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In vivo modeling of tumor suppressor

p53 functions and regulation has a history

of unexpected and even enigmatic out-

comes [1], despite the status of p53 as the

most frequently mutated gene or dysfunc-

tional pathway in human cancers [2,3].

Beginning with the surprising viability of

the first mice deleted for Trp53 [4,5],

various hypotheses of compensation, cell

type–specificity, stimulus-dependent re-

sponse, or modifier influences were posed

to explain how an exquisitely regulated

transcription factor, implicated in a vast

array of pathways [6], appeared to have

no impact on development. Limited back-

ground-specific developmental and fertility

problems do occur, especially in female

p53-null mice [7,8], and deletion of

potentially compensatory p53 family

members, p63 and p73 isoforms, leads to

profound developmental and tissue-specif-

ic phenotypes [9,10]. But overall, the most

striking result of p53 loss in vivo is early

tumor predisposition in p532/2 mice,

which lack genomic surveillance provided

by p53-mediated regulation of cell cycle

arrest, apoptosis, and senescence.

As reported by Concepcion et al. in this

issue of PLoS Genetics [11], expectations built

on cell-based studies of p53 response are

again unrealized in mouse models. Previ-

ously, multiple in vitro analyses suggested

that microRNA (miR)-34 family members

are important players in a p53-regulated

network of genomic surveillance [12–17]

(Table 1). Together, these studies strongly

supported the view that p53 response to

multiple stimuli depended on miR-34, and

that ectopic expression of miR-34 was

sufficient to elicit p53 response, consistent

with miR-34 functioning as a bonafide

tumor suppressor. However, Concepcion et

al. report that complete inactivation of the

entire family of miR-34 genes (miR-34a/b/

c) or knockout of each individual miR-34

gene in mice leads to little or no change in

p53-mediated functions in tumor suppres-

sion [11].

Interest in a miR-34 axis as mediator of

p53-response begins with the niche that

miRNAs fill in regulation of RNA expres-

sion. miRNAs are small, regulatory non-

coding RNAs that generally mediate post-

transcriptional silencing of a number of

specific target mRNAs [18]. More than

50% of human miRNA genes are found

within cancer-associated or fragile sites of

the genome, which suggests that miRNAs

play essential roles in tumorigenesis [19].

The identification of miRNAs as regula-

tory targets of p53 [20] suggested their

potential involvement in tumor suppres-

sion, and expanded the repertoire of p53

downstream targets to both coding and

non-coding genes. Further, the view that

p53 both positively and negatively regu-

lates gene expression could now rely on

increased expression of miRNAs as a

mechanism for p53-mediated, indirect

repression of gene expression [13,20], in

addition to the few documented cases of

direct repression by p53 binding to

chromatin [21–25].

The members of the evolutionarily con-

served miR-34 family, which arise from

three different transcripts at two different

gene loci in vertebrates, were the first of

several non-coding RNAs identified as

directly activated by p53 in response to

genotoxic stress [13,26]. miR-34a is at 1p36,

a region commonly deleted in tumors, and

miR-34b and miR-34c share a common

primary transcript arising from 11q23

[27,28]. miR-34a, b, and c are expressed

at very low levels in several types of cancers

[28]. Previous reports show that p53 directly

activates miR-34a/b/c expression and,

dependent on cellular context, they act

downstream of p53 in mediating cell cycle

arrest or apoptosis [29]. The current list of

validated miR-34 downstream targets in-

cludes several genes that are repressed

during cell cycle arrest or apoptosis when

p53 is activated [28].

Given the rationale provided by these

studies in cultured cells (Table 1), multiple

laboratories created genetic knockout mod-

els of either miR-34a or miR-34b/c, or a

compound mutant animal harboring ho-

mozygous deletion of all three miR-34

family members (miR-34TKO) [11,30].

Surprisingly, mice bearing the miR-34

deletion(s) developed normally, are born

at the expected Mendelian ratio, and are

fertile [11]. The authors subjected the mice

and derived mouse embryonic fibroblasts

(MEFs) to a battery of tests to assess any

impact on p53-dependent tumor suppres-

sion. MEFs obtained from mir-34TKO mice

have a slightly higher proliferation rate, but

reach senescence with kinetics similar to

wild-type MEFs. In response to genotoxic

threats, miR-34–deficient MEFs are indis-

tinguishable from wild type: they undergo

p53-dependent cell cycle arrest and apop-

tosis. With ectopic expression of oncogenic

K-Ras, p53-deficient MEFs are readily

transformed, which is not true of K-Ras–

expressing miR-342/2 MEFs.

In the intact mouse, the story is similar:

aging cohorts of mir-34TKO mice remain

healthy with no spontaneous tumors, in

contrast to p53-null mice [4]. In fact, miR-

34–deficient mice remain remarkably

healthy and tumor-free for at least 60

weeks after irradiation. Assays of apoptosis

in response to irradiation proved positive in

tissues of these mice, which additionally

exhibited no acceleration of tumor progres-

sion in Em-models of B-cell lymphomagen-

esis. All of these assessments of p53

functions in vivo undermine the view that
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miR-34 functions as a tumor suppressor or

is an essential component of the p53-tumor

suppression network.

