability, may

result from the accumulation of TM-generated mutant proteins.

Indeed, age-dependent deficiencies in the import of OGG1 into

the nuclear and mitochondrial compartments results in the

accumulation of oxidative lesions, such as 8OG, which may lead

to an age-related increase in the production of mutant or

misfolded proteins [37]. Furthermore, some neurological disorders

are characterized by aggregates of misfolded and aberrant proteins

associated with an increase in DNA oxidation [38], mainly due to

a decrease in hOGG1 activity in neuronal cells, resulting in the

accumulation of large amounts of 8OG in the genomes [39].

These aggregates are very resistant to cellular degradation [40]
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and have a dominant-negative effect on cell survival. Indeed, the

addition of aggregated proteins to the culture medium of human

neuroblastoma cells is sufficient to induce apoptotic cell death

[41], because these aggregates act as nucleation points for the

normal protein [42]. Additionally, it has also recently been

suggested that hypomorphic alleles of hOGG1 are associated with

Alzheimer’s disease cases and that defects in OGG1 may play an

important role in the disease in a significant number of AD

patients [43]. Thus, as depicted in Figure 4, aberrant proteins with

a dominant-negative effect produced through TM-related events

may play an important role in the pathogenesis of neurodegen-

erative diseases, such as Alzheimer’s disease and Parkinson’s

disease.

Materials and Methods

Cell lines and culture conditions
The cell lines used in this study are described in Table 1. They

were cultured at 37uC, under an atmosphere containing 5% CO2,

in minimal essential medium (MEM) supplemented with 10% fetal

calf serum, 2 mM L-glutamine, 0.3% amphotericin B (Fungizone),

100 IU penicillin and 100 mg/ml streptomycin. XPCS2BA and

XPCS1LV diploid fibroblasts were transformed, in our laboratory,

with the pLAS-wt-plasmid carrying the TAg of SV40 [44].

The luciferase reporter system
The pBDA6 luciferase reporter vector (Figure S1) contains the

Photinus pyralis (firefly) and the Renilla reniformis (sea pansy) luciferase

genes (Ppluc and Rrluc, respectively) organized in a bicistronic

operon. Rrluc gene translation is initiated from the IRES located

between the Ppluc and Rrluc open reading frames, and both

luciferase proteins are thus translated from the same mRNA.

Transcription to generate this polycistronic mRNA is initiated

from the dose-dependent doxycycline-responsive Ptight promoter.

When cells are transfected with this plasmid, the presence of

doxycycline in the culture medium allows the transcriptional

activator (rtTA) to bind the Ptight promoter, leading to the

production of both luciferases. This plasmid also contains the

ampicillin resistance gene (AmpR) and an origin of double-strand

DNA replication (ColE1), allowing its propagation in bacterial

cells. The production of circular single-stranded DNA corre-

sponding to the coding strand of the Ppluc gene is initiated from

the f1 origin of replication (f1 ori). The other elements of this

plasmid are two SV40-polyadenylation sites (SV40pA) and an

intervening sequence (IVS) directing the correct processing and

stabilization of the mRNA in mammalian cells, and a PCMV

promoter for expression of the rtTA gene. This vector is deprived

of mammalian origin of replication, to prevent artifacts generated

by mutagenic replication of the 8OG-containing constructs.

The pBDA6 vector was constructed in several steps (Figure S2).

First, nucleotides 6060 to 2614 from pIRES (Clontech Laborato-

ries) and nucleotides 79 to 4360 from pTet-On (Clontech

Laboratories) were amplified by PCR, using the Pfu Turbo DNA

polymerase (Stratagene). The oligonucleotide primers used for

these reactions were designed to create AgeI and PacI sites at either

end of the amplified fragments. The two PCR products were then

digested with AgeI and PacI (New England Biolabs) and ligated

together, using T4 DNA ligase (Roche), to generate the pBDA5/1

plasmid. Nucleotides 4336 to 5084 of the pBDA5/1 plasmid were

replaced by nucleotides 2590 to 343 from pTRE-Tight, resulting

in the replacement of the PCMV promoter by the PTight dose-

dependent doxycycline-responsive promoter (Clontech Laborato-

ries) and generation of the pBDA5/2 plasmid. The pBDA6 final

construct was obtained by amplifying the Ppluc and Rrluc genes

from pBI-Luc (Clontech Laboratories) and pRL-CMV (Promega),

respectively. The Ppluc fragment was inserted upstream from the

IRES, between the NsiI and NheI sites, whereas the Rrluc fragment

was inserted into the NotI site downstream from the IRES. All the

variants (pBDA6-luc K5X, K5Q, K297X, K297Q, E344A, D422,

K445X and K445Q), differing from the original by a single point

mutation in the Ppluc gene, were obtained by directed mutagen-

esis, through the PCR of overlapping extensions technique [45].

The fragments generated were then digested with NheI and NsiI

and inserted into pBDA6 digested with the same enzymes. All

PCR amplifications were performed using the Pfu Turbo DNA

polymerase (Stratagene). The name of the pBDA6 indicates the

change of amino-acid sequence of the Ppluc protein at the

specified codon. The Rrluc and Ppluc genes of all the plasmids

were sequenced by Genome Express (Meylan, France). All plasmid

constructs were introduced into the DH12S strain of Escherichia coli.

Bacteria were grown in LB supplemented with ampicillin (100 mg/

ml) (Sigma).

