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In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of
genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are
causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular
processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis
of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify
recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet
techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity
only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the
relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association
between recombination and diversity is explained through covariance of both factors with base composition. To our
knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic
variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests
that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base
composition and long-term molecular evolution.
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Introduction

The extent to which adaptive evolution has shaped the
recent evolutionary history of humans is much debated.
While polymorphism at certain genes, such as beta-globin or
Duffy, is known to be associated with functional variation of
selective importance, the functional importance of most DNA
variation or substitution since the human-chimpanzee split is
unknown. However, adaptive evolution is also expected to
leave its footprint in patterns of genetic variation. In
particular, selective sweeps that accompany the fixation of
adaptive mutations will eliminate nearby genetic variation
[1]. In regions of high recombination, the footprint is
expected to be smaller because recombination moves the
beneficial mutation onto different genetic backgrounds,
allowing linked diversity to persist. The observed positive
correlation between recombination rate and genetic diversity
[2–4] therefore suggests that many loci have been the target of
recent adaptive evolution.

However, genetic diversity is influenced by many factors,
not just adaptive evolution. The rate at which new mutations
appear in a population through mutation varies across the
genome [5] and is influenced by base composition [6]
(particularly the density of methylated CpG dinucleotides
[7]), which in turn is correlated with the recombination rate
[8]. Such indirect correlation may explain why the recombi-
nation rate also correlates with rates of substitution between
human and chimpanzee [6,9,10] and between human and
mouse [11]. Selection against deleterious mutations can also
reduce genetic diversity indirectly through background
selection [12], the effect of which is stronger in regions of

low recombination. Gene density varies across the genome
[13] and recombination hotspots typically occur outside
genes [14]; therefore, direct selection against deleterious
mutations in genes could also potentially lead to a correlation
between diversity and recombination. There is also some
evidence that recombination may itself be directly mutagenic
[9,15,16].
There are two critical limitations in determining the

nature of the association between recombination and
diversity. First, previous analyses have relied on genetic maps
estimated from pedigree studies [17], which typically have a
resolution at the centiMorgan scale (approximately 1 to 2
Mb). However, recombination rates are known to vary at the
kilobase scale, with much recombination occurring in short
hotspots of 1 to 2 kb in length [18–20]. We would therefore
expect direct (e.g., mutagenic) effects of recombination to be
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localised to recombination hotspots, yet this resolution is
simply not available from existing genetic maps. The second
major limitation is that different factors may have different
(even conflicting) effects on diversity at different scales. For
example, gene density could be positively correlated with
mutation rate at broad scales because genes typically lie in
GC-rich regions that have elevated mutation rates, yet at the
very fine scale selective constraint will mean that genes
themselves will tend to have lower diversity and divergence.
Inference about the causal nature of the relationship between
recombination and diversity requires analysis of large
contiguous stretches of sequence from which it is possible
to separate out the influence of different factors acting at
different scales.

Here we introduce three innovations to analyse the
relationship between recombination and diversity in humans.
The first is the use of fine-scale genetic maps estimated from
patterns of genetic variation, which provide a kilobase-scale
resolution to the location of recombination hotspots [14,21].
The second is the analysis of a large contiguous region of the
genome, Chromosome 20, which allows assessment of both
the scale over which factors influence diversity and compar-
ison of genic and nongenic regions [22]. Finally, we use
discrete wavelet analysis [23] to assess scale-specific inter-
actions between factors.

Informally, wavelet analysis transforms a sequence of
observations (such as the GC content or recombination rate
along a chromosome) into a series of coefficients that
describe variation in the signal at successively broader scales.
Under the simplest discrete wavelet decomposition, using the
Haar wavelet function, a series of observations is essentially
transformed into (1) a series of detail coefficients represent-
ing the difference between pairs of neighbouring observa-
tions and (2) a smoothed version of the original signal (note
that it is conventional to rescale both the differenced and
smoothed signals to preserve the variance across levels).
Differencing and smoothing is repeated at successively
broader scales, such that for a series of 2n observations there
are n iterations. If multiple signals have been measured, for
example, base composition, gene content, recombination
rate, etc., each signal can be transformed. Correlations
between signals can subsequently be assessed through linear
model analysis of the detail coefficients at each level [24].

