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Abstract

Chromatin regulation underlies a variety of DNA metabolism processes, including transcription, recombination, repair, and
replication. To perform a quantitative genetic analysis of chromatin accessibility, we obtained open chromatin profiles
across 96 genetically different yeast strains by FAIRE (formaldehyde-assisted isolation of regulatory elements) assay followed
by sequencing. While 5,10% of open chromatin region (OCRs) were significantly affected by variations in their underlying
DNA sequences, subtelomeric areas as well as gene-rich and gene-poor regions displayed high levels of sequence-
independent variation. We performed quantitative trait loci (QTL) mapping using the FAIRE signal for each OCR as a
quantitative trait. While individual OCRs were associated with a handful of specific genetic markers, gene expression levels
were associated with many regulatory loci. We found multi-target trans-loci responsible for a very large number of OCRs,
which seemed to reflect the widespread influence of certain chromatin regulators. Such regulatory hotspots were enriched
for known regulatory functions, such as recombinational DNA repair, telomere replication, and general transcription control.
The OCRs associated with these multi-target trans-loci coincided with recombination hotspots, telomeres, and gene-rich
regions according to the function of the associated regulators. Our findings provide a global quantitative picture of the
genetic architecture of chromatin regulation.
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Introduction

The genetic basis of gene expression has been studied in various

organisms [1–5]. For example, two different strains of Saccharomyces

cerevisiae (BY and RM) were crossed to produce a number of

different genetic recombinants, and their expression levels and

genotypes were analyzed [1,6]. We previously utilized this system

to separate the cis- and trans-components of variation in gene

expression [7]. Tirosh et al. [8] profiled nucleosome patterns in the

inter-specific hybrids of two yeast species to dissect cis- and trans-

effects on nucleosome positioning. Recently, variations in the

binding patterns of transcription factors (TFs) have begun to be

studied [9–11].

Chromatin structure controls the access of a wide spectrum of

DNA binding proteins involved in not only transcription but also

DNA repair, recombination, and replication. Therefore, open

chromatin areas can indicate DNA regions accessible to such

regulators and thus have been used to identify regulatory regions

or elements in the genome. In addition to the well-known DNaseI

hypersensitivity assay, the FAIRE technique has been used to

capture open chromatin sites in the genome with the aid of

massively parallel sequencing (FAIRE-seq) [12–14]. In a recent

study, the FAIRE DNA was analyzed by genotyping arrays to

identify functional regulatory polymorphisms [15]. FAIRE-seq,

however, is capable of providing a quantitative measure of

chromatin accessibility along with sequence polymorphisms so that

the direct effects of DNA sequences on chromatin accessibility can

be examined. For example, it has been shown that SNPs located

within open chromatin can influence chromatin accessibility, thus

demonstrating that chromatin structure can be a heritable feature

[11].

As chromatin is a genetically regulated material, a genetic

association approach could be used to understand the genetic

architecture of chromatin regulation by examining open chroma-

tin in multiple genetically different individuals. A recent study [16]

used this approach for chromatin accessibility across 70 human

individuals. Because of the large size of the human genome, open

chromatin sites were analyzed only in association with local

genetic markers to identify cis-associations. Transcription factor

binding was shown to be one of the main mechanisms by which

DNA polymorphisms affect chromatin structure.

In this work, we took advantage of the compact size and

comprehensive annotation of the yeast genome to dissect the entire

genetic architecture of chromatin regulation, including both cis-

and trans-associations, to better interpret the functional association

of trans-acting factors. To this end, we generated open chromatin
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maps of 100 yeast samples, including the parental strains (BY and

RM, two replicates of each) and their descendants [6] by means of

the FAIRE-seq technique.

Results

General characterization of open chromatin regions
Open chromatin peaks were first identified for each sample. We

then obtained a total of 7,527 OCRs by combining the peak

signals of the 96 genetically different yeast strains. For each OCR,

the density of the corresponding peak in each strain was calculated

and normalized across the strains. The normalized peak density

measures showed high reproducibility (R = 0.95,0.99) between

the replicates from different FAIRE batches and sequencing

libraries (Figure S1). More than half of the OCRs were located at

promoters, and 18.6% and 16.4% of the peaks fell near

transcription termination sites and within ORFs, respectively

(Figure S2). The OCRs mostly coincided with nucleosome-free

regions at promoters or transcription termination sites (Figure S3).

