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Abstract: An increasing body of literature from genome-
wide association studies and human whole-genome
sequencing highlights the identification of large numbers
of candidate regulatory variants of potential therapeutic
interest in numerous diseases. Our relatively poor
understanding of the functions of non-coding genomic
sequence, and the slow and laborious process of
experimental validation of the functional significance of
human regulatory variants, limits our ability to fully
benefit from this information in our efforts to compre-
hend human disease. Humanized mouse models
(HuMMs), in which human genes are introduced into
the mouse, suggest an approach to this problem. In the
past, HuMMs have been used successfully to study human
disease variants; e.g., the complex genetic condition
arising from Down syndrome, common monogenic
disorders such as Huntington disease and b-thalassemia,
and cancer susceptibility genes such as BRCA1. In this
commentary, we highlight a novel method for high-
throughput single-copy site-specific generation of HuMMs
entitled High-throughput Human Genes on the X
Chromosome (HuGX). This method can be applied to
most human genes for which a bacterial artificial
chromosome (BAC) construct can be derived and a
mouse-null allele exists. This strategy comprises (1) the
use of recombineering technology to create a human
variant–harbouring BAC, (2) knock-in of this BAC into the
mouse genome using Hprt docking technology, and (3)
allele comparison by interspecies complementation. We
demonstrate the throughput of the HuGX method by
generating a series of seven different alleles for the human
NR2E1 gene at Hprt. In future challenges, we consider the
current limitations of experimental approaches and call for
a concerted effort by the genetics community, for both
human and mouse, to solve the challenge of the functional
analysis of human regulatory variation.

Introduction

A decade ago, the Human Genome Project published its first

human DNA sequence draft, followed shortly by the full version

in 2003 [1–3]. This project and the SNP Consortium and the

International HapMap Project have provided geneticists with

invaluable tools for their research on human populations [4,5].

Their activities have resulted in an exponential growth of

PubMed entries related to genome-wide association studies

(GWASs) plus human whole-genome sequencing (HWGS) over

the past decade (Figure 1, white bars). The increasing numbers of

studies cumulated at 2,649 entries in 2010; these studies mainly

focused on understanding the genetic variants affecting the

development of diseases and disorders in humans. For obvious

reasons, protein-coding variants have been the most extensively

studied so far. However, an increasing body of literature from

GWASs and candidate gene association studies also highlights

the identification of candidate regulatory variants of potential

therapeutic interest in numerous diseases [6–14]. Furthermore,

with the cost of HWGS being driven down by cheaper

sequencing technologies, we envision a continuing large increase

in the identification of candidate regulatory variants. In general,

the biological role of variants found in putative regulatory

regions is harder to predict than that for protein-coding variants,

in part because of our poor understanding of the functions of

non-coding genomic sequence, and the slow and laborious

process of experimental validation of the functional significance

of human regulatory variants. In this commentary, we will review

current efforts at modelling human variation in mouse and

highlight a novel method for high-throughput generation of

humanized mouse models (HuMMs) entitled High-throughput

Human Genes on the X Chromosome (HuGX, pronounced

‘‘hugs’’).

Typical Humanized Mouse Models Are Powerful
but Not Ideal for Regulatory Variants

It is always important to remember that mice are not ‘‘little

humans’’, and that species-specific differences limit the value of

any model organism. Nevertheless, throughout history, the

laboratory mouse has been the human disease model of choice

for geneticists, in part because of the rapid breeding rate of mice,
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which led to the generation of a wide variety of inbred and

spontaneous-mutation-harbouring strains. Contributing to the

mouse as a model was the advancement in embryonic technol-

ogies, allowing the engineering of the mouse genome and resulting

in the generation of transgenic random-insertion, knock-out, and

knock-in mouse models. Furthermore, the laboratory mouse

genome sequence was released in 2002 and demonstrated that

99% of mouse genes have human homologues, strengthening the

importance of mouse models in probing human biology and

disease [15–17]. This importance has been reflected by a

continually growing literature describing novel mouse models

over the past decade (Figure 1, grey bars). However, in contrast to

coding regions, human–mouse comparative genomic analysis

demonstrated a lower level of conservation in putative regulatory

regions of the genome [15]. This finding strengthened a hypothesis

posed more than 25 years ago suggesting that regulatory regions

may play a crucial role in underlying species differences and

human-specific biology and disease [18]. It also raises a problem

for mouse modelling when a strictly mouse-genome-based

approach is used to validate human candidate regulatory variants,

since the equivalent DNA sequence and/or epigenomic environ-

ment may not be present.

