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Abstract

Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate
diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the
human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and
susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed
phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response
to hypoxia and low iron conditions. To further define SrbA’s role in iron acquisition in relation to previously studied fungal
regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the DsrbA background. These data
suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA
induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the
DsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol
content phenotypes of DsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in
iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal
infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for
further exploration of SREBP’s role in iron homeostasis in other eukaryotes.
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Introduction

Fungal pathogens face numerous environmental challenges

during growth in mammalian hosts that can determine outcomes

of host-pathogen interactions. A major factor in host defense

against invading fungi is the sequestration of iron, which prevents

in vivo fungal growth [1]. Consequently, most fungal pathogens

have evolved mechanisms to obtain iron from their hosts and these

mechanisms are established fungal virulence attributes

[2,3,4,5,6,7,8]. Intriguingly, an association between responses to

iron and oxygen limitation emerged from studies in rodents

demonstrating increased iron absorption in response to hypoxia

[9]. Moreover, hypoxia is known to increase the expression of

transferrin, which increases iron availability to host cells under

hypoxic stress [10]. The key transcriptional regulator of mamma-

lian responses to hypoxia, hypoxia inducible factor-1 (HIF), has

been found to regulate several genes involved in iron metabolism

[11,12,13,14]. Thus, an intimate link exists between cellular

responses to low oxygen environments and iron availability in

eukaryotes. Yet, mechanisms of regulation of this potential link in

human pathogenic fungi are largely unknown.

Previous results strongly suggest that mechanisms of both iron

acquisition and hypoxia adaptation are critical for fungi to cause

disease in humans. Strains of the human fungal pathogen

Aspergillus fumigatus that no longer make any iron-sequestering

siderophores are fully avirulent, while strains deficient in either

extracellular or intracellular siderophore production display

attenuated virulence [4,5,6]. Regulation of iron acquisition in A.

fumigatus and other fungi that make siderophores is mediated by

two key transcription factors SreA and HapX [2,15]. Null mutants

of SreA display increased siderophore production and as expected

remain fully virulent in animal models of invasive pulmonary

aspergillosis. Conversely, null mutants of HapX have a reduced

ability to produce siderophores and are consequently significantly
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attenuated in virulence. Recently, a third transcription factor,

AcuM, has been hypothesized to repress SreA and transcription-

ally induce HapX via transcriptome profiling experiments [16].

Though it is unclear if the effects of AcuM on SreA and HapX are

indirect or direct, AcuM null mutants have decreased siderophore

production and attenuated virulence [16]. Data from these studies

strongly suggest the presence of additional unidentified regulators

of iron metabolism in fungi.

An appreciation for the involvement of hypoxia in fungal

pathogenesis is recent and strongly supported by characterization

of fungal sterol regulatory element binding protein (SREBP) null

mutants that are incapable of growth in hypoxia, attenuated in

fungal virulence, and more susceptible to triazole antifungal drugs

[17,18,19,20,21,22]. SREBPs are a unique family of membrane

bound basic helix-loop-helix (bHLH) transcription factors that

mediate a diverse array of biological processes in eukaryotic

organisms [23]. In mammals, SREBPs have been observed to

regulate cholesterol, lipid, and carbohydrate metabolism whereas

in cholesterol auxotrophs such as Drosophila melanogaster and

Caenorhabditis elegans SREBPs function to regulate fatty acid

biosynthesis and development [24,25,26,27,28]. In Schizosacchar-

omyces pombe and Cryptococcus neoformans, SREBPs transcriptionally

regulate genes involved in responses to low oxygen with the

ergosterol biosynthesis pathway being an important downstream

effector [17,18,29,30]. A preliminary characterization of the A.

fumigatus SREBP affected transcriptome adds further support to

the conclusion that fungal SREBPs are key transcriptional

regulators of ergosterol biosynthesis [19]. Yet, the key SREBP

mediated downstream effectors in A. fumigatus remain to be fully

elucidated. Discovering the SREBP mediated regulon in A.

fumigatus and other human pathogenic fungi is critical for fully

understanding the role of this transcriptional regulator in fungal

pathogenesis.

In this study, we utilized microarray-based transcriptomics and

molecular genetics to further define the role of the SREBP SrbA in

A. fumigatus. We report that in A. fumigatus SrbA is an unidentified

regulator of iron homeostasis. Additionally, we observe that SrbA’s

role in iron metabolism is intimately linked with SrbA’s previously

identified role in hypoxia adaptation and triazole drug suscepti-

bility. Together, these results advance our understanding of

regulation of fungal iron homeostasis and provide new evidence

for understanding the role of fungal SREBPs in fungal virulence,

hypoxia adaptation, and antifungal drug susceptibility.

Results

Hypoxia Transcriptome analysis of the A. fumigatus
SREBP null mutant reveals downstream effectors
associated with ergosterol biosynthesis and iron
acquisition

Previously, we reported that loss of the SREBP, SrbA, in the

human fungal pathogen A. fumigatus resulted in loss of hypoxia

growth, increased susceptibility to triazole antifungal drugs, and a

significant attenuation in virulence [19]. To better understand the

mechanisms of the previously observed SrbA dependent clinically

relevant phenotypes, we sought to identify potential SrbA

downstream effectors in A. fumigatus. We compared whole genome

transcript level profiles of wild-type and the SREBP null mutant,

DsrbA, in response to hypoxia (1% O2, 5% CO2, 94% N2). Because

DsrbA cannot grow in hypoxia, a shift experiment was done

whereby both strains were grown in normoxic conditions to the

germling stage, then shifted to hypoxia conditioned media for

defined time points. Transcriptome profiles at 1, 2, and 4 hours

post exposure to hypoxia were measured with microarrays and

reveal dramatic changes in the fungal transcriptome due to loss of

SrbA activity (Tables S1, S2, S3, S4, S5, S6 and Figure 1). At one-

hour post exposure to hypoxia, levels of mRNA from 639 genes

were reduced $2 fold in the absence of SrbA (6.5% of the

genome) (Table S1). mRNA from an additional 524 genes was

increased $2 fold due to absence of SrbA (5.3% of the genome)

(Table S2). Thus, upon initial exposure to hypoxia, approximately

12% of A. fumigatus genes are affected by SrbA activity. At 2 hours

post-exposure to hypoxia, the number of mRNAs whose

abundance decreased $2 fold increased to 773 (Table S3) and

the number of mRNAs whose abundance increased $2 fold

increased to 727 (Table S4). Finally, at 4 hours post-exposure to

hypoxia, 602 mRNAs remained transcriptionally decreased $2

fold (Table S5) while 667 mRNAs remained $2 fold transcrip-

tionally increased (Table S6). Manual gene ontology analysis as

well as Gene set enrichment analysis (GSEA) of available GO

terms suggested an SrbA dependency for ergosterol biosynthesis,

iron acquisition, glycolysis, ribosome biogenesis, and amino acid

biosynthesis (Figure S1, S2, S3; Tables S7, S8, S9). Taken

together, these results suggest that SrbA is a major transcriptional

regulator in A. fumigatus that may act as both a positive and

negative regulator of transcription.