Linear model analysis of the smoothed coefficients is
equivalent to assessing correlations between factors measured
in windows of increasing size.
Although the transformed signal has no more or less

information than the original, there are several benefits of
analysing wavelet-transformed data in the analysis of genomic
correlations. First, analysis of correlations at multiple scales
removes the need to choose an arbitrary window size over
which to search for correlations. Second, because of the way
in which the transformation is constructed, the detail
coefficients represent variation in the signal at a particular
scale that cannot be attributed to variation at other scales
(i.e., they are orthogonal to each other). Consequently, linear
model analysis of the detail coefficients enables the detection
of scale-specific correlations between factors. To give an
illustration of why scale-specific effects can be important,
note that different explanations for the link between
recombination and diversity predict very different patterns
with respect to the scale of the effect. If recombination is
directly mutagenic we would expect to see a very local effect
of recombination hotspots on diversity. In contrast, hitch-
hiking explanations predict that the correlation will be over
much broader scales. Finally, one useful way of thinking
about linear model analysis of detail coefficients is that it
measures how a change in one factor at a given scale influences
change in another factor at the same scale. In effect, the
analysis compares a series of paired observations and so
implicitly controls for the background rate and autocorrela-
tion of the signals. Consequently, linear model analysis of the
detail coefficients is likely to be more robust to confounding
factors that have not been measured. Of course, robustness
may also be associated with reduced power relative to analysis
of the smoothed coefficients.
To illustrate these points, consider the relationship

between gene content and divergence. Figure 1A shows the
original signals and their wavelet decompositions over a 2-Mb
region of the short arm (here a continuous wavelet decom-
position is used merely for visual clarity; all analyses are
carried out on discrete wavelet transformations). There is
clearly both fine-scale and broad-scale variation in both
signals. Correlation of the signals smoothed over successively
broader scales over the long arm of Chromosome 20 (Figure
1B) shows that gene content and diversity are positively
correlated when calculated in windows of 1 to 16 Mb but
negatively correlated if calculated in smaller windows.
Indeed, if the signals are computed in windows of 1 Mb
there is no apparent correlation. Analysis of the detail
coefficients explains this unusual behaviour. Over fine scales
the detail coefficients show negative correlation, while at
broad scales there are weak, but positive correlations. The
correlation between the smoothed coefficients at any scale
can be decomposed into a weighted sum of the correlations
between the detailed coefficients at broader scales (see Text
S2) [23]. Consequently, the detail coefficient correlations
predict the behaviour of the smoothed coefficient correla-
tions but critically also enable the separation of factors acting
at different scales.
We have used wavelet analysis to assess the influences on

genetic diversity along human Chromosome 20, chosen for its
high degree of functional annotation [25] and availability of
high-density single nucleotide polymorphism (SNP) genotype
data. By combining information on patterns of diversity and
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Synopsis

Patterns of genetic variation in the human genome provide a history
of the evolutionary forces that have shaped our species. The role of
one factor, recombination, in shaping variation is much debated.
The observation is that regions of the genome with high
recombination also have high levels of genetic variation, but this
pattern can be interpreted as evidence for either repeated,
widespread adaptive evolution or correlation through neutral
factors such as base composition. To resolve this issue, the authors
constructed a genetic map of human Chromosome 20 that has a
resolution more than three orders in magnitude greater than
previous maps. By comparing the location of recombination
hotspots with patterns of genetic variation, evolution, and base
composition, the authors show that recombination has only a very
local influence on diversity, which suggests that molecular
mechanisms, such as mismatch-associated repair or double-strand
break formation, not adaptive evolution, drives the association.



divergence with information on recombination rate, base
composition, and functional annotation, we show that
previously reported broad-scale correlations between recom-
bination and diversity are likely to result from indirect
correlation of the neutral mutation rate with other features
of genome organisation, particularly base composition.
However, we also show a direct and local effect of
recombination hotspots on local patterns of diversity and
allele frequency, suggestive of a role for base composition
biases in heteroduplex mismatch repair or double-strand
break (DSB) formation. Finally, while we demonstrate highly
local correlations between recombination hotspots, diversity,
and GC content, we find no local correlation between
recombination and divergence. These results are consistent
with recent observations that while the fine-scale structure of
recombination appears to evolve rapidly [26,27], rates over
broader scales may be constrained [14].

Results

We calculated summary statistics of genetic diversity
(average pairwise differences between shotgun reads; see
Text S1), divergence (proportion of nonidentical bases in the
human-chimpanzee alignment), recombination (average re-
combination rate), base composition (GC content), and gene
content (proportion of DNA in annotated exons) for 1-kb
windows along the 62-Mb Chromosome 20 (excluding the
centromere and heterochromatic regions); see Dataset S1.
For each series of observations we obtained wavelet trans-
formations using the Haar wavelet basis (similar results were
obtained using other basis functions) on largest possible
subsets of the short and long arm (16 Mb and 32 Mb,
respectively); the two arms being analysed separately for

replication. Tools for performing and analysing wavelet
transformations are available within Dataset S2.