HuMMs, in which human genes are introduced into the mouse,

suggest an approach to this problem. Surprisingly, the number of

entries in the literature for HuMMs is very modest when

compared to the two previous categories (Figure 1, black bars).

Many of the HuMM entries are not genetic per se but are related

to immunity studies—using human cells or tissues engrafted in

nude mice—and thus are unrelated to the data generated by

GWASs and HWGS. Nevertheless, there are numerous examples

of successful genetic HuMMs.

A HuMM approach was used to study the complex genetic

condition arising from Down syndrome, also known as trisomy 21.

This syndrome results from an altered dosage of wild-type (WT)

genes on human Chromosome 21, a phenomenon that can be

mimicked by generating trans-species aneuploid mice carrying a

human chromosome [19]. In this example, the mouse strain

generated contained an estimated 92% of all known human

Chromosome 21 genes, and a large-scale analysis demonstrated

that 81% of human Chromosome 21 genes were expressed in

mouse tissues [19,20]. Additional investigation, using a set of

conserved and well-characterized transcription factors responsible

for hepatocyte development and function, revealed that genetic

sequence rather than interspecies differences in epigenetic

machinery or cellular environment is largely responsible for

directing transcriptional programs [21]. These results demonstrat-

ed that human gene regulation is generally conserved in mice,

strengthening the argument that HuMMs can be a good approach

for understanding the role of candidate regulatory variants in

disease development.

Other examples of successful HuMMs to study the role of

genetic mutations are found in common monogenic disorders such

as Huntington disease and b-thalassemia, as well as cancer

susceptibility genes such as BRCA1 [22–25]. All of these WT

human genes in HuMMs successfully rescued the embryonic lethal

phenotype from the mouse gene knock-out animals, thereby

providing valuable information regarding the human gene

function by demonstrating an interspecies complementation of

the human gene in the mouse null background. This complemen-

tation was due not only to the similarity of the genes in terms of

protein function, but also to the identical tissue expression

distribution of the human gene [22–25]. This was surprising

considering the low percentage of identity between human and

mouse for some of these genes in both the regulatory and coding

sequences [25].

These results were invaluable, as they demonstrated that

HuMMs can be used to study the biological role of mutant forms

of these human genes. In the case of Huntington disease, this line

of investigation has led to the generation of several human yeast

artificial chromosome (YAC)–harbouring strains to study the

biological implication of expanded glutamine repeats in Hunting-

ton disease development [26–28]. Advancements in site-specific

bacterial artificial chromosome (BAC) mutagenesis techniques

supported the shift to generation of BAC-based mutation-

harbouring mouse models [29–32]. These included the generation

of HuMMs harbouring codon-specific mutations for b-thalassemia

and the BRCA1 cancer susceptibility gene. These HuMMs

provided information regarding the biological implication of such

mutations and their potential underlying role in human health

[33,34]. However, the approaches used to generate these HuMMs,

which were suitable when protein-coding variants were being

tested, encountered serious limitations in probing the role of

human candidate regulatory variants.

In general, HuMM generation has used microinjection of DNA

into zygotic pronuclei [35–37]. This technique is widely used in

the field of mammalian genetics, but is not without limitations. For

one, it requires extensive characterization of the different founder

lines to control for variability in gene expression, a phenomenon

Figure 1. The literature is increasing more slowly for human-
ized mouse models than for GWASs and HWGS or novel mouse
models. Interrogation of the PubMed literature database (http://www.
ncbi.nlm.nih.gov/pubmed) reveals a faster growing body of literature
related to GWASs and HWGS (white bars) or novel mouse models (grey
bars) than to HuMMs (black bars). Interrogation of the database was
done using the online search option from EndNote (http://www.
endnote.com/). Individual numbers of entries for the search terms
‘‘genome wide association studies’’ and ‘‘human whole genome
sequencing’’ were added together for the figure. Search terms for
novel mouse models were ‘‘novel knockout mouse’’, ‘‘novel knockin
mouse’’, and ‘‘novel knock-in mouse’’. The entries for the search term
‘‘humanized mouse models’’ were not restricted to genetic mouse
models but included xenograft mouse models as well. Search terms
were interrogated in ‘‘all fields’’ per year.
doi:10.1371/journal.pgen.1002544.g001
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due in part to the influence of the genomic environment at the site

of insertion (i.e., position effect) and the number of copies often

found tandemly inserted (i.e., copy effect) [38–41]. The transgene

can potentially lead to disruption of endogenous gene function and

repeat-induced gene silencing, two factors that must be taken into

account when generating mice by random-insertion pronuclear

injection [42]. Since each strain is unique, reproducibility between

the different mouse strains becomes a major limiting factor when

using random insertion as a mean to generate HuMMs. This lack

of reproducibility is less than ideal for any comparison between

transgenes in different mouse strains, but is particularly concerning

when probing for candidate regulatory variant differences. The

ideal method would control for both the site of insertion and the

copy numbers inserted in the genome.