Approximately 57% of yeast genes contained an OCR at their

promoter, and 40% of replication origins overlapped with 14.3%

of the OCRs (Figure S2). The average size of the OCRs in BY and

RM was 159 bp, while the average size of the OCRs combined

across all the strains was 236 bp (Figure S4).

Comparison of cis- and trans-variation
We sought to estimate the direct influence of underlying DNA

sequences on chromatin configuration by quantitatively compar-

ing sequence-dependent (cis) variation and sequence-independent

(trans) variation in chromatin accessibility. Cis-variation indicates

variation in chromatin accessibility among individuals in which the

DNA sequences of the given open-chromatin locus are different,

while trans-variation indicates variation in chromatin accessibility

among individuals with an identical genotype at the given locus.

To measure cis-variation as the magnitude of chromatin variation

caused primarily by cis-acting elements residing directly beneath

open chromatin, we sought to determine the genotype of each

OCR based on the SNP profiles generated from our sequence

data. This enabled the classification of OCRs into either BY or

RM groups according to each strain’s inheritance of the locus

(Figure 1A). The cis-variation of each OCR was defined as the

variance of peak density among the strains with the same genotype

at that OCR. The two cis-variation measures (each from the BY

and RM group) were highly consistent (Figure 1B). Approximately

23% (1,738 OCRs) had more than ten individuals in each group.

We assessed the statistical significance of trans-variation by

considering the within-group variance (cis-variation): 11.8%

(P,0.05) or 4.8% (P,0.01) of the 1,738 OCRs were called

significant (Figure 1C).

Cis- and trans-associations in QTL mapping
QTL mapping was performed by interrogating the 7,527 OCRs

against the genetic markers selected and processed based on the

previous genotype data [6] (see Materials and Methods). A total of

11,048 associations were identified at a false discovery rate (FDR)

of 0.01 by our chromatin QTL mapping. Approximately 7.9% of

the associations involved cis-acting loci within 100 kb (12.66%

within 1 Mb), whereas the majority of chromatin traits were linked

to trans-regulatory loci. The OCRs associated in trans tended to

display a higher trans-variation (P,2610216), while those associ-

ated in cis had a higher cis-variation (P = 1.161024), indicating

consistency between sequence-based genotyping and microarray-

based genotyping. We employed the gene expression data for the

96 strains [6] and carried out expression QTL mapping by

repeating the procedures used for the chromatin QTL mapping

(see Materials and Methods). At an FDR of 0.01, 12,317

associations between genotypes and expression levels were

identified.

Characterization of cis-associations
We identified a total of 2,234 OCRs in which there was a TF-

binding motif that contained a polymorphism and found that these

OCRs were twice as likely to be associated in cis than other OCRs

(P = 4.661027). However, there was no difference with respect to

trans-association. This implies that the effect of DNA sequence

variation on chromatin structure is often manifested through

underlying TF-binding motifs independently of trans-acting regu-

lators.

To determine whether cis-associations can also be explained by

differential nucleosome formation, we searched for cis-QTL SNPs

in the well-known poly A/T tract nucleosome depletion signature.

We extracted the reference genome sequences surrounding the

SNP locations within the OCRs from our FAIRE-seq data and

then looked for the presence of a poly A/T tract. Even with a very

loose threshold (five consecutive A/Ts), we could only identify five

such instances. This is contradictory to the major role of the AT-

rich sequences in the divergence of nucleosome positioning

between different species [8]. We propose that poly A/T tracts

residing in open chromatin may be under strong selective pressure

and thus resistant to sequence changes because of their importance

in regulatory function.