Summarising Wavelet Transformations and Pairwise
Correlations
A useful feature of the wavelet decomposition is that the

variance in the original signal is proportional to the sum over
all levels of the sum of squares of the detail coefficients at that
level. Consequently, the proportions of the total variance
explained by heterogeneity at different scales, known as the
power spectrum of a signal, can be used to characterise the
signal’s distribution. Before focusing specifically on recombi-
nation and diversity, we first explored the power spectra and
pairwise correlations between wavelet coefficients at each
scale for all factors (Figure 2). Power spectra for each of the
measured features are shown along the diagonal in Figure 2,
for the short arm (blue) and the long arm (red). Broadly, we
observe three different patterns. For diversity, divergence,
and read depth, the greatest source of heterogeneity is at the
finest scale (2 kb), and successively broader scales show
successively weaker contribution. For GC content, we find a
bimodal distribution, with peaks at both very fine scales (2 to
8 kb) and very broad scales (8 to 32 Mb). For recombination
and, to a lesser extent, gene content, we find the greatest
contribution to heterogeneity is made by intermediate scales;
approximately 8 kb in the case of recombination.
Three factors influence the observed power spectrum.

First, there are underlying biological factors that can
determine scale-specific effects. For example, recombination
hotspots are roughly 1 to 2 kb in width [18] and 50 to 100 kb
apart [14], genes average about 27 kb [13], and the average
read is about 500 bp [28]. Second, there are inherent limits in
the resolution to which factors can be determined; for

Figure 1. Wavelet Transformation of Genome Annotations

(A) To illustrate the purpose of wavelet transformation, we show the original traces and continuous wavelet transformations using the derivative of
Gaussian wavelet basis for gene content and divergence over a 2-Mb stretch of Chromosome 20. Colours indicate the magnitude (blue¼ low, red¼
high, white¼ zero) of the wavelet coefficients at each scale and location, with each level being normalised to have equal variance.
(B) Analysis of the correlation between the smoothed and detailed coefficients at each scale (see Text S2). The height of each bar is the value of the
correlation coefficient and the boxes are the contributions from broader scales (top is the broadest scale), with colour intensity related to the
magnitude of the effect (blue is negative, red is positive) and size proportional to the fraction of variance explained by a given level. The correlation
between divergence and constraint in the original signal (�0.0823) can be decomposed into positive contributions from correlations between detail
coefficients at broad scales and negative contributions from correlations between detail coefficients at fine scales.
DOI: 10.1371/journal.pgen.0020148.g001
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example, estimates of recombination rate are limited by SNP
density in the genotype data, which is approximately 2 kb.
Third, there is inherent noise in the estimation of certain
quantities. For example, levels of diversity and divergence are
used to estimate the polymorphism and substitution rates,
respectively. However, both observations are strongly influ-
enced by chance (which mutation or substitution events have
occurred); hence, there is statistical error in the estimation of
the underlying rate.

The off-diagonal elements of Figure 2 show the pairwise
correlations (summarised by Kendall’s rank correlation)
between detail coefficients at each scale (short arm on
bottom left, long arm on top right). The pairwise correlations
between the smoothed coefficients are shown in Figure S1 in
the supporting material. Red crosses indicate significant (p ,

0.01) correlations. A more detailed analysis of the correlates
of diversity and recombination is given below. However, there
are several points worth noting from this analysis. First,
diversity and divergence levels show significant positive
correlation down to the finest scale (2 kb). While this is
expected given variation in the neutral mutation rate, it
nevertheless indicates that the level of statistical error
involved in measuring these quantities at the kilobase scale
is not sufficient to obscure signal. Second, levels of diversity
show significant correlation with all other factors over at least
some scales; recombination does not show as many significant
correlations, though its positive association with GC content
over many scales (4 to 512 kb) is notable. These observations

reinforce the need for multiple factors to be considered in
assessing correlations between recombination and diversity.
Third, we find that read depth is very significantly negatively
correlated with base composition, diversity, and divergence
over scales of 256 kb and less. This is most likely due to the
lower cloning efficiency of GC-rich regions. Because base
composition also influences the types of mutation observed, it
is therefore important to take read depth into account when
assessing the effect of recombination on diversity in this
study.

Recombination Has a Very Local Influence on Levels of
Diversity
As seen in Figure 2, recombination and diversity do show

some consistent statistically significant correlations (e.g., at
the 4-kb scale). To extend the analysis, we used linear
modeling in which diversity, divergence, and the recombina-
tion rate were log-transformed prior to wavelet analysis. Log
transformation is required; otherwise, the extreme non-
normality of the residuals violates the assumptions of the
linear model analysis.
First, to compare our results with previous analyses, we

performed linear model analysis of the smoothed coefficients
including physical position as a covariate. This is equivalent
to assessing correlations between statistics averaged over
different window sizes. Figure 3A shows the results of the
linear model analysis of diversity on the short and long arms.
Divergence is a significant positive predictor over scales up to
1 Mb, while proximity to the centromere has a suppressing
effect and GC content has a weak, but consistent, effect over
and above divergence at fine scales. The effects of recombi-
nation and gene content are surprisingly different between
the short and long arms. On the short arm, neither factor
shows a significant correlation. On the long arm, exons show
a strong negative correlation up to scales of 32 kb, while
recombination shows a strong positive effect over scales up to
256 kb. Gene density on the short arm is less than half that on
the long arm (and there are fewer observations at a given
scale); hence, the lack of association with exons is probably
due to power. It is not clear why recombination shows such a
marked difference.
Figure 3B shows the results of the linear model analysis on