Although miR-34 proved nonessential in

the most highly studied examples of p53

function (senescence, cell cycle arrest, apop-

tosis, and tumor suppression), it remains

possible that miR-34 is involved in other

p53-influenced processes, such as metabo-

lism, autophagy, stem cell quiescence,

differentiation, and embryogenesis [6]. For

example, specific links between miR-34–

and p53-regulated functions have been

forged in stem cells [26]. miR-34–deficient

MEFs are more efficiently reprogrammed to

induced pluripotent stem cells (iPSCs), by

expression of pluripotency factors and c-myc

[30], compared to wild-type counterparts.

While this study of miR-34 as a barrier to

reprogramming does not establish a direct

tie to p53, it complements multiple reports

that depletion of p53 or dysfunctional p53

pathways enhance the efficiency of repro-

gramming differentiated, somatic cells to

iPSCs [31]. Recently, we showed that p53

promotes human embryonic stem cell

differentiation by direct activation of p21

and miRNAs, including miR-34a, which

repress pluripotency factors and SIRT1

[32]. Taken together, these results indicate

that miR-34 has pro-differentiation effects in

maintenance of nontransformed, somatic

cells, some of which are p53-dependent.

In the future, miR-34–deficient mouse

models will be valuable in addressing

whether miR-34 functions downstream of

p53 in a tissue- and/or context-specific

manner. miR-34a, miR-34b, and miR-34c

share the same seed sequence and target

the same RNAs, although differences in

target accessibility or binding affinities

may dictate their effectiveness. Genome-

wide expression analysis may be needed to

determine family member–specific effects,

such as the reported regulation of c-MYC

by miR-34b/c and not miR-34a [33].

Questions of specificity in gene targets for

each member of a miRNA family and

potential compensation by other miRNAs

may be addressed by studies in these and

other miRNA mouse models, perhaps still

under development. Non-coding RNAs

are thought to act in networks that impact

diverse cellular pathways, suggesting con-

siderable challenges ahead in asking the

right questions and understanding the

functional significance of these RNAs.

Table 1. A list of different in vitro and in vivo model systems used to study miR-34 functions.

Model System Description miR-34 Functional Outcome Ref.

mESCs Mouse embryonic stem cells Genetrap-mediated deletion Decreased spontaneous apoptosis during
differentiation

[12]

NSCLCs Non-small cell lung cancer cells Overexpression Inhibits growth [12]

SW480 p53 mutant colon cancer cells Overexpression G1-arrest [12]

Wi38 Human diploid fibroblasts Depletion Protection from Staurosporine-induced
apoptosis

[12]

IMR90 Primary lung fibroblasts Overexpression Growth inhibition (G1 and G2 arrest), and
senescence

[13]

A549 Human alveolar adenocarcinoma cells Overexpression G1-arrest [13]

HCT116 Human colon cancer cells Overexpression G1-arrest [13]

TOV21G Human ovarian cancer cells Overexpression G1-arrest [13]

MEFs Mouse embryonic fibroblasts Overexpression Apoptosis [13]

H1299 Human lung cancer cells Overexpression Reduced colony formation [14]

U2OS Human osteosarcoma cells Depletion Reduction in Etoposide-induced apoptosis [14]

HCT116 (p53+/+ or p532/2) Human colon cancer cells Long-term overexpression Apoptosis [15]

HCT116, RKO Human colon cancer cells Overexpression Suppression of proliferation and induction
of senescence

[16]

Mouse xenograft model HCT116 or RKO cells were inoculated
into nude mice

Subcutaneous administration
of miR-34a/atelocollagen
complexes

Suppression of cell proliferation and
reduction in tumor volume

[16]

H1299 Human lung cancer cells Overexpression Apoptosis [17]

U2OS Human osteosarcoma cells Overexpression G1-arrest and reduction in colony formation [17]

MiaPaCa2, BxPC3 p53 mutant human pancreatic cancer
cell lines

Overexpression Inhibited clonogenic cell growth and
invasion, induced apoptosis and G1 and
G2 arrest; sensitized the cells to
chemotherapy and radiation

[34]

OSN1, OSN2 Neoplastic epithelial ovarian cells Overexpression Suppression of proliferation and reduced
colony formation

[35]

Kelly, NGP Neuroblastoma cells with MYCN
amplification (+MNA)

Overexpression Reduction in proliferation and increased
apoptosis

[36]

SK-N-AS Neuroblastoma cells without MYCN
amplification (-MNA)

Overexpression Reduction in proliferation and increased
apoptosis

[36]

Mouse mir34a2/2; mir34b/c2/2 miR-34 knockout mouse in C57BL/6
background

Germline deletion of miR-34 Efficient reprogramming, no effect on
proliferation

[30]

Mouse mir34TKO miR-34 knockout mouse in129SvJae
and C57BL/6 mixed background

Germline deletion of miR-34 Normal p53 activity [11]

doi:10.1371/journal.pgen.1002859.t001
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