Because the cis-associations between DNA sequences and

chromatin accessibility are likely to be mediated by TF binding,

a sequence polymorphism that affects chromatin accessibility in cis

should also affect gene expression in the neighborhood. Indeed, a

sizeable fraction (45%) of the chromatin-associated SNPs were

associated with the expression of nearby genes. By contrast, only

15% of the expression-associated SNPs turned out to influence the

accessibility of nearby chromatin, indicating that there are

mechanisms by which sequence polymorphisms can affect the

Author Summary

Quantitative trait loci (QTL) mapping is a genetic approach
that allows the identification of genetic factors underlying
a phenotype of interest. Genomic technologies such as
DNA microarray and next-generation sequencing provide
data that can be used for the analysis of multiple
molecular phenotypes. For example, the expression levels
of thousands of genes can be associated with subject-
specific genome-wide genetic information in expression
QTL mapping. Similarly, the genetic regulation of tran-
scription factor binding or epigenetic mechanisms such as
DNA methylation or chromatin structure has begun to be
investigated. In particular, the mechanisms controlling
chromatin accessibility have attracted special interest due
to their importance in a variety of DNA regulation
processes including recombination, repair, replication,
and transcription. In this work, we sought to dissect the
genetic architecture of chromatin accessibility regulation
by harnessing the power of genetic and genomic
techniques. By analyzing open (accessible) chromatin
maps of multiple yeast individuals in association with
their genetic backgrounds, we were able to characterize
the regulatory structure of chromatin traits versus that of
gene expression. Importantly, we observed that the
genetic loci responsible for multiple open chromatin
regions were enriched for known regulatory factors.

Genetics of Open Chromatin
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expression of nearby genes without affecting chromatin accessi-

bility.

Reciprocal regulation of two chromatin loci by DNA sequences

could be observed in OCR #464 and OCR #465. These two

OCRs were associated with multiple cis-markers encompassing

100 kb upstream to 15 kb downstream of the loci. Sequence

analysis detected two underlying SNPs that were associated with

the peak density of OCR #464 (Figure 1A and 1D). Interestingly,

the density of the adjacent peak (OCR #465) was negatively

correlated with that of OCR #464 across the strains (Figure 1E),

demonstrating a reciprocal regulation of the two chromatin loci. In

line with our sequencing-based genotypes, all the cis-markers

indicated that the RM genotype increases the peak density of

OCR #464.

Characterization of trans-associations
The sum of trans-variation in the trans-associated OCRs was

divided by the sum of trans-variation across all the OCRs,

revealing that 45.2% of the total trans-variation across the OCRs

could be explained by genetic factors. To examine how much of

the trans-variation of each OCR is explained by trans-acting genetic

factors, we computed the explanatory power of the linear

regression (R2) for each OCR and its associated trans-loci. The

average R2 of the trans-associated OCRs was 33%. Enrichment of

high trans-variation OCRs was observed in the vicinity of

telomeres (Figure 2A and green marks in Figure S5). This pattern

was not observed for cis-variation (Figure 2A and Figure S5). High

trans-variation OCRs also coincided with gene-rich regions

(Figure 2B and blue ticks in Figure S5) and gene-poor regions

(Figure 2B and light-blue ticks in Figure S5).

Approximately 50% of chromatin QTLs were gene expression

QTLs and vice versa, indicating that the trans-associations we

identified are technically robust and biologically meaningful.

However, only 17.6% of these dual QTLs were associated with

chromatin and expression traits at the same locus. In other words,

many of the dual QTLs were responsible for chromatin traits and

gene expression traits that are distantly located (e.g., in different

chromosomes). It is possible that regulatory SNPs affect chromatin

accessibility for DNA regulation other than transcription (e.g.,

DNA repair, recombination, etc.), which in turn leads to

Figure 1. Measurement of trans- and cis-variation. (A) Sequence effects on chromatin regulation. The two peaks (OCR #464 and OCR #465) are
shown for strains with the BY genotype and RM genotype, as determined based on the two SNPs found within OCR #464. (B) The two trans-variation
measures were obtained as illustrated in Figure 1A and compared with each other. (C) The significance of cis-variation was measured by the t-test for
the 1,738 OCRs. (D) Peak density of OCR #464 as a function of its genotype. (E) Anti-correlation between the peak density of OCR #464 and that of
OCR #465 across all yeast strains.
doi:10.1371/journal.pgen.1003229.g001
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secondary gene expression changes, and that regulatory loci affect

the expression of downstream regulators in trans, which in turn

causes secondary changes in the accessibility of the target

chromatin regions.