the detail coefficients (note that chromosomal location is
excluded because detail coefficients are constant at a given
level). There are two notable differences between the analysis
of the smooth and detail coefficients. First, in contrast to the
analysis of smoothed coefficients, the detail coefficient
analysis shows a positive and significant effect of recombina-
tion on diversity at fine scales (2 to 4 kb) on both arms.
Second, analysis of the detail coefficients shows that apart
from divergence, other significant factors are only influential
at scales of 32 kb and less and particularly the finest scale (2
kb). Both results suggest that the factors influencing diversity
are primarily very local in nature. In particular, recombina-
tion does not exert an influence on changes in diversity
beyond the scale of 2 to 4 kb; approximately the same size as
recombination hotspots. To summarise the linear model
analysis of the detail coefficients, we find extensive associa-
tion between divergence and diversity, with additional and
largely local influences of base composition, gene content,
and recombination. These are likely to represent the

Figure 2. Power Spectra and Pairwise Correlations of Detail Wavelet

Coefficients

Diagonal plots show the power spectrum of the wavelet decomposition
of each factor on the long (red) and short (blue) arms of Chromosome 20.
Off-diagonal plots show the rank correlation coefficient between pairs of
detail wavelet coefficients at each scale on the long (top right) and short
(bottom left) arms. Red crosses indicate significant correlations (p-value
, 0.01; Kendall’s rank correlation). Scale is shown in kilobases.
DOI: 10.1371/journal.pgen.0020148.g002
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influence of local GC content (e.g., CpG density), selective
constraint, and recombination hotspots, respectively.

Recombination Hotspots Have No Direct Effect on
Patterns of Human-Chimpanzee Divergence

Neutral explanations for a link between recombination and
diversity, as is suggested by the very local nature of the
association found in the analysis above, predict that if
recombination influences diversity, it should also influence
the rate of substitution [6]. We therefore repeated the linear
model analysis, but this time with divergence as the response
variable and diversity as a predictor (Figure 4).

As shown in Figure 4A, linear model analysis of the
smoothed coefficients shows a strong positive relationship
between recombination and divergence over scales of up to
128 kb. We also find strong associations between divergence
and gene content, base composition, diversity read depth,
and proximity to the centromere (on the long arm only).

However, when we analyse the detail coefficients (Figure 4B),
we find that read depth and gene content have significant
negative effects, GC content and diversity have significant
positive effects, but there is no consistent evidence for any
effect of recombination. Indeed, the only suggestive relation-
ships between divergence and recombination occur at broad
scales (16, 128, and 256 kb).
Why should a factor show strong significant correlation in a

linear model analysis of smoothed coefficients but not in the
analysis of detail coefficients? There are three possibilities.
First, the different approaches are likely to have different
power to detect causal relationships. However, analysis of
detail coefficients does detect significant associations when
analysis of the smoothed coefficients does not, suggesting that
power is not the primary difference. Furthermore, the
significant effects in the detail analysis are at a broader scale,
where we expect lower power (because there are fewer
observations) than those in the smoothed analysis. Second,

Figure 3. Marginal Significance (�log10 p-value as Determined by t-Test) of the Wavelet Coefficients from Four Annotations as Predictors of the

Coefficients of the Decomposition of Ascertainment Panel Diversity

Red boxes highlight significant positive linear relationships and blue negative. The intensity of the colour is proportional to the degree of significance.
(A) Smoothed coefficients.
(B) Detail coefficients.
Also shown is the adjusted r 2, which can be interpreted as the proportion of the variance in the signal explained by the linear model.
DOI: 10.1371/journal.pgen.0020148.g003
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the different approaches will be differently susceptible to
controlling for confounding third factors. That is, recombi-
nation and diversity could be linked through a third factor
that is not included in the linear model. However, because the
analysis of the detail coefficients is looking at how changes in
one factor influence changes in another (effectively controlling
for the background rate), rather than just whether the
absolute levels are correlated, it is likely to be less susceptible
to the identification of spurious correlations. Finally, there
may be some biological reason for the discrepancy. For
example, there is considerable evidence that humans and
chimpanzees have very different recombination hotspots
[26,27,29,30], indicating rapid evolution of the fine-scale
structure of recombination rate variation. Consequently, a
causal relationship between divergence and recombination
could become ‘‘blurred’’ in a manner that means detail
coefficient analysis can no longer identify the relationship,
whereas smoothed coefficients can.