Template construction
We produced eighteen constructs: (LFS/Lys)5, (8OG/Stop)5,

(LFS/Stop)5, (LFS/Gln)5, (LFS/Lys)297, (8OG/Stop)297, (LFS/

Stop)297, (LFS/Gln)297, (LFS/Glu)344, (8OG/Ala)344, (LFS/Ala)344,

(LFS/Asp)422, (8OG/Ala)422, (LFS/Ala)422,(LFS/Lys)445, (8OG/

Stop)445, (LFS/Stop)445 and (LFS/Gln)445. The first part of the name

of each construct indicates the strand transcribed: lesion-free strand

(LFS) or 8OG-containing strand (8OG). The second part of the name

indicates the amino acid specified by the non-transcribed strand and

the single strand DNA of the pBDA6 variant used as a template for

DNA synthesis. The index number corresponds to the codon number

in the Ppluc gene. Single-stranded DNA was prepared, and templates

constructed, as previously described [46,47]. The primers used to

initiate DNA polymerization reactions for the template construction

are listed in Table S1.

Luciferase activity measurement
Cells were transfected with constructs by nucleofection

methods, using the NHDF nucleofector kit (Amaxa). Cells were

first treated with trypsin and washed twice in 16PBS (Gibco). For

each transfection, 300,000 cells (or 1,000,0000 cells for normal

MEF and LoVo cells) were resuspended in 100 ml of NHDF

solution and mixed with 300 ng (or 1 mg for normal MEF cells) of

the construct concerned. The mixture was then subjected to

electroporation program U23 of the Amaxa nucleofector device.

Immediately after the electric shock, cells were resuspended in

3 ml of MEM (Gibco) supplemented with 10% fetal calf serum

(Gibco), 2 mM L-glutamine (Gibco) and 2 mg/ml (or 1 ng/ml

when specified) doxycycline (Sigma) and placed in 6-well plates in

an incubator maintained at 37uC, under an atmosphere

containing 5% CO2.

The medium was removed from each well 24 hours after

transfection, and cells were washed twice with cold 16PBS. Cells

were lysed by incubation for 45 minutes in 500 ml of Passive Lysis

Buffer (Promega), placed at 220uC for 30 minutes and then

thawed to room temperature. Luciferase activity was measured

with the Dual-Luciferase Reporter Assay System (Promega), using

80 ml of ‘‘Luciferase Assay Reagent’’, 80 ml of lysed cells and 80 ml

of ‘‘Stop and Glo’’ reagent. Luminescence, in relative light units

(RLU), was determined over a 10-second period, in a Femto-

master FB12 luminometer (Zylux Corp.). Ppluc activity was

normalized with respect to Rrluc activity for each transfection,

using the following formula: (RLUPp/RLURr). For each set of

transfections with the same cell line, the relative Ppluc activity of

cells transfected with 8OG-containing (or LFS/Stop or LFS/Ala)
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constructs was calculated as follows: [(RLUPp/RLURr)construct/

(RLUPp/RLURr)100%]6100 with the 100% being the normalized

Ppluc activity in cells transfected with the corresponding wild-type

construct (LFS/Lys for codon 4, 297 and 445, LFS/Glu for codon

344 and LFS/Asp for codon 422).

RNA extraction and RT–PCR
RNA was extracted from MRC5V1 cells 24 hours after

transfection with the (8OG/Stop)445 construct. RNA was

extracted with Tri-Reagent solution (Sigma), according to the

manufacturer’s instructions. Contaminating DNA was eliminated

from the RNA solution by two treatments with the DNA-free kit

(Ambion). We then used about 50 ng of RNA for RT-PCR with

Superscript II (Invitrogen) as a reverse transcriptase and Taq DNA

polymerase for amplification (New England Biolabs), using

LBRT1 and LBRT2 as primers [9]. For each RNA preparation,

the absence of DNA contamination was checked by amplification

reactions in the same conditions but with the omission of the

reverse transcriptase. The cDNA was subcloned by ligating a

Sau3A/HincII fragment of the RT-PCR product between the

BamHI and HincII sites of pUC18 (all restriction enzymes were

from New England Biolabs). Subclones were then amplified with

Clo18L and Clo18U [9]. The DNA amplified from the subclones

was sequenced by Genome Express (Meylan, France).

Supporting Information

Figure S1 Plasmid used for the assessment of transcriptional

mutagenesis in mammalian cells. The pBDA6 plasmid, the

construction of which is shown in Figure S2, contains the

following features: pTight (dose-dependent doxycycline-responsive

promoter), IVS (intervening sequence), Ppluc (Photinus pyralis

luciferase gene), IRES (internal ribosome entry site), Rrluc (Renilla

reniformis luciferase gene), SV40pA (SV40 polyadenylation site), f1

ori (origin of single-stranded DNA replication), PCMV (CMV

promoter), rtTA (reverse tetracycline-controlled transactivator),

ColE1 (bacterial origin of double-stranded DNA replication),

AmpR (beta-lactamase gene). The pBDA6 plasmid contains no

mammalian origin of replication, so the presence of active Ppluc

protein in transfected cells cannot be due to mutagenic replication

of the 8OG-containing constructs in cells.

Found at: doi:10.1371/journal.pgen.1000577.s001 (0.09 MB TIF)

Figure S2 Stages in the construction of pBDA6. See text for

details.

Found at: doi:10.1371/journal.pgen.1000577.s002 (0.12 MB TIF)

Table S1 Primers used in this study.

Found at: doi:10.1371/journal.pgen.1000577.s003 (0.03 MB

DOC)
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