We examined the number of trans-linkages for each OCR. Most

OCRs were responsive to a small number of regulatory loci. Only

a few (6.8%) had more than five linkages with the average number

being three times lower than for gene expression traits (2.1 versus

5.9) (Figure 3A). This implies that chromatin traits are rather

specifically governed by a handful of trans-regulators, whereas gene

expression processes are responsive to more regulatory inputs. An

opposite trend was observed for regulatory loci (Figure 3B). There

were regulatory loci responsible for an extremely large number of

chromatin traits, with a few cases in which .200 OCRs were

linked to a single promiscuous chromatin QTL (Figure 3B). The

horizontal dots observed in the chromatin association map

(Figure 3C) illustrate ‘extensive’ regulation by chromatin regula-

tory loci (Figure 3D), as opposed to the ‘intensive’ regulation of

gene expression traits (Figure 3E).

To investigate the multi-target chromatin regulatory loci, or

hotspot QTLs, we first selected those with .65 trans-associated

OCRs. We annotated each locus by searching for known DNA or

chromatin regulators flanking the marker within 10 kb [17] and

merged the adjacent markers covering the same regulator. A total

of 32 initial hotspot loci were merged into 17 hotspots, 14 of which

flanked at least one known regulator (master regulators listed in

Figure 3C). The annotated (regulator-containing) loci tended to

influence more chromatin traits than the unannotated loci

(P = 561024) (Figure 3B). By contrast, no enrichment of known

regulators near multi-target expression regulatory loci was

observed (Figure 3B).

Among the master regulators (Figure 3C) were three TFs with

sequence-specific DNA binding activity: DAL82, TEC1, and

NRG2. Position weight matrices were available for the DNA-

binding motif of Dal82p and Tec1p. Remarkably, 62% of the 71

DAL82-associated OCRs contained the Dal82p-binding motif.

However, no Tec1p-binding motif enrichment was observed in

the associated OCRs. The influence of Tec1p might be exerted

not through direct binding but via interaction with other factors

under normal growth conditions. Data for Nrg2p binding sites

are not available. SET2 and MED2 are involved in the

transcription of many genes in a non-sequence-specific manner.

Set2p is a histone methyltransferase that plays a role in general

transcription elongation, and Med2p is a subunit of the mediator

complex that forms the RNA polymerase II holoenzyme. Their

target OCRs were identified in gene-rich regions (Figure 4A and

Figure S6).

Rdh54p is a Swi2/Snf2-like factor that plays a role in

recombinational repair of DNA double-strand breaks (DSBs)

during mitosis and meiosis by interacting with Rad51p and

Rad54p [18–20]. DSBs occurring at recombination hotspots in

yeast are found near open chromatin [21]. We employed a

measure of ‘‘recombination hotness’’ that was globally obtained

based on DSB distribution [22]. The RDH54 OCRs showed the

highest recombination hotness among the master regulators

(Figure 4B), with a P value of 9610225 (Figure S7), and tended

to fall near the recombination hotspots (Figure 4C). Cdc13p is a

multi-functional telomere-binding protein that participates in

telomere replication and maintenance especially by mediating

telomerase access to telomeric chromatin [23–25]. Among the

hotspot loci, the CDC13 locus had the largest number of associated

OCRs in close proximity to telomeres (seven OCRs within 1 kb

from telomeres). The enrichment of CDC13-associated OCRs near

telomeres is shown in Figure 4D. Telomeres are associated with

recombination coldspots [22]. Indeed, the recombination hotness

of the CDC13 OCRs was very low (Figure 4B).

Figure 2. The magnitude of trans- and cis- variation and the number of genes within 50 kb upstream and downstream of the peak
boundaries. (A) The magnitude of trans- and cis-variation as a function of the distance from chromosome ends. The average variation of OCRs
within 2 kb windows was plotted for 1 kb bins. The trans-variations within 10 kb of the chromosome ends were significantly higher than those
farther away (P,6.6610225). For cis-variation, the P value was 561024 when the t-test was used. (B) The number of genes falling within 50 kb
upstream and 50 kb downstream of the peak boundaries was obtained for each OCR. This number was divided by the size of the peak for the
normalized gene density. Gene-rich OCRs (top 10%) and gene-poor OCRs (lowest 5%) were compared with the other OCRs by the t-test.
doi:10.1371/journal.pgen.1003229.g002
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Figure 3. Characterization of trans-associations. (A) The number of trans-regulatory loci associated with each chromatin trait (left) and gene
expression trait (right). (B) The number of target traits of each trans-regulatory locus was examined for chromatin QTLs and expression QTLs.
Annotated QTLs were defined as having at least one known regulator in the vicinity. (C) In this chromatin association map, each dot indicates a
linkage between a genetic marker (QTL; y axis) and a trait (OCR; x axis); red or blue indicates that the BY or RM genotype positively regulates the OCR,