Recombination Hotspots Have a Direct Effect on the
Frequency Spectrum of Mutations
As suggested above, the very local nature of the association

between recombination and diversity suggests a neutral
explanation associated with recombination hotspots. Recom-
bination could influence genetic variation directly; for
example, DSBs both require DNA synthesis for repair (hence
can potentially introduce copying errors) and may also
expose DNA to cellular mutagens. Evidence for a mutagenic
effect of recombination comes from both direct experiment
[31–34] and analysis of rates of molecular evolution
[6,9,11,35].
Alternatively, recombination can influence the fate of

existing mutations; for example, allelic differences in the rate
of DSB formation will effectively lead to meiotic drive against
the more recombinogenic allele [36], and heteroduplexes
formed during DSB repair (the pairing of DNA strands from
homologous chromosomes) can lead to DNA base mismatches

Figure 4. Marginal Significance (�log10 p-value as Determined by t-Test) of the Wavelet Coefficients from Four Annotations as Predictors of the

Coefficients of the Decomposition of Human-Chimpanzee Divergence

Red boxes highlight significant positive linear relationships, and blue boxes, negative. The intensity of the colour is proportional to the degree of
significance.
(A) Smoothed coefficients.
(B) Detail coefficients.
DOI: 10.1371/journal.pgen.0020148.g004
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at SNPs which may be repaired in a biased manner [8,32].
Biases toward GC substitutions in regions of high recombi-
nation [37–39] (particularly high male recombination [40])
have been interpreted as evidence for the biased gene
conversion (BGC) hypothesis, as has the tendency for
AT!GC mutations to segregate at higher frequencies than
GC!AT mutations [41,42]. Whether BGC could generate
increased diversity in hotspots depends on the strength of the
effect and the relative rate of appearance of GC!AT and
AT!GC mutations [43]. Finally, we should also consider the
possibility that estimation of recombination rates from
genetic variation will tend to lead to an association between
hotspots and diversity because there will be little power in
low diversity regions to detect hotspots.

As described above, one approach to distinguishing
between hypotheses is to consider the frequency spectrum
of different types of mutations. Under the BGC model, we
would expect AT!GC mutations to segregate at higher
frequencies than GC!AT mutations [41], because the
dynamics of BGC are, under certain assumptions, identical
to the dynamics of selected mutations [44]. In contrast, a
directly mutagenic effect of recombination predicts no
differences between the frequency spectra for the different
mutations (or even an excess of rare AT!GC mutations if
hotspots and the mutations they induce are typically recent).
To assess the influence of recombination on the frequency of
different types of mutation, we used the chimpanzee
sequence to estimate the ancestral allele for all the SNPs
that had been genotyped and then considered the frequency
spectrum of different classes of mutation in regions of very
high and very low recombination (the top and bottom 10% of
the empirical distribution, respectively).

Figure 5 shows quantile-quantile plots comparing the
frequency of AT!GC to GC!AT mutations in regions of
low and high recombination. In both cases we find that
AT!GC segregate, on average, at higher frequencies than
GC!AT mutations, but this effect is much stronger in
regions of high recombination (p , 0.001; Wilcoxon rank sum
test). This result provides strong evidence for the BGC

hypothesis; however, to provide a more quantitative assess-
ment of the effects of BGC, we modified the parametric
approach of [45] (see Materials and Methods). The approach
estimates the strength of BGC by fitting a population genetics
model to the frequency distribution of SNPs from the
African-American population (chosen because previous
studies have suggested that African populations have patterns
of genetic variation most compatible with a constant
population size [46]) in each quintile of recombination rate
(Figures S2 and S3). For SNPs in low recombination regions,
the population-scaled parameter for BGC is estimated to be
about 0.5, compared to approximately 1.3 in regions of very
high recombination. If the effective population size is 10,000
and the ‘‘average recombination hotspot’’ recombines every
1,300 meioses [47], the parameter estimates for the high
recombination region equates to a bias of approximately 4%
toward GC at GC:AT mismatches. Note, however, that the
difference in average recombination rate between low and
high recombination regions is several orders of magnitude. If
biases toward GC were strictly crossover dependent, we would
expect to see no bias in the allele-frequency spectrum in the
low recombination regions. That we see such a bias indicates
either very recent changes in the mutation process (i.e., a
sudden increase in the relative rate of GC!AT mutations) or
unidentified base-composition biases in mutation detection.

Recombination Hotspots Are Associated with Local
Increases in GC Content
To quantify the local effects of recombination hotspots on

diversity and other factors we identified regions with very
elevated recombination rate (at least 5-fold elevation over the
chromosome-wide average) and plotted the average value of
diversity, divergence, and base composition as a function of
distance from the midpoint of such regions (Figure 6). Figure
6B shows an elevation in diversity of 6% to 7% associated
with close proximity (within 10 kb) to the hotspot centre
(interestingly, this seems more pronounced to the side of the
hotspot rather than directly at its centre). Figure 6C shows, as
described above, that there is no local increase in substitution
rate associated with proximity to recombination hotspots.