Excellent Techniques Exist for Single-Copy Non-
Random Docking in the Mouse Genome

One type of approach, which allows single-copy insertion in the

genome, includes the use of retroviruses and transposon activity

[43–45]. Although quite successful, this approach has limitations

as it does not provide controls for the site of insertion in the

genome, leading to variability in expression due to genomic

environment, as well as potential disruption of endogenous genes.

Another potentially powerful approach, called recombinase-

mediated genomic replacement, allows the cre-based insertion of

a human gene at the site of, and replacing, the endogenous mouse

gene [46]. This approach provides stringent control over the

genomic environment surrounding the insertion site. However, the

method simultaneously creates two inseparable genetic events in

the same gene: (1) heterozygosity at the mouse locus and (2)

addition of the human gene. Thus, the human gene can be studied

only on the heterozygous mutant mouse background. Other

limitations include the fact that the replacement is a low-frequency

event, and the ‘‘gene by gene’’ approach will restrict throughput.

Another novel approach was described recently using pronuclear

injection coupled to integrase activity to achieve single-copy site-

specific insertion in the mouse genome [47]. This approach used

wC31-integrase-mediated recombination activity between attB sites

from recombinant DNA with attP sites previously inserted at a

specific locus in the mouse genome. Although also quite

promising, this approach yielded up to 40% site-specific

integration at best, and was only tested on small construct

plasmids, another limitation, since many genes require large

constructs [47].

Traditionally, two mouse genes have been used as genomic

docking sites: the autosomal Rosa26 (reverse orientation splice acceptor

26) and X chromosome Hprt (hypoxanthine guanine phosphoribosyl

transferase) [48,49]. The Rosa26 locus has most often been used to

dock constructs when strong ubiquitous expression is required

[50–54]. Plasmid-size docking is readily achieved; however, large

BAC insertions have not been reported. Also, insertion at the

Rosa26 locus typically results in disruption of the gene, which in

turn may lead to mild phenotypic consequences [55]. Use of the

Hprt docking site has also been widely reported in the literature,

and despite the wide expression of Hprt itself, this locus is more

often chosen for tissue- or cell-type-specific expression of the

targeted construct [56–58]. This locus readily accepts plasmid-size

constructs but also large (.200 kb) BAC constructs [48,56]. In the

past, docking has been done in such a way that it disrupts the Hprt

gene, resulting in mice with a mild phenotype [59–61]. However,

this disruption is now typically avoided by a strategy that uses

embryonic stem cells (ESCs) that already carry a spontaneous

deletion of the 59 end of the Hprt gene [62]. In this strategy,

docking involves construct insertion 59 of Hprt and repairing the

expression of the Hprt gene itself [56,57,63]. This repair of Hprt

enables direct selection of high-frequency correctly targeted ESC

clones [63].

GWASs and HWGS Require High-Throughput
Humanized Mouse Models

Huge strides have been made bringing high throughput to

mouse functional genomics. One such stride is simple and highly

efficient BAC recombineering in Escherichia coli [31,64,65]. This

technology provides researchers with limitless possibilities for DNA

modification via homologous recombination in E. coli. It employs

the BAC-adapted strain harbouring a defective lambda prophage

that allows the recombination genes exo, bet, and gam to be

expressed under the control of a temperature-sensitive l cI-

repressor [31,64–66]. DNA modification possibilities include

insertion of exogenous DNA fragments in the endogenous BAC

DNA, size-specific DNA deletion, single-base-pair-specific DNA

alteration, and BAC fusion (i.e., recombining overlapping BAC

constructs into a single, larger BAC) [30,31,66,67]. Hence,

generation of any variant-harbouring allele in a high-throughput

manner can be easily achieved using this technology. Such

approaches are already being adopted by large-scale mouse knock-

out programmes such as the International Knockout Mouse

Consortium [68].