Genetics of Open Chromatin
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Discussion

In this work, we sought to dissect the genetic architecture of

chromatin regulation. The multi-target regulatory structure

reflects the wide-ranging nature of certain chromatin regulators.

Surprisingly, however, many chromatin QTLs were found to

govern only a few target traits. It is conceivable that the chromatin

structures at particular loci are not susceptible to genetic

perturbations or that the technical limitations of our method for

detecting subtle changes in chromatin traits may prevent the

identification of weakly associated targets. In this case, there may

be numerous potential regulatory targets that have not passed our

statistical threshold.

On the other hand, the chromatin traits that were responsive to

certain genetic perturbations had only a few regulatory inputs, in

contrast to the high responsiveness of gene expression traits to

multiple regulatory signals. Therefore, chromatin states alone may

not be sufficient to explain the precise level of transcription. Once

upstream regulators set the stage by priming the chromatin

structure, various downstream regulatory inputs may add addi-

tional layers of complexity to gene expression control. This is also

reflected in the lack of common targets between chromatin QTLs

and expression QTLs. Only 18% of the dual QTLs (i.e., SNPs that

are both chromatin QTLs and expression QTLs) were associated

with chromatin accessibility and gene expression at the same locus

simultaneously. However, the identification of many dual QTLs

was encouraging itself because it suggests that the detected QTLs

are likely to contain functional regulators. We successfully

annotated chromatin QTLs, particularly those responsible for a

large number of target chromatin traits. The identification of

respectively. The annotation of the 17 QTL hotspots is shown on the right side. The names of the regulators associated with the same genetic marker
are separated by a semicolon and those associated with closely located markers by a dot. N/A denotes an unannotated QTL. (D–E) Different
regulation architectures of chromatin traits (D) and gene expression traits (E). On the regulator side, most chromatin regulatory loci are responsible
for a few traits; however, certain regulatory loci can have upwards of 100 targets. On the target side, individual chromatin traits are usually targeted
by less than five loci. The average number of associated loci is three times higher for gene expression traits than for chromatin traits, an indication
that the transcription process is responsive to more regulatory inputs or stimuli.
doi:10.1371/journal.pgen.1003229.g003

Figure 4. Functional analysis of the OCRs of multi-target regulators. (A–B) The average (A) gene density and (B) recombination hotness
score (log2 ratio) for the OCRs associated with the multi-target regulators listed in Figure 3C. Unannotated QTLs were denoted as NA concatenated
with the chromosome number (e.g., NA14 is on chromosome XIV). (C) Each spot corresponds to a genomic locus having a score for recombination
hotness. Loci with a hotness score .1 located near the RDH54-associated OCRs are highlighted. (D) The dots indicate the OCRs of the multi-target
regulators. The CDC13 OCRs are colored according to the chromosome they belong to. The CDC13 OCRs within 50 kb of telomeres are highlighted.
doi:10.1371/journal.pgen.1003229.g004
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functionally relevant trans-regulators from expression QTL map-

ping has been reported to be difficult [26].

Sequence-specific TF binding appears to be very important in

cis-associations. We observed an enrichment of cis-associations for

TF-motif-containing OCRs and common QTLs linking chroma-

tin accessibility and nearby gene expression. This is consistent with

the finding that human SNPs associated with chromatin in cis are

frequently found in TF-binding sites [16]. Moreover, consistency

in allele frequencies were observed between the sequence reads for

open chromatin and those for TF binding.

In contrast to the previous study [16] in which only cis-

regulation was thoroughly examined, here we took advantage of

the compact size and comprehensive annotation of the yeast

genome to dissect the architecture of trans-regulatory mechanisms

as well. In conclusion, our work provides insight into the genetic

basis of chromatin regulation and its relationship with transcrip-

tion control. Genetic variation in open chromatin in the human

genome can underlie disease phenotypes, and thus, the current

study has medical implications. For example, previous studies

[13,15] identified regulatory polymorphisms in open chromatin

that were previously linked through genome-wide association

studies with diabetes and HDL cholesterol levels.