Figure 5. Quantile-Quantile Plots Showing the Difference in Allele Frequency Spectrum for AT!GC Mutations and GC!AT Mutations in Regions of Low

and High Recombination

If the two types of mutation were to have the same allele frequency distribution, we would expect to see a straight line. In both cases, AT!GC
mutations are typically at higher frequencies than GC!AT mutations; however, the effect is more pronounced in regions of high recombination [(A),
low recombination; (B), high recombination]. A quantification of the difference can be found in the text and supporting material.
DOI: 10.1371/journal.pgen.0020148.g005
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However, Figure 6D shows that there is a small, but
repeatable increase in GC content (1% to 2%) that is again
highly localised to recombination hotspots.

There are two possible explanations for the local associa-
tion between recombination and GC content. Either GC-rich
regions promote the occurrence of hotspots, as has been
suggested in yeast [48], or hotspots, through BGC or biased
mutation, cause the accumulation of GC increasing muta-
tions. However, as discussed above, the latter explanation
seems unlikely, because hotspots appear to evolve too fast to
have lasting effects on base composition. Therefore, it seems
most likely that hotspots preferentially occur in locally GC-
rich regions. It also seems unlikely that the local association
between recombination and diversity is due to the higher
mutability of GC-rich regions, in particular, CpG dinucleo-
tides [7], because we would also expect to see a locally
increased rate of substitution. The data are, however,
compatible with a model in which recombination is muta-
genic, BGC acts on polymorphism within hotspots, and
hotspots evolve rapidly.

Discussion

Our primary conclusion is that while recombination exerts
a local and direct influence on genetic variation, other factors
such as base composition variation underlie the previously
described broad-scale correlations between recombination
and diversity in humans. Consequently, there is no need to
invoke indirect effects of natural selection (such as hitch-
hiking and background selection) to explain the observed
correlations. This is not to say that adaptive evolution does
not occur, merely that estimates of the frequency of selective
sweeps or the strength of background selection [49] must take
into account correlations between recombination and diver-
sity arising from nonselective processes. As is clear from
Figure 4, using divergence to control for variation in the
neutral rate does not fully account for variation in levels of
diversity.

Does BGC Drive Base Composition Evolution?
While the evidence presented suggests the action of BGC,

and we find evidence of very local increases in GC content

around recombination hotspots, we do not believe that BGC
is sufficient to drive the evolution of base composition. First,
most recombination occurs in short hotspots that across the
genome occupy at most 100 Mb (50,000 hotspots of 2-kb
width) [14], or 3% of the genome [14]. Because BGC is
intimately linked to the formation of meiotic DSBs, it will
only be a strong enough force to shape base composition
evolution in recombination hotspots. Second, even in regions
of high recombination we estimate that the effects of BGC are
equivalent to an advantageous mutation with population-
scaled selection coefficient of only 1.3, when a value of 1 is
usually regarded as the boundary of neutrality [50]. Third, the
rapid evolution of recombination hotspots strongly limits the
local effects of BGC on base composition. Combined, these
factors suggest that BGC is unlikely to have a strong effect on
base composition evolution, though possible factors that
could increase its power include a high rate of DSBs that
resolve as gene conversion events rather than crossing-over
events [51] and constraints in recombination rate over larger
scales [14] that will target ‘‘evolving’’ hotspots to particular
genomic regions.
In short, while there is a strong relationship between

recombination and GC content, most of the relationship is
explained by scales broader than recombination hotspots
(16 to 256 kb; unpublished data) and may well result from
interactions of both factors with additional processes such
as chromatin organisation or replication timing. Similar
arguments apply to the question of whether a GC bias in
recombination-associated mutation can explain the relation-
ship between GC content and recombination.
Another important question is whether, under a plausible

range of mutation biases and effective-selection coefficients,
we really should not expect to see a local relationship
between recombination and divergence under the BGC
model given that we see one between recombination and
diversity. As indicated above, it is possible that local
recombination rates may evolve too fast to have any
detectable influence on substitution rates [10]. Furthermore,
even if recombination rates were stable, population genetics
models [43] predict that increases in levels of diversity that
arise from selection counteracting mutation bias are propor-

Figure 6. Effects of Recombination Hotspots on Genomic Features

(A) The elevation of relative recombination rate around defined hotspots on the short (blue) and long (red) arms of Chromosome 20.
(B) Elevation of relative diversity around hotspots (the black line is a smoothed average of the two arms).
(C) There is no effect of hotspots on relative divergence.
(D) Hotspots are associated with local increases in relative GC content. Note that a relative scale was used because the long and short arms can have
systematic differences in absolute value.
DOI: 10.1371/journal.pgen.0020148.g006
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tionally much stronger than any increase in the total rate of
divergence. Nevertheless, we might expect to see local
changes in the relative substitution rates of GC-increasing
and GC-decreasing substitutions at recombination hotspots.
Without an outgroup sequence it is not possible to determine
the ancestral state of the fixed human-chimpanzee differ-
ences observed here. However, when such sequence becomes
available over large regions of the genome, the prediction of
the BGC model is a local excess of fixed AT!GC mutations
(relative to GC!AT ones) in hotspots.