Another stride is the generation of important resources by the

currently ongoing large-scale mouse projects [58,68,69]. For

example, the International Knockout Mouse Consortium is

generating ESC-targeted mutations in all protein-coding genes

[68]. This resource will have many impacts, but specific to this

discussion, it enables complementation approaches to be under-

taken for most human genes. To date, this group has generated

16,878 targeted alleles in germline-competent C57BL/6N ESCs

(http://www.knockoutmouse.org) [68,70–72].

Finally, C57BL/6 is the most widely used inbred mouse strain

and one of the best characterized [68]. The increasing use of ESCs

derived from this strain, especially by large-scale projects, will

greatly reduce the need for backcrossing by projects using this

mouse strain, thus increasing the throughput of most projects [68].

Even with these game-changing strides, HuMM generation will

never achieve the throughput of array and sequence technologies.

Thus, variants identified by GWASs and HWGS will always need

to be extensively pre-screened as strong candidate regulatory

variants and suitable for cross-species analysis before entering a

HuMM project pipeline.

HuGX for High-Throughput Assaying of Human
Candidate Regulatory Variants

Here we present an approach, HuGX, aimed at understanding

the role of candidate human regulatory variants in the develop-

ment of human diseases and disorders. The strategy comprises (1)

the use of the BAC-adapted recombineering technology to create a

human-variant-harbouring BAC, (2) knock-in of this BAC into the

mouse genome using Hprt docking technology, and (3) allele

comparison by interspecies complementation. This approach can

be applied to human genes for which an expressing BAC construct

can be derived, which can complement at least a component of a

mouse phenotype.

The first step is to find a suitable BAC for ‘‘your favourite gene’’

(YFG). This BAC should be computationally analyzed to

determine the likelihood that it includes the entire coding sequence

as well as 59 and 39 regulatory sequences. The GENSAT project,
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Figure 2. Strategy for high-throughput human genes on the X chromosome (HuGX). (A) Flow diagram representing the major steps of the
HuGX strategy, which builds on previous methods [56,74]. Starting with a human BAC carrying your favourite gene (YFG) from the RPCI-11 library, for
example, two retrofitting steps are employed: (1) addition of the HPRT homology regions for recombination (WT-YFG) and (2) introduction of your
favourite regulatory variant (YFRV) into YFG (YFRV-YFG). In this example the resulting BAC YFRV-YFG is linearized, typically using I-SceI, and
electroporated into ESCs. 129P2/OlaHsd, B6129F1 hybrid, and C57BL/6NTac ESCs are all available carrying the 36-kb (Hprtb-m3) deletion used for
docking. Selection of homologous recombinant clones is performed using hypoxanthine-aminopterin-thymidine medium, and clones carrying
correctly targeted complete-BAC inserts are injected into blastocysts to generate chimeras. Schematic, not to scale. (B) Details of knock-in 59 of the
Hprt locus on X chromosome. The linearized BAC construct is introduced into the Hprtb-m3 deletion by electroporation. Hprt gene expression is
restored by the presence of the human HPRT promoter (hP), first exon (h1), and second mouse exon (m2). Mouse homology arms (blue); Hprt coding
regions (red); vector backbone (narrow yellow line); SacB gene from BAC vector backbone (brown); 59 and 39 untranslated regions of YFG (orange);
YFRV (yellow); coding region of YFG (green); hP (black arrow); h1 (grey); m2 and m3 (black). Schematic, not to scale. (C) Breeding strategy to achieve
complementation. Assuming the genetic background is suitable, male chimeras can immediately be bred to females heterozygous for a null allele at
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having generated .1,000 mouse BAC random-insertion trans-

genics, reports ,85% endogenous-like expression for genes

#100 kb [69,73]. Since ,86% of human genes are #100 kb

(Ensemble assembly, February 2009, GRCh37/hg19), we estimate

there will be suitable BACs for ,75% of them. In addition,

recombineering approaches are available to fuse two BACs, isolate

only the 59 region, or delete unwanted sequences (e.g.,

neighbouring genes) as needed [67]. Alternatively, the recombi-

neering technology can be applied to a human P1 artificial

chromosome should YFG be small [30,66]. Our approach

highlights the use of the RPCI-11 Human Male BAC Library

(http://bacpac.chori.org/hmale11.htm), which was built in the

pBACe3.6 vector (Figure 2A). The backbone of this BAC vector

contains a SacB gene that can be used as a targeting site for the first

retrofitting step, adding the HPRT homology regions from

plasmids pJDH8A/246b or the pEMS1306 series [56,58,74].