Previous studies in S. pombe, C. neoformans, and A. fumigatus

strongly suggested that fungal SREBPs are key regulators of

ergosterol biosynthesis. Thus, not surprisingly, levels of mRNAs

encoding Erg24, Erg3, and Erg25A were all at least 20 fold less

abundant at one hour post-exposure to hypoxia in the absence of

SrbA (Figure 1A, Table S1). The levels of mRNA from these genes

remained substantially reduced at 2 and 4 hours and confirm our

previously reported sterol profiles of the SrbA null mutant that

demonstrated a partial block in ergosterol biosynthesis at the level

of C4-demethylation [19]. In addition, and in contrast to our

previously published analysis of a 24 hour time point transcrip-

tome, levels of mRNA from several key genes encoding enzymes

involved in iron homeostasis were found to be reduced at least 6

fold in the absence of SrbA (Figure 1B, Tables S1, S3, S5). The

decrease in mRNA of genes associated with iron metabolism

suggests that the initial response to hypoxia of A. fumigatus involves

Author Summary

Advances in medical technologies over the past several
years have led to an increasing population of patients
susceptible to fungal infections. Despite the immunocom-
promised condition of most patients that acquire these
infections, the majority are caused by three fungi: Candida
albicans, Cryptococcus neoformans, and Aspergillus fumiga-
tus. Of these, A. fumigatus is least studied, and the ability of
this fungus to cause lethal disease in these patients needs
more examination. We previously identified a transcription
factor in the sterol-regulatory element binding protein
family, SrbA, in this pathogenic mold that is critical for
virulence and susceptibility to triazole antifungal drugs.
The mechanism by which SrbA mediates these clinically
relevant phenotypes is unclear. Here, we discover that
SrbA is critical for regulation of iron metabolism, particu-
larly through regulation of siderophore production and
uptake. We find that A. fumigatus requires iron uptake
during the initial phases of adaptation to hypoxic
microenvironments and that restoration of iron uptake in
the srbA null mutant is able to partially restore the hypoxia
growth defect and triazole susceptibility of this mutant.
Taken together, our results identify a new role for this
important fungal SREBP and give new insights into the
clinically relevant roles of SrbA.

SREBP Mediates Ergosterol and Iron Homeostasis
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transcriptional induction of genes involved in iron acquisition.

This result supports previous studies in mammals that demonstrate

a tight link between hypoxia adaptation and iron homeostasis. In

A. fumigatus, mRNA levels of sidA, an L-ornithine monooxygenase

that catalyzes the first step in siderophore biosynthesis were

reduced in the absence of SrbA (Figure 1B and Figure 2).

Reduction in sidA mRNA levels would be expected to decrease

both extracellular and intracellular siderophore production in A.

fumigatus. mRNA from other genes involved in iron acquisition

were also less abundant in the absence of SrbA including, the

siderophore transporters mirB and sit1, the high affinity iron

transporter ftrA, and the ferrooxidoreductase fetC involved in

reductive iron assimilation. We further confirmed the SrbA

dependency for transcription of iron associated genes in response

to hypoxia utilizing qRT-PCR (Figure 2). At 1, 2, and 4 hours,

exposure to hypoxia reduced transcript levels of fetC, sidA, and sit1

in the absence of SrbA. Transcript levels of ftrA were SrbA

dependent at 1 hour post-exposure to hypoxia, but increased at 2

and 4 hours via an unknown mechanism. Taken together, these

results suggest that SrbA is a critical regulatory factor for iron

homeostasis during the initial response to hypoxia.

We next asked the question whether SrbA directly or indirectly

regulated transcriptional regulation of ergosterol biosynthesis and

iron acquisition. Wild-type and DsrbA strains were cultivated as

for the microarray and qRT-PCR experiments, and at 4 hours

post-exposure to hypoxia chromatin immunoprecipitation (ChIP)

was performed using IgG and polyclonal SrbA (amino acids 1–

275) antibodies. Immunoprecipitated DNA was quantified for

erg25A, erg11A, sit1, and sidA using primers targeted to the

promoter regions of these genes. Significant enrichment for SrbA

binding to the promoters of erg11A, erg25A, and sit1, was observed

indicating that SrbA likely directly binds to the promoters of these

genes (Figure 3). However, no enrichment was observed for sidA

indicating that SrbA regulation of this important siderophore

biosynthesis gene may be indirect. Taken together, these results

strongly suggest that SrbA coordinately regulates ergosterol

biosynthesis and iron uptake in response to hypoxia.

SrbA-deficiency impairs submersed growth during iron
starvation due to iron shortage

Because iron is a critical co-factor for enzymes involved in

ergosterol biosynthesis, we explored the hypothesis that SrbA is a

positive regulator of iron acquisition independent of the known

fungal iron regulators SreA and HapX. In order to compare the

function of SrbA with that of SreA and HapX, DsreA and DhapX

mutants were generated in CEA10 and DsrbA backgrounds as

previously described for ATCC46645 [2,15]. We then tested the

consequences of SrbA-deficiency in the generated strains in

submersed liquid cultures under iron replete and iron limiting

conditions. In iron replete conditions, DsrbA biomass was 54%

Figure 2. qRT-PCR confirmation of SrbA-dependent iron homeostasis gene transcript abundance in hypoxia. Transcript levels of fetC,
ftrA, sidA, and sit1 were examined in normoxia then after a shift to hypoxia for 1, 2, and 4 hours in wild-type CEA10 and DsrbA strains. Transcript levels
were normalized to b-tubulin transcript levels in each sample and data is presented relative to the wild-type transcript levels at time 0 in normoxia for
each transcript using 2‘-DDCt method. Normalized fold expression less than 1 indicate the transcript levels are reduced in DsrbA compared to wild-
type.
doi:10.1371/journal.pgen.1002374.g002

Figure 1. SrbA regulates genes encoding enzymes involved in ergosterol biosynthesis and iron metabolism in response to hypoxia.
(A) Heat map representation of gene transcripts involved in ergosterol biosynthesis that are affected by A. fumigatus SrbA (B) Heat map
representation of gene transcripts involved in iron metabolism that are affected by SrbA. A complete list of differentially expressed genes is available
in Tables S1, S2, S3, S4. Data compare wild-type A. fumigatus to the DsrbA strain at the indicated times after exposure to hypoxic conditions, such that
wild-type transcript levels after one hour hypoxia exposure is compared to DsrbA after one hour. Red indicates transcript levels are higher in DsrbA
(fold changes are log base 2). Three biological replicates each with dye flips were performed for each time point examined.
doi:10.1371/journal.pgen.1002374.g001
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(54.0/100.0) of the wild-type and in iron depleted conditions,

DsrbA biomass diminished even further to 32% (18.52/57.47) of

wild-type (Table 1). Importantly, the DsrbA reconstituted strain

completely restored wild-type biomass in response to iron

depletion indicating that the iron phenotype observed is

specifically due to loss of SrbA (Table 1). Consequently, the

2Fe/+Fe biomass ratio decreased from 57% (57.47/100.00) for

CEA10 to 34% (18.52/54.00) for DsrbA (Table 1). Thus, loss of

SrbA negatively affects the ability of A. fumigatus to deal with low

iron environments supporting the observed transcriptional profil-

ing data.

As expected, SreA-deficiency did not affect liquid biomass

production during either iron-replete or iron-depleted conditions.

Intriguingly, inactivation of SreA in the DsrbA strain increased

fungal biomass by 47% in iron-depleted conditions and 20% in

iron-replete conditions compared to the DsrbA strain itself.

Consequently, this increased the 2Fe/+Fe biomass ratio to 42%

(Table 1). As found previously for A. fumigatus strain ATCC46445

[2], HapX-deficiency decreased liquid biomass production during

iron starvation in A. fumigatus strain CEA10 by about 60% but had

no significant effect during iron sufficiency because hapX is mainly

expressed during iron starvation [2]. Compared to DsrbA,

additional inactivation of HapX in DsrbA decreased the biomass

by 37% in iron depleted conditions but had no effect in iron-

replete conditions (Table 1). Taken together, these data strongly

support the hypothesis that SrbA is required for adaptation to iron

starvation independent of the known fungal iron metabolism

regulators SreA and HapX.