Using Genome-Wide Surveys to Assess
Evolutionary Hypotheses

We have shown that wavelet-based methods provide a
powerful way of analysing scale-specific patterns in the
human genome, capable of revealing novel patterns. While
previous applications of wavelets in genomics [52,53] have
typically considered single features, a particularly powerful
use of these tools is in linear modeling, asking questions
about which factors are directly correlated. Furthermore,
wavelet techniques provide a natural approach to combining
genomic information from multiple sources, including the
raw sequence, analysis of molecular diversity and divergence,
and functional annotation.

Materials and Methods

Genome annotations. The location of exons and variation in base
composition were obtained from the finished and annotated
chromosome sequence (build 34; exon locations from Ensembl:
http://www.ensembl.org). Divergence was assessed from alignments of
the human and chimpanzee sequences (available from UCSC: http://
genome.ucsc.edu), while diversity was assessed from multiple shotgun
sequencing (SNP-discovery) projects of individuals from diverse
geographic populations (see Text S1 for details). Genetic diversity
was estimated from the average pairwise differences per site between
aligned reads that mapped to the given window. Although average
pairwise differences should provide an unbiased estimate of the
population genetics parameter h ¼ 4Neu (where Ne is the effective
population size and u is the mutation rate per site per generation),
systematic biases in sampling (for example, different samples from
different populations being sequenced to different average depths)
could result in a systematic association between read depth and
diversity; we therefore included read depth as a covariate in all
analyses. The fine-scale pattern of recombination rate variation along
the chromosome was estimated from a dense genotyping survey of
approximately 30,000 SNPs from individuals in three populations (96
UK Caucasians, 97 African-Americans, and 42 Asians) using a
previously described coalescent-based method [19]. Recombination
rates were estimated separately in each population, and the
normalised genetic maps were averaged to provide a single genetic
map. A gzipped, comma-delimited text file containing the features
analysed in 1-kb windows is available as part of the supporting online
material (Dataset S1).

Wavelet analysis. All genomic features were calculated for
windows of 1 kb along the 62-Mb chromosome (excluding centro-
meric and heterochromatic regions). For each signal, we applied a
discrete wavelet transformation (using the Haar base function;
similar results were obtained with other wavelet bases), providing
information on heterogeneity in each signal at scales of 1 kb to 16 Mb
(in powers of 2). For replication, we analysed largest possible subsets
of the short and long arms separately (16.4 Mb and 32.8 Mb,
respectively). At such high resolution, the number of SNPs or
substitutions is likely to have a considerable stochastic element.
However, while sampling noise will reduce the variance we can
explain through linear modeling, working at the fine-scale allows us
to detect very local interactions such as may be important for
detecting the effects of recombination hotspots or constraint.
Furthermore, smoothing detail to coarser scales is equivalent to
ignoring the fine-scale wavelet coefficients; hence, it is possible to
reconstruct the variance in signal explained at any smoothed scale.
Pairwise correlations between wavelet coefficients at each scale were

calculated using Kendall’s rank correlation, while linear model
analysis was carried out at each level with the intercept forced
through the origin. Scripts for wavelet analysis using packages within
the R statistical computing language are available as part of the
supporting material (Dataset S2).

Frequency spectrum analysis. The ancestral state of SNPs was
inferred by parsimony from the human-chimpanzee alignments.
Where no orthologous chimpanzee sequence was available, or the
chimpanzee allele did not match either human allele, the SNP was
excluded from further analysis. The parametric analysis of allele
frequency was similar to that of [45]. Briefly, the method of [54] is
adapted to account for SNP ascertainment bias, which we model as
a Poisson distribution for read depth (trimmed between values of 4
and 20) and the double-hit requirement such that each SNP has to
be seen at least twice. To assess how well the model fits, we first
estimated (by maximum likelihood, assuming all SNPs have the same
BGC value) the average read depth and strength of gene conversion
(G ¼ 4Nect, where Ne is the effective population size, c is the per-site
rate of initiation of gene conversion, and t is the average tract
length) for GC!GC, GC!AT, AT!AT, and AT!GC mutations
separately (Figure S2). We estimate that

GGC!AT � GAT!AT � GGC!GC � GAT!GC

that GGC!AT is significantly less than zero, that GAT!AT and GGC!GC
are not significantly different from zero, and that GAT!GC is
significantly greater than zero. Comparison of the predicted
frequency distribution to that observed (by visual inspection and
binomial tests of the counts of alleles at each frequency) indicates
that the model is a reasonable fit. We then fit a model in which
GGC!AT ¼�GAT!GC, dividing SNPs into quintiles of recombination
rate. Estimated rates, with and without the exclusion of potential
CpG mutations, are shown in Figure S3. We do not find that the
exclusion of potential CpG mutations has a large or systematic
effect on the estimated G parameter.