This BAC construct can then be used as the substrate for

subsequent retrofitting steps, to add ‘‘your favourite regulatory

variant’’ (YFRV), a DNA insertion, deletion, or single-base-pair

alteration as needed. These retrofitting steps can be carried out in

a high-throughput manner to rapidly develop an allele series of

different variants to be tested. Since, both the WT-YFG and YFRV-

YFG BAC constructs contain the homology regions that allow

proper targeting at the Hprt locus, each can be electroporated into

ESCs and selected in hypoxanthine-aminopterin-thymidine (HAT)

medium, and homologous recombinant clones can be identified

and microinjected into mouse embryos (Figure 2A and 2B) [63].

Male chimeras are bred to generate germline females that carry a

site-specific single-copy WT-YFG BAC, or YFRV-YFG BAC, on

their X chromosome. Assuming the genetic background is suitable,

genetic complementation can be tested immediately by performing

two generations of mating (Figure 2C). The resulting animals will

carry a single copy of the human WT-YFG, or YFRV-YFG BAC, on

the Yfg mouse null background (Yfg2/2, HprtWT-YFG/Y or Yfg2/2,

HprtYFRV-YFG/Y). Animals studied on the null background will be

males, thus avoiding X inactivation [56,75]. Using this HuGX

strategy, the phenotype of the Yfg2/2, HprtYFRV-YFG/Y animals can

be directly compared to that of the Yfg2/2, HprtWT-YFG/Y animals.

Regardless of whether interspecies complementation is complete

or partial, any differences can be attributed to the function of the

human variant.

We have recently used this approach to generate a directly

comparable allele series for our favourite gene, nuclear receptor 2E1

(NR2E1). This gene encodes an orphan nuclear receptor (also

known as TLX) that is highly conserved between human and

mouse, and has an important role in the maintenance of the

neural/progenitor stem cell populations of both the forebrain and

retina [76–80]. Nr2e1-null mice have brain and eye abnormalities

such as hyperactivity, extreme aggressive behaviours, and

blindness [81–83]. These phenotypes can be rescued by human

NR2E1 under its endogenous promoter, thereby demonstrating

the functional equivalence of the human and mouse genes in

mouse [81,84]. Recently, positive association results between

NR2E1 and bipolar disorder have been reported, along with an

increase in detection of rare variants in patients [85]. The

objective of our approach was to generate seven human alleles

knocked in to mouse, including one harbouring a human WT

BAC, an ,2-kb regulatory deletion, four single-base-pair

candidate regulatory variants, and one two-base-pair candidate

regulatory variant (Figure 3A). Recombineering and targeting of

these constructs at the Hprt locus was performed. As shown by

others and our own data (Figure 3A), it is important to molecularly

characterize the integrity of the BAC insertions [56]. Nevertheless,

the low number of clones that needed to be picked per construct,

and the high percentage of correctly targeted clones, which varied

from 13% to 73% with an average of 48%, highlights the ease of

this strategy and its applicability to high throughput.

Mouse strains were generated from these different constructs,

and species-specific reverse transcription PCR (RT-PCR) assays

on different tissue samples were performed for four of these mouse

strains (WT, Deletion [g.21943 to g.220], G.C [g.2078], and

C.G [g.14122]) (Figure 3B). These assays demonstrated expres-

sion of the human NR2E1 BACs in the eyes, forebrain, and

midbrain of adult mice, and the absence of expression in the adult

heart, lung, and liver (Figure 3B). These results, when compared to

the mouse endogenous Nr2e1 expression pattern, suggest endog-

enous-like tissue-specific expression of the human NR2E1 BACs in

the mouse strains. Backcrossing to the appropriate background

and subsequent crossing to the Nr2e1-null background will allow us

to evaluate the importance of these variants in the development of

diseases and disorders.

Overall, generation of these seven strains has demonstrated that

six to nine months is necessary to generate a single HuGX mouse

model. Since the components of the HuGX methodology are

scalable, and applicable to a large-scale parallel approach, this

strategy is suitable for high-throughput mouse model generation to

study the relevance of candidate mutations.