SrbA is required for full activation of extra- and
intracellular siderophore production

We next explored the mechanism behind the detrimental effects

of iron starvation on DsrbA. Our transcriptome profiling

experiments implied a potential role for SrbA regulation of

siderophore biosynthesis and uptake. As shown previously for A.

fumigatus strain ATCC46445 [4,5], A. fumigatus strain CEA10

produces extracellular TAFC (triacetylfusarinine C) exclusively

during iron starvation. Intriguingly, SrbA-deficiency decreased

TAFC production by 90% compared to wild-type CEA10 in iron

starvation conditions (Figure 4A). Similar to previous findings with

A. fumigatus strain ATCC46445 [2,15], HapX-deficiency in

CEA10 decreased TAFC production during iron starvation by

Figure 3. Enrichment of SrbA at the promoters of ergosterol biosynthesis and iron uptake genes. Chromatin immunoprecipitation (ChIP)
qPCR was performed on DNA from wild-type and DsrbA cells that were incubated in hypoxia for 4 hours. DNA was precipitated with either control
IgG or 1 mg of anti-SrbA polyclonal antibody. Binding of SrbA to putative promoter regions was assessed with qPCR and data is presented as the
percent enrichment of each sample to the input control. Results are the mean and standard deviation of 2 biological ChIP replicates and two qPCR
technical replicates.
doi:10.1371/journal.pgen.1002374.g003

Table 1. SrbA-deficiency impairs submersed biomass production in particular during iron starvation.

CEA10 DsreA DhapX DsrbA
DsrbA
DsreA

DsrbA
DhapX srbAR

2Fe 57.4764.59 53.9569.8 23.6967.66 18.5264.28 27.2865.81 11.6362.08 54.8263.98

+Fe 100.0068.67 97.96620.8 102.4766.68 54.00613.02 64.9468.43 52.2162.24 96.7269.06

ratio
2/+Fe

0.57 0.55 0.23 0.34 0.42 0.22 0.57

Biomass production (dry mass) of 108 conidia in 200 ml liquid AMM was scored during iron starvation (2Fe) and iron sufficiency (+Fe, 30 mM) after 24 h incubation at
37uC at 200 rpm and normalized to that of the CEA10 grown under iron sufficiency. The given values are the mean 6 STD of six biological replicates.
doi:10.1371/journal.pgen.1002374.t001
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79% during iron starvation while SreA-deficiency in CEA10

caused a 7% derepression of TAFC production during iron

sufficiency (Figure 4A). Compared to DsrbA, additional deletion of

hapX in DsrbA decreased TAFC production by 79% during iron

depleted conditions (Figure 4A). In contrast, additional deletion of

sreA in DsrbA increased TAFC production compared to DsrbA by

163% during iron starvation and derepressed TAFC production to

40% of the DsreA level during iron sufficiency (Figure 4A).

Figure 4. SrbA activates extracellular and intracellular siderophore production independent of SreA and HapX. (A) Extracellular and
(B) intracellular. Quantification of extracellular TAFC and intracellular FC and after growth for 24 hours at 37uC during iron-replete (+Fe) and depleted
(2Fe) conditions was normalized to the biomass of the respective strain and furthermore to that of the CEA10 during iron starvation. The given
values are the mean 6 SD of six biological replicates. Under iron-replete conditions the measured FC was iron-free (desferri-FC), while under iron-
replete conditions the FC was iron loaded (ferri-FC).
doi:10.1371/journal.pgen.1002374.g004
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As shown previously for A. fumigatus strain ATCC46445 [4,5], A.

fumigatus strain CEA10 accumulates intracellular FC (ferricrocin)

in the ferri-form during iron sufficiency and about 20 fold higher

amounts in the desferri-form during iron starvation (Figure 4B).

SrbA-deficiency had no effect of the FC during iron sufficiency.

However, SrbA-deficiency decreased the FC content by 71%

compared to CEA10 during iron starvation (Figure 4B). Similar to

previous findings with A. fumigatus strain ATCC46445 [2,15],

HapX-deficiency in CEA10 decreased the FC content during iron

starvation by 47% during iron starvation while SreA-deficiency in

CEA10 increased the FC content during iron sufficiency 3.7 fold

(Figure 4B). Compared to DsrbA, the FC content in DsrbADhapX is

decreased by 46% during iron starvation (Figure 4B). In contrast,

additional deletion of SreA in DsrbA increased the FC content

compared to DsrbA by 19% during iron starvation and 181%

during iron sufficiency (Figure 4B).

Together, these data indicate that SrbA activates production of

extra-and intracellular siderophores independent of SreA and

HapX. Moreover, this biochemical data supports the observed

transcriptome profile of DsrbA that strongly suggests a critical role

for SrbA in regulation of siderophore biosynthesis and uptake.

However, the mechanism by which SrbA regulates siderophore

production remains to be elucidated. As production of extra- and

intracellular siderophores plays a crucial role in adaptation to iron

starvation [4,5], these data explain, at least in part, the observed

growth and morphological defects of DsrbA during iron starvation.

srbA mRNA abundance is regulated by iron availability,
and SrbA positively affects iron acquisition and
biosynthesis of heme and ergosterol

In further support of SrbA’s role as a positive regulator of iron

homeostasis, previous genome-wide transcriptome profiling ex-

periments indicated that srbA transcript levels are reduced within

30–60 minutes during a shift from iron starvation to iron

sufficiency independent of SreA and HapX [2,15]. Thus, we next

confirmed that srbA transcript levels are substantially higher during

iron starvation compared to iron sufficiency, and that srbA

transcript levels are not influenced by inactivation of SreA or

HapX (Figure 5). These results further support the hypothesis that

SrbA transcript levels increase under low iron conditions and that

this increase is independent of the known transcriptional regulators

of iron homeostasis SreA and HapX.

Consistent with the transcriptome profile of DsrbA upon early

exposure to hypoxia and biochemical analysis of siderophore

production in the absence of SrbA, inactivation of SrbA reduced

mRNA levels of genes involved in siderophore metabolism

(siderophore biosynthetic sidA, TAFC-biosynthetic sidF, and

siderophore importer-encoding mirB), reductive iron assimilation

(ftrA), and iron transcriptional regulation (hapX) in iron limited

conditions (Figure 5). All of these genes belong to the SreA regulon

[15]. Moreover, SrbA deletion decreased the degree of derepres-

sion of these genes in DsreA during iron sufficiency (compare DsreA

and DsrbADsreA). The reduction of hapX mRNA levels in the

absence of SrbA in iron limiting conditions suggests a previous

unreported link between SrbA and HapX in iron limiting

conditions. Together, these data support a role for SrbA in

adaptation to iron starvation and demonstrate that SrbA impacts

siderophore biosynthesis at the transcriptional level both in

response to hypoxia and iron starvation through an unknown

mechanism.

Importantly, mRNA levels of genes involved in ergosterol

biosynthesis were also found to be more abundant under iron

starvation conditions (Figure 5). Similar to the hypoxia mRNA

transcriptome profiling data, this increase in mRNA levels is SrbA

dependent (Figure 5). In further support of SrbA’s role in

regulating iron metabolism, mRNA levels of the iron center-

ergosterol biosynthetic enzymes Erg3 (C-5 sterol desaturase) and

Erg25 (C-4 methyl sterol oxidase) were independent of SreA and

HapX (Figure 5). As mRNA levels from both erg3 and erg25 are

also reduced in DsrbA in response to hypoxia, these data further

support the SrbA mediated link between ergosterol biosynthesis

and iron metabolism in response to hypoxia in A. fumigatus. Also of

interest, SrbA inactivation decreased mRNA levels of the heme

biosynthetic gene hem13 (encoding coproporphyrinogen III

oxidase) independent of SreA and HapX in iron limited and

hypoxia conditions.

Importantly, mRNA levels of acoA, which encodes the iron-

sulfur cluster-containing aconitase and whose expression is

subject to HapX-mediated repression during iron starvation are

decreased during iron-replete conditions in DsrbA and DsrbADhapX

but not in DsrbADsreA [2]. These data indicate that SrbA-

deficiency decreases cellular iron supply during iron-replete

conditions due to reduction of iron uptake. Importantly, this

defect can be partially suppressed by derepression of iron uptake

via SreA-deficiency (DsrbADsreA).