Materials and Methods

Identification of OCRs and estimation of peak density
We obtained the BY-RM cross strains from the original authors

[1,6]. FAIRE experiments were performed based on the published

protocol [12]. We selected 94 yeast segregants and subjected them

and the BY and RM strains to 100-bp sequencing on Illumina

HiSeq2000. To identify the FAIRE-seq read peaks, we ran F-Seq

[27] as previously suggested for FAIRE-seq data analysis [13].

Small-sized peaks (,15 bp) were extended in both directions such

that all the peaks were at least15 bp long. To identify all possible

OCRs, we combined the extended peaks of the 96 yeast strains

(exclusive of the replicates) and merged overlapping peaks into a

single peak using BEDTools [28], resulting in 7,527 unique OCRs.

The number of FAIRE-seq reads that mapped uniquely to each

OCR was counted in each yeast strain. The read count of each

OCR was normalized by taking into account the size of the peak

and the total number of tags produced from each FAIRE library as

log2 #tagsOCR=sizeOCRð Þ
�

#tagsgenome

�
sizegenome

� �
. After the

log2 transformation, the negative values were set to zero (ceiling).

This normalization scheme was used in our previous work [29].

We further normalized the final matrix of the 7,527 OCRs and 96

strains by scaling the 96 sample vectors to zero mean and unit

variance. To assess reproducibility, the FAIRE-seq reads of the

parental replicates were mapped to the predefined OCRs and the

same normalization scheme was repeated for the four independent

samples.

Genotyping of the OCRs and estimation of trans- and cis-
variation

SNPs were detected from the FAIRE-seq reads using the

Illumina’s CASAVA suite. SNP calls with fewer than five reads

were discarded. For heterogeneous calls, only the major polymor-

phism with a certain frequency (.80%) was taken. The genotype

of each OCR was determined based on its SNP profile. The OCR

in the given strain was considered to have inherited the BY (or

RM) allele if its genotype perfectly matched with the genotype of

the OCR in the BY (or RM) strain. For genotyping at a less

stringent threshold, the OCRs whose SNP profile matched with

either the BY or RM profile for .50% of the SNPs were also

classified as BY or RM. To compute trans-variation, the standard

deviations of the normalized peak density measures within the BY

and RM groups was measured. We identified a total of 1,738

OCRs for which at least ten individuals inherited either a BY or

RM allele; we then re-grouped the yeast strains according to the

genotype of the given OCR. To assess the statistical significance of

cis-variation, we used the two-sample t test to measure the

difference in the means of the BY and RM groups.

Chromatin QTL mapping and expression QTL mapping
The genetic markers from the original study [6] were used for

QTL mapping. As suggested by Lee et al. [17], adjacent markers

with no more than two genotypic mismatches across the 96 strains

were merged into one average genotype profile, resulting in 1,533

markers. As suggested previously [17], we identified the genes

located within 10 kb upstream or downstream of the genomic

region covered by the merged genetic marker. To identify

potential regulators, we used Gene Ontology to identify 495 genes

involved in ‘‘DNA binding’’, and 508 genes known to be involved

in transcription and chromatin regulation, resulting in a total of

752 unique genes. For QTL mapping, we measured associations

by means of the correlation coefficient or the linear regression

between the genotypes represented as a categorical variable (0:

RM, 0.5: missing, 1: BY) and the chromatin traits represented as

the normalized peak-density measure. False discovery rates (FDRs)

were computed based on the permutation test, as follows. The

matrix of peak density was shuffled by resampling the sample

vectors (yeast strains) to generate B randomized matrices,

b~1,:::,B. The P value was determined by comparing the

observed association r̂r with the expected associations r̂rb from the

permuted data asP~ 1z
PB

b~1 I D̂rrbD§D̂rrD
� �h i.