Challenges for the Future

The exponential growth of data in the literature coming from

GWASs and HWGS requires novel high-throughput approaches

to test the biological importance of the large numbers of variants

being identified, particularly candidate regulatory variants. In

considering experimental approaches, three challenges face our

field. The first is a consideration of the balance between construct

flexibility and size. Small plasmid-based constructs lead in

flexibility, especially with the option of DNA synthesis, allowing

the efficient generation of any desired sequence [86]. But plasmids

will almost certainly fail to capture the genomic context of the

regulatory variant, especially factors such as the chromatin

structure. BACs are often gene-sized (holding ,200 kb) and are

relatively easily manipulated by recombineering, and so are the

construct of choice for many large projects, e.g., the GENSAT

project and the International Knockout Mouse Consortium

[30,68,69]. However, some human genes can span more than

one megabase (e.g., dystrophin) [87–89]. YACs can accommodate

this size of genomic DNA, and site-specific mutagenesis can be

readily performed using the homologous recombination system of

the yeast [90]. However, site-specific docking of YAC constructs is

beyond our current abilities and makes YACs presently unsuitable

for high-throughput single-copy approaches. The second challenge

is a consideration of docking sites and technology. The Hprt locus

provides a reliable and highly efficient docking site for BAC

insertion into the mouse genome. The position of this locus on the

X chromosome can be an advantage, i.e., all female offspring of a

carrier male are carriers, but also a disadvantage, i.e., X

inactivation in females results in mosaic expression in heterozy-

the mouse copy of Yfg (Yfg+/2) to generate germline females heterozygous for Yfg (Yfg+/2) and HprtYFRV-YFG/+. On the other hand, assuming the
challenging situation in which no heterozygous phenotype exists to complement, these females will be mated with a Yfg+/2male, resulting in males
for study carrying a single copy of the human retrofitted HprtYFRV-YFG and the mouse null (Yfg2/2) gene.
doi:10.1371/journal.pgen.1002544.g002
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gotes; thus, in neither sex can you obtain two functional copies of

the human gene. Although the Hprt locus has been used to dock

the largest fragments yet into the genome, up to 200 kb, size is still

a limiting factor for certain human genes [56]. Hence, the

generation of an alternative autosomal docking site that does not

disrupt a gene, and allows insertion of large DNA fragments,

would be ideal in the near future. The third challenge is a

consideration of the value of stem cells and in vitro differentiation

to assay candidate regulatory variant function. Mouse ESCs, as

already described, can be derived to carry a matched pair of

human alleles that differ only by the variant. Assuming an

appropriate differentiation protocol [91,92], differences in expres-

Figure 3. High-throughput generation of regulatory allele series. (A) Human BAC RP11-144P8 was retrofitted seven times to generate the
different regulatory variants (column 1). The method of retrofitting (column 2), targeting (column 3), and variant screening (column 4) is presented for
each variant. Also given are the number of ESC clones isolated after electroporation (column 5), the number of correctly targeted clones after PCR
validation using assays an average of 6 kb, and a maximum of 11 kb, apart (column 6), and the resulting percentage of correctly targeted clones
(column 7). (B) Species-specific reverse transcriptase PCR demonstrates transcription from the human BAC in germline animals from four of the strains
generated by the high-throughput approach. One-step reverse transcription PCR reactions were performed using oligonucleotides specific for
human NR2E1, mouse Nr2e1, and mouse Gapdh. The results show, as expected, expression of the human NR2E1 gene in adult eye, forebrain, and
midbrain, but not in adult lung, heart, and liver. Marker, 100-bp ladder; positive control (Ctl+), human RNA for human NR2E1 assay and mouse RNA for
mouse Nr2e1 and Gapdh assays; negative control (Ctl2), human RNA for mouse Nr2e1 and Gapdh assays and mouse RNA for human NR2E1 assay.
doi:10.1371/journal.pgen.1002544.g003
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sion in almost any cell type could be detected, and this would add

to the overall understanding of the variant. However, generation

of such in vitro data alone would presumably be less successful in

leading to an understanding of human disease, than when

accompanied by information on the in vivo phenotype of mice

derived from these same cells. A species-relevant, powerful in vitro

assay can be envisaged for the near future when it would be

possible to derive a matched pair of human-induced pluripotent

stem cells, differing only by the variant. However, it would still

remain necessary to undertake an in vivo analysis using HuMM or

HuGX mice to comprehensively study the variant.

We conclude by calling for a concerted effort by the genetics

community, those studying human and mouse, to move forward to

solve the challenge of functional analysis of human regulatory

variation in human disease and disorders.
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