Increased iron availability and/or inactivation of SreA
increases resistance of DsrbA to fluconazole and partially
restores growth in hypoxia

We next explored the hypothesis that the partial suppression of

decreased cellular iron supply in DsrbADsreA would rescue the

clinically relevant phenotypes of DsrbA: increased fluconazole

susceptibility, inability to grow in hypoxia, and ability to cause

invasive pulmonary aspergillosis. E-test mediated fluconazole

susceptibility testing confirmed our previously published results

that the inherent fluconazole resistance of A. fumigatus CEA10

depends on SrbA activity (Figure 6). Fluconazole susceptibility in

DsrbA was consistent in both iron depleted and iron replete

conditions. Intriguingly, high iron conditions were able to increase

the resistance of DsrbA against fluconazole (high iron

MIC = 12 mg/ml compared to an MIC of 1 mg/ml during iron

replete or iron starvation). Additional deletion of sreA, but not

hapX, in DsrbA partially rescued fluconazole resistance, and this

effect, as expected, was potentiated under high iron conditions.

Importantly, deletion of either sreA or hapX alone did not affect

fluconazole susceptibility. Taken together, these results suggest

that the increase in A. fumigatus fluconazole susceptibility in the

absence of SrbA is partially due to loss of iron homeostasis.

The direct binding of SrbA to the promoter of erg11A (also

called cyp51A in A. fumigatus) led us to explore the potential

mechanism behind this result. We thus examined transcript levels

of erg11A, erg11B (cyp51B), erg25A, and srbA in response to varying

levels of iron in wild-type and DsrbA. Addition of high iron to

either wild-type or DsrbA significantly increased erg11A transcript

levels (Figure 7A and 7B). As expected from the ChIP experiment,

this effect on erg11A transcript was SrbA dependent (Figure 7A and

7B). Of note, erg11A is not contained on the microarray and thus

erg11A transcript levels were not previously observed to be SrbA

dependent. Consistent with the previous Northern blot experi-

ments, loss of iron stimulated an increase in srbA transcript levels

(Figure 7A). However, the effect of iron on erg25A transcripts was

minimal, though as observed with the microarray data, erg25A

transcript levels are SrbA dependent (Figure 7A and 7B). Next, we

examined total ergosterol levels in wild-type, DsrbA, and

DsrbADsreA strains (Figure 7C). Addition of high iron was able to

increase total ergosterol levels in the DsrbA and DsrbADsreA

backgrounds consistent with the increase in erg11A transcript

levels. No difference in ergosterol levels was observed between the
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wild-type and DsreA strains (Figure 7C). These data, however, do

not rule out the potential for increased enzyme efficiency in the

presence of more available iron, or a restoration of membrane

fluidity due to increases in ergosterol level that may affect triazole

drug uptake. However, these data suggest that loss of iron

homeostasis due to absence of SrbA affects ergosterol biosynthesis

and triazole drug interactions in A. fumigatus.

As high iron levels or deletion of SreA were able to partially

rescue the fluconazole susceptibility and decrease in ergosterol

content in DsrbA, we hypothesized that these effects may also

rescue the hypoxia growth defect of DsrbA. In further support of

a link between hypoxia adaptation and iron homeostasis in

A. fumigatus, supplementation of media with high iron concentra-

tions plus inactivation of SreA partially rescues growth of

DsrbA in hypoxia (Figure 8). This result can be explained by

derepression of iron uptake due to SreA inactivation, which works

best in the presence of high iron concentrations. Thus, in the

absence of SreA, iron uptake is increased in DsrbA. HapX-

deficiency had no effect on hypoxic growth and not surprisingly,

is not transcriptionally induced in response to hypoxia. These

data indicate that the hypoxic growth defect of DsrbA is at least

partially explained by a defect in iron accumulation. In further

support of this conclusion, susceptibility to cobalt chloride in

the absence of SrbA is also rescued by further inactivation of

Figure 5. srbA expression is transcriptionally upregulated by iron starvation and SrbA-deficiency downregulates the SreA regulon
independent of SreA and HapX, as well as the ergosterol biosynthetic erg3 and erg25 and the heme-biosynthetic hem13. For Northern
analysis, total RNA was isolated from A. fumigatus strains grown for 24 h in liquid cultures at 37uC at 200 rpm during iron-replete (+Fe) and depleted
(2Fe) conditions. Ethidium bromide-stained rRNA is shown as control for loading and quality of RNA.
doi:10.1371/journal.pgen.1002374.g005
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Figure 6. Increased iron availability and/or inactivation of SreA increase resistance of DsrbA to fluconazole. E-test strips (AB Biodisk,
bioMérieux) impregnated with a gradient of fluconazole were placed onto a MM agar plates representing different iron availability (2Fe; +Fe, 30 mM;
hFe,10 mM iron) and containing a lawn of conidia. Growth inhibition was measured after 48 h at 37uC by direct observation.
doi:10.1371/journal.pgen.1002374.g006

Figure 7. Increased iron levels increase erg11A transcript and total ergosterol levels in the absence of SrbA. qRT-PCR analysis of erg11A,
erg11B, srbA, and erg25A transcript levels were measured in the wild-type CEA10 (A) and DsrbA strains (B). Transcript levels were normalized to tefA
transcript levels in each sample and data was normalized to the 2Fe sample in both strains examined. Chelator = 100 mM of the iron chelator 2,2-
dipyridyl was added to the culture medium to completely remove free iron. Data represents the mean and standard deviation of three biological and
two PCR technical replicates. (C) Total ergosterol content of respective strains in response to iron depleted and high iron conditions. Data represent
the mean and standard deviation of 2 biological replicates. *,**, *** = p,0.05, two-tailed paired t-Test. *** refers to statistical comparisons between
CEA10 in both Fe+ and Fe2 to DsrbA in both Fe+ and Fe2.
doi:10.1371/journal.pgen.1002374.g007
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SreA (Figure S4). Thus, the ability of either high iron or loss of

SreA activity to partially rescue the fluconazole and hypoxia

phenotypes of DsrbA strongly suggests that DsrbA cells are iron

deficient. These results further support an important link

between iron homeostasis and ergosterol biosynthesis as mediated

by SrbA.

As the avirulence phenotype of DsrbA is hypothesized to at least

partially be the result of its inability to grow in hypoxia, we next

tested the ability of DsrbADsreA to cause disease in a chemother-

apeutic murine model of invasive pulmonary aspergillosis. We

have previously shown that DsrbA is fully avirulent in this murine

model of IPA; however, inactivation of SreA in DsrbA was not

able to rescue virulence in the absence of SrbA (Figure 9A).

Histopathological examinations of wild-type, DsrbA, and DsrbADs-

reA strains revealed significant fungal growth and tissue necrosis

in mice infected with CEA10 (Figure 9B). However, as previously

reported, a significant reduction in DsrbA growth is observed in

vivo and further inactivation of SreA did not visibly change the

observed histopathology. As iron availability is extremely

limited in vivo, and previous results demonstrating that A. fumigatus

Figure 8. Increased iron availability and/or inactivation of SreA improve growth of DsrbA during hypoxia. For plate growth assays of
CEA10, DsreA, DhapX, DsrbA, DsrbADsreA, and DsrbADhapX under normoxic and hypoxic conditions, 100 conidia of each strain were point-inoculated
on AMM agar plates containing different iron concentrations (2Fe; +Fe, 30 mM; hFe,1.5 mM) or the iron chelator BPS (2Fe, 100 mM BPS) and
incubated at 37uC for 96 h during hypoxic conditions or normoxic conditions.
doi:10.1371/journal.pgen.1002374.g008
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strains defective in siderophore biosynthesis have attenuated

virulence, this result is likely not surprising and does not rule out a

role for SrbA mediated iron homeostasis in the avirulence

phenotype of DsrbA. Additional experiments examining the

impact of loss of iron homeostasis in DsrbA on A. fumigatus

virulence are ongoing.