Bz1, where I is

an interpretation function. B~1000 was used. The P values were

adjusted for multiple testing to yield FDRs, as suggested by

Benjamini and Hochberg [30]. An FDR of 0.01 was used. A

distance of 100 kb between the marker and the trait was used to

differentiate cis- and trans-associations. We employed the gene

expression data for the 96 strains [6] and performed expression

QTL mapping by repeating the same procedures.

Analysis of chromatin QTL mapping results
A total of 11,048 marker-trait associations involving 3,522

OCRs were identified at an FDR of 0.01 when the correlation

coefficient was used. To evaluate the consistency between the

FDR-based non-parametric approach and the parametric method,

we obtained a P value for each marker-trait pair based on the

linear regression. At parametric P values,1023 and ,1025,

91.1% and 81.1% of the identified associations were called

significant, respectively. Adjacent genetic markers (,10 kb)

associated with a common trait in QTL mapping were combined.

Trans-loci were examined to determine whether the corresponding

genetic marker covered at least one of the 752 regulators.

According to this criterion, all trans-loci were classified into

annotated loci or unannotated loci. We defined hotspot chromatin

loci as having more than 65 genetic linkages. Adjacent genetic

markers covering the same regulator were manually merged.

Additional data analysis
To calculate the density of the genes surrounding each OCR,

the number of genes located within 50 kb upstream and 50 kb

downstream of the OCR peak boundaries was determined. This

number was divided by the size of the peak for normalization. The

microarray data for the recombination hotspots of the yeast

genome [22] were downloaded from http://derisilab.ucsf.edu/

hotspots/. The cy5/cy3 ratios from seven ORF arrays were

Genetics of Open Chromatin
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averaged and log2 transformed. The positions of replication

origins were downloaded from http://cerevisiae.oridb.org. For TF

motif analysis, we used position weight matrices [31] based on in

vivo binding assays by chromatin immunoprecipitation for 203

yeast TFs [32] and another set of position weight matrices based

on systematic in vitro assays of 112 yeast TFs [33]. TF motifs

occurring in OCRs were identified by means of the HOMER

package [34] using the two position weight matrix sets.

Data availability
The FAIRE-seq data for the 96 yeast strains are available at the

GEO database with accession number GSE33466.

The following link has been created to allow review of the

record GSE33466: http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token = zvyznqwickewmto&acc = GSE33466

Supporting Information

Figure S1 Reproducibility of FAIRE-seq. Beside BY and RM

FAIRE-seq run on HiSeq2000, an additional set of FAIRE-seq

libraries was independently sequenced on Illumina GA2. Another

set of FAIRE samples was separately prepared and sent to another

sequencing operator for library preparation and sequencing on

Illumina GA2. In total, we sequenced three different batches of

FAIRE-seq libraries for each of BY and RM. The normalized peak

density of the OCRs from HiSeq2000 sequencing was compared

with the two replicates from the completely different batches.

(PDF)

Figure S2 The percentage of OCRs falling on the promoter,

ORF, and transcription termination site of protein-coding genes

and on replication origins.

(PDF)

Figure S3 The frequency of OCRs (gray shade) found near the

transcription start site (left panel) and the transcription termination site

(right panel) in comparison with nucleosome occupancy (black curve).

(PDF)

Figure S4 The size of the OCRs identified in either parental

strain (BY or RM) and those combined across the 96 strains (BY,

RM, and their 94 descendants).

(PDF)

Figure S5 Chromosome-wide maps of trans-variation. The

magnitude of trans-variation for each OCR was plotted along

with the chromosomal coordinates of telomeres, centromeres,

gene-rich or gene-poor regions, CDC13-associated OCRs, and

multi-input OCRs (those with more than five associated QTLs).

(PDF)

Figure S6 Gene density surrounding the OCRs of the master

regulators as listed in Figure 3C. The number of genes within

50 kb upstream and 50 kb downstream of the peak boundaries of

each OCR was obtained and divided by the size of the peak.

Unannotated loci were denoted as NA concatenated with the

chromosome number (e.g., NA14 is on chromosome XIV).

(PDF)

Figure S7 Recombination hotness of the OCRs of the master

regulators as listed in Figure 3C. Shown is –log10 of the P value of

the one-sample t statistic to test if the hotness scores are less than

zero. Unannotated loci were denoted as NA concatenated with the

chromosome number (e.g., NA14 is on chromosome XIV).

(PDF)
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