Supporting Information

Dataset S1. Data Used in the Wavelet Analysis

A gzipped, comma-delimited file containing details of SNP discovery
and other chromosomal features in 1-kb windows along human
Chromosome 20 in build 34 coordinates (hg16). Columns are window
start (bp), window end (bp), number of SNPs called across window
(NB, this includes redundant calls), total bases sequenced that map to
window, average read depth within window, number of unique SNPs
(i.e., nonredundant set), number of ‘‘double-hit’’ SNPs (where both
alleles have been observed two or more times), number of non-N
bases in the reference sequence in the window, estimate of theta,
estimate of Pi, estimate of heterozygosity, percent GC, recombination
fraction for window (cM), percent sequence identity between human
and chimpanzee (panTro1), number of bases in window identified as
being in an exon, and number of SNPs typed in genotyping study
within window.

Found at DOI: 10.1371/journal.pgen.0020148.sd001 (1.8 MB TXT).

Dataset S2. R-scripts for Performing Wavelet Analyses Presented in
the Paper

The scripts can be used to generate some of the figures in the paper
by saving both the unzipped Dataset S1 file (saved as
‘‘Chr20_1kb.csv’’) and the Dataset S2 file (saved as ‘‘PLoS_code.r’’)
in the same folder. After starting the R program, change directory to
that in which the files were saved and type source (‘‘PLoS_code.r’’) at
the prompt. The functions in the scripts, however, can be used on any
dataset of 2k observations. This code is powered by existing R
language libraries and should be used simply as an exposition of
wavelet analysis.

Found at DOI: 10.1371/journal.pgen.0020148.sd002 (15 KB TXT).

Figure S1. Power Spectra and Pairwise Correlations of Smoothed
Wavelet Coefficients

Diagonal plots show the power spectrum of the wavelet decom-
position of each factor on the long (red) and short (blue) arms of
Chromosome 20. Off-diagonal plots show the rank correlation
coefficient between pairs of smoothed wavelet coefficients at each
scale on the long (top right) and short (bottom left) arms. Red crosses
indicate significant correlations (p-value ,0.01; Kendall’s rank
correlation). Scale is shown in kilobases.

Found at DOI: 10.1371/journal.pgen.0020148.sg001 (303 KB PDF).
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Figure S2. Estimates of the Strength of Gene Conversion from Allele
Frequency Distributions

Mutations were classified into four categories (GC!GC, GC!AT,
AT!AT, and AT!GC on the basis of comparison of the human alleles
with that of the Chimpanzee reference sequence). For each class we
calculated the likelihood for a grid of values of the strength of gene
conversion (the parameter G ¼ 4Nect) and average read depth in the
SNP ascertainment panel (modeled as a trimmed Poisson distribu-
tion). The heat chart represents the likelihood surface (white is the
highest likelihood), with the cross-hair showing the joint maximum
likelihood estimates and the red points showing the marginal
maximum likelihood estimates for G conditioning on values of
average read depth. Contour rings marks the estimated confidence
intervals (calculated by assuming twice the difference in log likelihood
between models is approximately v2 distributed with 2 degrees of
freedom) for p-values of 0.05, (solid line), 0.01, 0.001, and 0.0001,
respectively.

Found at DOI: 10.1371/journal.pgen.0020148.sg002 (256 KB PDF).

Figure S3. Maximum Likelihood Estimates of the Strength of Gene
Conversion (G ¼ 4Nect) from SNPs in the African-American
Population Sample for Each Quintile of the Recombination Rate In
this analysis we assume that GAT!GC¼�GGC!AT. Estimates are shown
both including (A) and excluding (B) potential CpG mutations. Also
shown are estimates of G for SNPs in quintiles of GC content [(C)
note that recombination and GC content are strongly correlated].
Solid and dashed lines indicate maximum likelihood estimates and

maximum likelihood estimates conditional on a mean read depth of
13, respectively (these are largely identical).

Found at DOI: 10.1371/journal.pgen.0020148.sg003 (175 KB PDF).

Text S1. SNP Discovery and Estimation of Diversity

Found at DOI: 10.1371/journal.pgen.0020148.sd003 (32 KB DOC).

Text S2. Note on the Relationship between Correlation Coefficients
for Raw and Wavelet-Transformed Signals

Found at DOI: 10.1371/journal.pgen.0020148.sd004 (48 KB DOC).
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