SrbA-deficiency alters the free amino acid pool
composition in A. fumigatus during iron sufficiency and
starvation

Iron starvation has previously been observed to cause a

significant remodeling of the amino acid pool [2]. HapX, which

is activated by iron-starvation, affects the amino acid composition

during iron starvation but not during iron sufficiency and is crucial

for coordination of the production of siderophores and their

precursor ornithine. Given SrbA’s role in mediating responses to

low iron conditions and reduction of siderophore biosynthesis in

the absence of SrbA, we next tested the hypothesis that loss of

SrbA would also alter the amino acid pool of A. fumigatus. In

support of this hypothesis, the transcriptome profile data suggest

significant changes in the mRNA levels of genes involved in amino

acid biosynthesis in the absence of SrbA upon exposure to hypoxia

(Figure 10). In contrast to HapX-deficiency, SrbA-deficiency

dramatically changed the composition of the amino acid pool

during both iron-replete and depleted conditions (Table 2). Similar

to HapX-deficiency, SrbA-deficiency decreased the cellular

ornithine pool during iron starvation, which indicates together

with the decrease in siderophore biosynthesis, that SrbA also plays

a role in supply of the siderophore precursor ornithine. Thus, loss

of siderophore biosynthesis in DsrbA may be due to regulation of

critical precursor levels.

Figure 9. Inactivation of SreA in DsrbA does not restore fungal virulence. (A) Lung histopathology of CD1 mice infected with respective A.
fumigatus strains on day +4 after infection. Substantial fungal growth and tissue necrosis are observed in lungs of mice infected with wild-type
CEA10. However, little to no fungal growth is observed in lungs of mice infected with either DsrbA, or DsrbADsreA. (B) Kaplan-Meier survival analysis of
respective A. fumigatus strains in chemotherapeutic model of invasive pulmonary aspergillosis. As with previously published results with strain DsrbA,
strain DsrbADsreA has a significant reduction in virulence compared to wild-type CEA10 (P,0.0001, Log-Rank Test for comparison between
DsrbADsreA and wild-type CEA10,).
doi:10.1371/journal.pgen.1002374.g009
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Discussion

Understanding the in vivo microenvironment conditions encoun-

tered by human pathogenic fungi is a promising line of inquiry for

identifying novel therapeutic options for these frequently lethal

infections. The importance of iron availability in host pathogen

interactions is well established, and its role in invasive pulmonary

aspergillosis is no exception. Previous studies have clearly

demonstrated a critical role for iron acquisition mechanisms in

fungal pathogenesis for A. fumigatus and other human pathogenic

fungi [4,5,7,8,31,32,33,34,35,36,37,38,39,40]. More recently, it has

been hypothesized that adaptation to low oxygen microenviron-

ments during fungal infection may also be a critical virulence

attribute of human pathogenic fungi [17,18,19,20,22]. Support for

this hypothesis partially stems from studies with fungal SREBP null

mutants in C. neoformans and A. fumigatus that are incapable of growth

in hypoxia and unable to cause lethal disease in murine models of

fungal infections [17,18,19,41,42]. However, as SREBPs are

transcription factors that regulate a significant number of genes in

fungi, it is unclear if the hypoxia growth phenotype of fungal

SREBP null mutants is the primary factor for loss of virulence in

these mutants. Moreover, fungal SREBP mutants display increased

susceptibility to the triazole class of antifungal drugs.

Thus, several key questions remain regarding the role of SrbA

in fungal pathogenesis. Important questions include what is the

mechanism behind the inability of SREBP null mutants to grow

in hypoxia? Does this directly correlate with the avirulence of

fungal mutants that lack SREBPs? And what is the mechanism

behind the increased susceptibility to triazole drugs in the absence

of SREBP? To begin to answer these potentially clinically

relevant questions, we utilized whole-genome transcriptome

analysis of A. fumigatus DsrbA exposed to hypoxia to identify SrbA

downstream effectors. Here, we report that the A. fumigatus

SREBP is a key positive regulator of iron homeostasis,

particularly with regard to iron acquisition, that is essential for

adaptation to hypoxia and low iron microenvironments. Al-

though previous transcriptome profiling experiments with the C.

neoformans SREBP null mutant also suggest a potential role for

fungal SREBPs in iron acquisition [7,17], here we definitively

show that SREBP is required for adaptation to low iron

conditions in A. fumigatus. We further observe that DsrbA cells

are likely iron deficient and this partially explains the hypoxia

growth and triazole susceptibility phenotypes of DsrbA. Impor-

tantly, SrbA’s effect on iron homeostasis appears to be primarily

independent of the well-studied iron transcriptional regulatory

factors HapX and SreA.

Figure 10. Genes involved in amino acid biosynthetic processes are transcriptionally affected by loss of SrbA in hypoxia. Heat map
representation of genes involved in amino acid biosynthesis that are regulated by A. fumigatus SrbA. A detailed list of genes and fold changes is
available in Tables S1, S2, S3, S4. Data compare wild-type A. fumigatus to the DsrbA strain at the indicated times after exposure to hypoxic conditions,
such that wild-type transcript levels after one hour hypoxia exposure is compared to DsrbA after one hour. Red indicates transcript levels are higher in
DsrbA (fold changes are log base 2). Three biological replicates each with dye flips were performed for each time point examined.
doi:10.1371/journal.pgen.1002374.g010
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SreA-deficiency in A. fumigatus and A. nidulans has been

observed to partially derepress siderophore production and

expression of respective genes involved in iron acquisition in

iron replete conditions [15,43]. Importantly, this result strongly

suggested the existence of additional regulatory mechanisms

involved in iron homeostasis in A. fumigatus. Next, the transcrip-

tion factor HapX was demonstrated to be required not only for

repression of iron-consuming pathways but also for activation of

siderophore biosynthesis and uptake during iron starvation in A.

nidulans and A. fumigatus [2,44]. SreA and HapX are intercon-

nected by a negative transcriptional feed back loop and

simultaneous inactivation has been shown to be synthetically

lethal in A. nidulans and A. fumigatus [2,44]. Recently, the

transcription factor AcuM, that is required for gluconeogenesis,

was found to also activate siderophore biosynthesis most likely via

repression of SreA in A. fumigatus but not A. nidulans [16]. Here we

present data that strongly suggest that SrbA is another critical

activator of high-affinity iron acquisition systems in A. fumigatus

including the siderophore system and reductive iron assimilation

[45].

Figure 11 depicts a proposed model linking SreA, HapX, and

SrbA in regulation of iron acquisition and ergosterol biosynthesis.

Clearly, additional studies are needed to definitively define the

relationship between these three important transcriptional regu-

lators of iron homeostasis. Future studies will also seek to

incorporate AcuM into our model. Importantly, in response to

hypoxia, our microarray data did not detect transcript changes in

either HapX or AcuM in the SrbA null mutant. However, in iron

depleted conditions, HapX transcript was clearly reduced in

DsrbA, which indicates that SrbA may directly or indirectly

regulate HapX transcript levels under these conditions. Deletion of

HapX in DsrbA did increase the magnitude of reduction in

siderophore levels, further suggesting a possible link between these

two transcription factors that remains to be fully elucidated.

Defining a regulatory role for SrbA in iron acquisition is

consistent with previous reports in other organisms that have

linked SREBPs with regulation of sterol biosynthesis and

adaptation to hypoxia. Previous studies have suggested a tight

link between iron, oxygen and ergosterol biosynthesis in response

to hypoxia in yeast. For example, in the model yeast S. cerevisiae,

low iron conditions decrease the activity of the C4-sterol

demethylase Erg25, and moreover, sterol synthesis in this

organism requires heme [46]. While S. cerevisiae lacks an SREBP

ortholog, S. pombe and C. neoformans Sre1 and A. fumigatus SrbA

SREBPs appear to be key regulators of Erg25 and sterol

biosynthesis [19,30,47] (Figure 1B, Figure 2, and Figure 5). Our

A. fumigatus hypoxia transcriptome profiling data are also in

agreement with similar studies in S. pombe and C. neoformans that

demonstrate an increase in transcripts associated with heme, sterol

biosynthesis, and iron uptake in response to hypoxia [17,42,48]. A

recent proteomic analysis of A. fumigatus grown in a chemostat

culture under hypoxia demonstrated that the cellular contents of

heme and iron substantially increase in these conditions [49].

Thus, taken together, our results here and the results of prior

seminal studies in yeast establish a tight link between iron, oxygen,

ergosterol biosynthesis and fungal responses to hypoxia, which are

mediated in part by SREBPs.

Further support for this conclusion comes from our results

demonstrating that addition of high iron concentrations to DsrbA,

or derepression of iron uptake by simulataneous deletion of SreA,

is able to partially rescue the triazole susceptibility and hypoxia

growth phenotypes of this fungal SREBP null mutant. As a major

goal of our study was to better understand the mechanisms

behind the clinically relevant antifungal drug and virulence

phenotypes of the SrbA null mutant, these results are particularly

significant. An important question is how increased iron

availability rescues these important DsrbA phenotypes. To this

end, the observed increase in total ergosterol levels in DsrbA and

Table 2. Total free amino acid pool is altered in absence of SrbA.

aa CEA10 DsrbA DsrbA/CEA10

+Fe 2Fe 2/+ Fe +Fe 2Fe 2/+ Fe +Fe 2Fe

Ala 37.6460.32 9.4162.74 0.25d 18.1460.73 5.7361.64 0.32d 0.48c 0.61c

Arg 1.7160.24 16.3260.52 9.57b 2.7760.74 12.5961.41 4.55b 1.62a 0.77

Asn 1.1960.18 3.6260.09 3.04b 4.8860.41 6.1160.09 1.25 4.10b 1.69a

Asp 4.3160.32 3.1561.07 0.73 7.5261.01 5.3761.01 0.71 1.75a 1.71a

Gln 6.4860.44 39.2964.43 6.07b 29.9663.45 45.8861.25 1.53a 4.63b 1.17

Glu 40.8960.82 9.162.18 0.22d 29.0162.29 12.0762.61 0.42c 0.71 1.33

Gly 1.7460.03 1.8360.25 1.05 1.160.03 0.8760.14 0.80 0.63c 0.48c

His 0.2860.03 2.2960.38 8.06b 0.4960.43 2.1560.64 4.39b 1.73a 0.94

Ile 0.4160.03 0.5260.07 1.26 0.4960.01 0.3360.08 0.66c 1.20 0.63c

Leu 0.5260.03 0.9560.22 1.84a 0.7160.01 0.5360.20 0.74 1.38 0.56c

Lys 1.8660.14 5.5260.45 2.96a 1.4460.03 4.2460.36 2.94a 0.77 0.77

Met 0.0760.00 0.2560.01 3.45b 0.1860.03 0.2160.03 1.20 2.41a 0.84

Orn 0.4960.02 4.9660.06 10.03b 0.3660.05 1.6560.27 4.63b 0.72 0.33d

Phe 0.1660.21 0.2960.12 1.86a 0.4460.01 0.3360.15 0.74 2.78a 1.11

Ser 2.2560.17 2.4860.04 1.10 2.5260.15 1.9560.03 0.77 1.12 0.79

Individual amino acid pools (aa) are given in % of the total free amino acids 6 STD. aa upregulated .1.5 and .3 fold in CEA10 or DsrbA during iron starvation compared
to iron sufficiency are marked in a and b, respectively; aa pools down-regulated .1.5 and .3 fold are marked in c and d respectively. aa pools upregulated .1.5 and .3
fold in DsrbA compared to CEA10 in the same condition are marked in a and b, respectively; aa pools down-regulated .1.5 and .3 fold are marked in c and d,
respectively.
doi:10.1371/journal.pgen.1002374.t002
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DsrbADsreA strains in high iron conditions suggest a direct SREBP

mediated link between cellular iron levels and ergosterol

biosynthesis. This was also reflected in the SrbA dependent

decrease in erg11A (cyp51A) transcript levels that could also be

partially rescued by high iron. This result may explain, at least

partially, the restoration of fluconazole resistance and hypoxia

growth of DsrbA under high iron conditions. It is important to

note that A. fumigatus contains 2 functional 14a-demethylases

(Erg11A/Cyp51A and Erg11B/Cyp51B) [50,51]. Loss of Erg11A

but not Erg11B function results in increased fluconazole

susceptibility. Moreover, intriguingly, it was recently observed

that fluconazole preferentially binds Erg11B, thus likely explain-

ing A. fumigatus’s inherent resistance to fluconazole [52].

In Candida albicans, a link between iron availability and

fluconazole susceptibility has been suggested [53]. The authors

observed a 30% reduction in ergosterol levels in low iron

conditions and speculate that the increased fluconazole suscepti-

bility in these conditions was due to a subsequent increase in

membrane fluidity [53]. Thus, the partial rescue of fluconazole

resistance in A. fumigatus DsrbA by high iron may in part be due to a

reduction of membrane fluidity. In support of this hypothesis,

ergosterol levels in DsrbA are approximately 50% less than wild-

type, and increases in exogenous iron partially rescue this defect,

which in theory could decrease membrane fluidity. How iron

increases ergosterol levels is unknown, but it could be argued that

the increased iron levels improve the efficiency of ergosterol

biosynthetic enzymes whose levels appear to be reduced in the

absence of SrbA. Both Erg11A and Erg25 require iron as a co-

factor for their enzymatic functions. Thus, the observed increases

in erg11A transcript levels in the presence of high iron could be due

to a positive feedback loop activated by an increase in sterol

intermediates that result from increased enzyme efficiency.

With regard to the potential link between hypoxia growth and

fungal virulence, high iron conditions or concomitant inactivation

of SreA could partially rescue the hypoxia growth phenotype of

DsrbA, but not fungal virulence (Figure 9). Derepression of

siderophore biosynthesis and iron uptake in DsrbA was not

dramatic enough to rescue the virulence defect of DsrbA leaving

the exact mechanism of SrbA’s role in fungal virulence

undefined. However, given that iron is a major limiting

micronutrient in vivo, and that the effect of high iron on DsrbA

growth was modest, this result is not surprising. As A. fumigatus

mutants that lack siderophore biosynthesis also have attenuated

virulence in vivo, it seems clear that SrbA’s role in siderophore

biosynthesis and iron uptake is at least partially related to the

inability of DsrbA to cause lethal disease. Attempts to fully restore

hypoxia growth of DsrbA via genetic manipulation of iron

homeostasis and ergosterol biosynthesis pathways are currently

underway.

In conclusion, our data suggest a new role for SREBPs in

linking hypoxia adaptation, iron acquisition and ergosterol

biosynthesis in fungi. We believe that untangling the web of

SrbA regulated effectors will lead to a better understanding of

SrbA’s role in fungal pathogenesis and triazole drug susceptibility,

which should provide a clearer picture regarding the potential of

fungal SREBP modulation as a clinical therapeutic for human

disesases caused by fungi. Thus, future studies will continue to

seek to elucidate the genetic regulatory network mediated by

SrbA in A. fumigatus and its relationship to fungal virulence and

triazole drug interactions. It might also be intriguing to determine

the extent to which SREBPs in other eukaryotic organisms are

involved in iron homeostasis mechanisms and how this potential

regulation is linked with sterol biosynthesis homeostasis especially

in hypoxic stress environments.

Materials and Methods

Fungal strains and growth conditions
A. fumigatus strains were grown at 37uC in Aspergillus minimal

medium (AMM) according to Pontecorvo et al. [54] containing 1%

glucose as carbon source and 20 mM glutamine as nitrogen source

or glucose minimal medium (GMM) with 1% glucose as carbon

source as previously described [19]. Iron-repleted media (+Fe)

were supplemented with 30 mM FeSO4 and high iron media

contained 1.5 mM, 3.0 mM, 5 mM or 10 mM FeSO4, respec-

tively. Media used and concentrations of key elements are denoted

according to the respective experiments. For iron depleted

conditions (2Fe) addition of iron was omitted. For hypoxic

conditions, 13.45 g AneroGenTM was used or an INVIVO2

Hypoxia Chamber (Ruskinn) set at 1% O2, 5% CO2, 94% N2.

For liquid growth assays, 108 conidia were inoculated in 200 ml

minimal medium.

Transcriptome analysis
Nucleic acid extraction. Tissue was resuspended in 1 ml of

Trizol reagent followed by a five minute incubation at RT. 0.2

Figure 11. Model for relationships between the transcriptional regulators SrbA, SreA, HapX, and AcuM and their roles in iron
acquisition and ergosterol biosynthesis.
doi:10.1371/journal.pgen.1002374.g011
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volumes of chloroform was added, followed by a short vortex at

low speed followed by 2 minute incubation at RT. Tubes were

centrifuged at 16,0006g for 15 min at 4uC. The clear upper layer

was pipeted into new tube and an equal volume of 80% EtOH was

added. Samples were mixed well and applied to RNeasy spin

column (Qiagen RNA kit) following manufacturer’s instructions.

RNA was eluted with 100 mL of RNase free water. Column

incubated for one minute before centrifugation to elute maximum

amount of RNA.

cDNA preparation and probe labeling. 10 mg of total

RNA was used for cDNA synthesis using SuperScriptIII

(Invitrogen), following the ‘‘Microbial RNA aminoallyl labeling

for microarrays’’ (SOP# M007 Rev. 2) protocol detailed at

http://pfgrc.jcvi.org/index.php/microarray/protocols.html. Briefly,

samples were RNaseH treated and the cDNA concentration was

checked on a Nanodrop 1000. cDNA was purified with Qiagen

QIAquick PCR purification kit. Concentration was rechecked

with Nanodrop and samples were dried completely with

Eppendorf speed-vac. Pellet was resuspended with 4.5 mL of

fresh 0.1 M Na2CO3 buffer solution. 4.5 mL of Cy3 or Cy5 dye

was added to appropriate tubes, and coupling was completed.

Uncoupled dye was removed with NaOAc-modified QIAquick

PCR cleanup. Dye ratio was calculated with Nanodrop. The

two differentially labeled probes (Cy3 vs. Cy5) that were

hybridized to the same microarray slide are mixed with equal

cDNA volumes. The Cy3/Cy5 probe mixture was dried to

completion in Eppendorf speed-vac. Resulting pellet was

suspended in 10 mL of dH2O.

Microarray hybridization. Spotted arrays (Aspergillus

fumigatus Af293, version 3) from the pathogen functional

genomics resource center at JCVI were used for the entire

experiment (http://pfgrc.jcvi.org/index.php/microarray/array_

description/aspergillus_fumigatus/version3.html). The protocol

‘‘Microbial Hybridization of labeled probes’’ (SOP# M008 Rev

2.1) can be found at: http://pfgrc.jcvi.org/index.php/microarray/

protocols.html. Briefly, the slides were soaked in sterile-filtered

pre-hybridization solution (56SSC, 1%BSA, 0.2%SDS) for two

hours, washed and dried by centrifugation in mini slide spinner

(LabNet) prior to hybridization. 45 mL of hybridization mixture

(50% formamide, 56SSC, 0.1%SDS, 0.001 M DTT) and 6 mL of

salmon sperm DNA were added to probe. Lifter slip (Erie

Scientific) was washed in 100% EtOH and dried. The slide and

lifter slip were placed in hybridization chamber (Corning) and

60 mL of probe mixture was pipeted under lifter slip. Chambers

were sealed and incubated in 42uC water bath for 18 hours. Slides

were washed twice in low stringency buffer (26SSC, 0.2% SDS,

0.02 M DTT), twice in medium stringency buffer (0.16 SSC,

0.1% SDS, 0.02 M DTT), twice in high stringency buffer (0.16
SSC, 0.02 M DTT), and a final wash with dH2O and 0.02 M

DTT. Slides were dried completely in mini slide spinner.

Image processing. Slides were scanned with GenePix 4000B

dual wavelength scanner (Axon Instruments, Molecular Devices

Co.), adjusting PMT gain ratio to ,1.0, 100% laser power, and

pixel size of 10. The resulting images were checked by eye for

misaligned regions or false signals using GenePixPro 6.0 (Axon

Instruments, Molecular Devices Co.). A GenePix report file was

generated with raw data reads for each spot. These raw files are

available at EMBL MIAMExpress website (http://www.ebi.ac.

uk/arrayexpress/), accession number E-MEXP-3172.

Data processing. Data were processed using TM4 software

and protocol recommendations for microarray analysis (http://

www.tm4.org/). Briefly, GenePix files were converted to MeV files

using ExpressConverter 2.1. MeV files were analyzed with

MIDAS 2.21 to normalize data, according to the recommended

settings from TM4. Flip-dye pairs were read into MIDAS using a

generous setting for one bad channel, and A and B channel flag

check selected. LOWESS was used to minimize effect of intensity

dependent bias, with default settings. Standard deviation

regularization was used to minimize the effect of slide printing

errors, with Cy3 as the reference. Flip-dye pairs were then checked

for consistency and merged into a single MeV file. Biological

replicates were then averaged to a single value for each gene

and timepoint. This file is also available at MIAMExpress

(http://www.ebi.ac.uk/arrayexpress/). Pathway analysis was then

completed using gene set enrichment analysis (GSEA).

Chromatin immunoprecipitation and ChIP-qPCR. ChIP

was performed after four hours exposure to hypoxia using methods

in Kim et al. 2010 [55]. Briefly, cells were exposed to 1%

formaldehyde to crosslink proteins to DNA, nuclei were isolated

with nuclei isolation kit (Sigma) and then lysed and resulting DNA

sonicated to 400–700 bp fragments. ChIP was performed with

1 mg of polyclonal antibody to SrbA (amino acids 1–275) on

Protein A DynaMag beads (Invitrogen), in both wild-type and

DsrbA strains. Negative control for ChIP was the IgG mouse

antibody (Invitrogen). DNA quantity was assessed with Qubit 2.0

Fluorometer, using the high sensitivity dsDNA assay (Invitrogen).

All ChIP samples were diluted 10 fold for PCR. 1 ml of template

was used in a 10 ml total volume reaction using Promega 26
GoTaq qPCR master mix and 0.4 mM of each primer. Realtime

PCR was performed with 40 cycles of 95uC for 15 s and 60uC for

30 s on Mastercycler ep realplex PCR machine. PCR was

performed in duplicate for two separate ChIP experiments using

primers designed for regions identified as enriched in preliminary

ChIP-SEQ analysis (Barker et al. unpublished). Three genes were

chosen from this analysis as positive for enrichment (sit1, erg11A

and erg25A) and one was chosen as negative for enrichment (sidA).

Percent input method was used to calculate the signal of

enrichment of the promoter region for each gene (http://

cshprotocols.cshlp.org/cgi/content/full/2009/9/pdb.prot5279 and

Invitrogen website). Briefly, 100*(2(InputCt-ChIPCt)) was calculated

for each reaction and the average and standard deviation

calculated from these values. No correction for adjusted input

was necessary as both templates were diluted equally prior to

PCR. Oligonucleotides used for ChIP analysis are provided in

Datasets S1 and S2.

Quantitative real-time PCR. qRT-PCR to measure

transcript abundance was performed as we have previously

described [56,57].

Manipulation of nucleic acids and Northern analysis
Standard molecular techniques were performed using the

pGEM-T vector system (Promega) and the bacterial strain

Escherichia coli DH5a cultivated in LB medium (1% bacto-tryptone,

0.5% yeast extract, 1% NaCl, pH 7.5) as we have previously

described [2,15]. RNA was isolated using TRI reagent (Sigma-

Aldrich). 10 mg of total RNA were used for electrophoresis on

1.2% agarose 22.2 M formaldehyde gels and blotted onto

Hybond N membranes (Amersham Biosciences). Probes used in

this study were generated by PCR with the digoxigenin labeling

system (Roche Molecular Biochemicals); Oligonucleotides used for

Northern analysis are provided in Dataset S3.

Deletion of hapX and sreA in DsrbA and CEA10
Deletion of sreA and hapX in CEA10 or DsrbA backgrounds was

carried out as described previously for A. fumigatus ATCC46645

using the same deletion constructs [2,15].

Oligonucleotides used for deletions are provided in Dataset S4.
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Analysis of siderophore production and free amino acid
pools

Isolation and analysis of extra- and intracellular siderophores

from culture supernatants and cellular extracts, respectively, was

carried out as described previously [58,59]. Quantification of

free amino acid pools was carried out as described previously

[60].

Susceptibility testing to fluconazole and total ergosterol
content measurements

E-test strips (AB bioMérieux), plastic strips impregnated with a

gradient of fluconazole were used per manufacturers’ instructions.

Each strip was placed onto a AMM agar plate without iron or

supplemented with 30 mM or 10 mM FeSO4 containing a lawn of

conidia of the respective strain and growth inhibition was

measured after 24 and 48 h by direct observation of the plates

at 37uC. No difference in results was observed between 24 and

48 hours. Total ergosterol content was measured as previously

described [61]. Total ergosterol content results are the mean and

standard deviation from 2 biological replicates with 6 total

technical replicates for each strain.

Murine virulence assay of invasive pulmonary
aspergillosis

6 to 8 weeks old outbred CD-1 mice were immunosuppressed

with intraperitoneal (i.p.) injections of cyclophosphamide at

150 mg/kg 2 days prior to inoculation and 40 mg/kg Kenalog

injected subcutaneously (s.c.) 1 day prior to inoculation. Repeat

injections were given on day 3 post inoculation with cyclophos-

phamide (150 mg/kg i.p.) and on day 6 post inoculation with

Kenalog (40 mg/kg s.c.). Mice were housed six per cage and had

access to food and water ad libitum. Twelve mice per A. fumigatus

strain (CEA10 and DsrbADsreA) were inoculated intranasally with

16106 conidia/40 ml following brief isofluorane inhalation. Mock

control mice were inoculated with sterile 0.01% Tween 80. Mice

were monitored twice daily over a time period of 14 days. Any

animals showing distress were immediately sacrificed and recorded

as deaths within 24 hrs. No mock infected animals perished during

the time course of the experiment. All experiments were approved

by the Montana State University IACUC and adhere to NIH

policies on animal welfare.

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

animal experimental protocol was approved by the Institutional

Animal Care and Use Committee (IACUC) at Montana State

University (Federal-Wide Assurance Number: A3637-01).

Histopathology
For histopathology, five CD-1 mice per A. fumigatus strain

(CEA10, DsrbA, DsrbADsreA) were immunosuppressed and inocu-

lated as described above. On day 4 post A. fumigatus challenge,

mice were sacrificed by pentobarbital anesthesia (100 mg/g body

weight) followed by exsanguinations. Lungs were removed

immediately, fixed in 10% phosphate-buffered formalin, embed-

ded in paraffin, sectioned at 5 mm, and stained with hematoxylin,

and eosin (H&E) or Gomori methenamine silver (GMS) by using

standard histological techniques. Microscopic examinations were

performed on a Nikon Eclipse 80i microscope and imaging system

(Nikon Instruments Inc., Melville, NY, USA).

Supporting Information

Figure S1 Gene set enrichment analysis for gene ontology

molecular function. Heat map representing the results of the

gene set enrichment analysis on the gene ontology term mole-

cular function from the wild-type and DsrbA hypoxia microarray

experiment. The upper left of each square depicts upregulated

mRNAs (those expressed higher in DsrbA) while the lower right of

each square represents downregulated mRNAs (those expressed

higher in the wild-type). Color denotes the level of significance as

depicted in the bar above the GO terms. The more yellow the

square, the more significant the association with that GO term.

(TIF)

Figure S2 Gene set enrichment analysis for gene ontology Cellular

Component. Heat map representing the results of the gene set

enrichment analysis on the gene ontology term Cellular Component

from the wild-type and DsrbA hypoxia microarray experiment. The

upper left of each square depicts upregulated mRNAs (those

expressed higher in DsrbA) while the lower right of each square

represents downregulated mRNAs (those expressed higher in the

wild-type). Color denotes the level of significance as depicted in the

bar above the GO terms. The more yellow the square, the more

significant the association with that GO term.

(TIF)

Figure S3 Gene set enrichment analysis for gene ontology

biological process. Heat map representing the results of the gene

set enrichment analysis on the gene ontology term biological

process from the wild-type and DsrbA hypoxia microarray

experiment. The upper left of each square depicts upregulated

mRNAs (those expressed higher in DsrbA) while the lower right of

each square represents downregulated mRNAs (those expressed

higher in the wild-type). Color denotes the level of significance as

depicted in the bar above the GO terms. The more yellow the

square, the more significant the association with that GO term.

(TIF)

Figure S4 Increased iron availability and/or inactivation of

SreA improve resistance of DsrbA against cobalt chloride. 103

conidia of each strain were point-inoculated on AMM agar plates

containing different iron concentrations (2Fe; +Fe, 30 mM; hFe,

1.5 mM; hhFe, 3.0 mM) or the iron chelator BPS (2Fe, 100 mM

BPS) in the presence or absence of 0.6 mM CoCl2 and incubated

for 48 h at 37uC.

(TIF)

Table S1 Microarray results, Log2 ratios and fold changes for

mRNAs downregulated in DsrbA at 1 hour post exposure to

hypoxia.

(XLS)

Table S2 Microarray results, Log2 ratios and fold changes for

mRNAs upregulated in DsrbA at 1 hour post exposure to hypoxia.

(XLS)

Table S3 Microarray results, Log2 ratios and fold changes for

mRNAs downregulated in DsrbA at 2 hours post exposure to

hypoxia.

(XLS)

Table S4 Microarray results, Log2 ratios and fold changes for

mRNAs upregulated in DsrbA at 2 hours post exposure to hypoxia.

(XLS)

Table S5 Microarray results, Log2 ratios and fold changes for

mRNAs downregulated in DsrbA at 4 hours post exposure to

hypoxia.

(XLS)
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Table S6 Microarray results, Log2 ratios and fold changes for

mRNAs upregulated in DsrbA at 4 hours post exposure to hypoxia.

(XLS)

Table S7 P-values for Gene set enrichment analysis of gene

expression data for gene ontology molecular function.

(XLS)

Table S8 P-values for Gene set enrichment analysis of gene

expression data for gene ontology cellular component.

(XLS)

Table S9 P-values for Gene set enrichment analysis of gene

expression data for gene ontology biological process.

(XLS)

Dataset S1 Oligonucleotides used in this study for ChIP

promoter enrichment.

(DOCX)

Dataset S2 Oligonucleotides sequences used in Realtime RT-

PCR.

(DOCX)

Dataset S3 Oligonucleotides used in this study for Northern-

blot probes.

(DOCX)

Dataset S4 Oligonucleotides used for generation of deletion

strains.

(DOCX)
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