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Abstract

Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate
Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on
chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for
resistance observed on seedlings of the Q21861 6 SM89010 (QSM) doubled-haploid (DH) population was found to be
predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis
of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional
quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to
measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation.
Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression
polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In
parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated,
adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript
accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are
regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that
orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional
suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early
suppression of genes expressed in this host–pathogen interaction with enhancement of R-gene mediated resistance.
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Introduction

Plants respond to invading pathogens with several forms of

defense, ranging from the generation of toxic chemicals to

programmed cell death [1]. These defense strategies do not occur

coincidentally, but rather by successive rounds of chemical,

physical, and enzymatic barriers introduced to impede pathogen

progression. Initially, pathogen-associated molecular patterns

(PAMPs) are recognized by pattern recognition receptors (PRR),

which in turn, trigger non-specific defense cascades, also known as

PAMP-triggered immunity (PTI) [1,2]. Generally, these non-

specific defense mechanisms successfully block pathogen entry.

When these primary impediments fail, a more extreme form of

defense known as gene-for-gene resistance, or effector triggered

immunity (ETI), may occur if the plant encodes an appropriate

resistance (R) protein that recognizes, either directly or indirectly,

its corresponding pathogen effector [1,3]. Though extreme, ETI-

mediated programmed cell death restricts pathogen ingress,

essentially destroying the nutrient source required for colonization

of biotrophic fungi. The translocation of several host R proteins

into the nucleus after recognition of cognate pathogen effectors has

implicated the regulation of gene expression in ETI [4].

Stem rust, caused by the obligate fungal biotroph Puccinia

graminis, has been a serious problem wherever wheat and barley

are grown [5–8]. Urediniospores of P. graminis germinate within 4

to 8 hours after inoculation (HAI) during nights with dew

formation or rainfall [9]. After germ tube extension and

recognition of stomatal openings, appressoria form around 12

HAI. Growth continues, with the generation of a penetration peg

that initiates sub-stomatal invagination of host tissue, development

of infection hyphae, and differentiation of haustorial mother cells.

In barley, penetration into the sub-stomatal space coincides with
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activation of the defense response (12–24 HAI) [10,11]. Recog-

nition of the pathogen will occur in the presence of Rpg (Resistance to

P. graminis) genes, which mediate resistance to particular formae

speciales of P. graminis by [12]. To date, eight Rpg genes have been

identified, with five specifying resistance to races of P. graminis f. sp.

tritici (Pgt) and three to P. graminis f. sp. secalis (Pgs) [12]. The

identification of a new highly virulent race of Pgt known as

TTKSK, (commonly referred to as Ug99), initiated a major

collaboration to identify resistance genes in germplasm repositories

of wheat and barley (www.globalrust.org) [13-15]. In a search for

loci that mediate resistance to Pgt race TTKSK, Steffenson and

colleagues identified the Rpg-TTKSK locus on the long arm of

chromosome 5H, contributed by the barley cv. Q21861 [12]. This

locus had previously been implicated in stem rust resistance by the

fine mapping and cloning of rpg4 and Rpg5, respectively [16]. The

recessive resistance gene rpg4 confers immunity to Pgt race QCCJ,

while Rpg5 provides dominant/semi-dominant resistance to Pgs

isolate 92-MN-90. Sequencing of the genomic region in cv. Morex

(genotype = Rpg4; rpg5) found five candidate genes encoding two

nucleotide-binding site (NBS), leucine-rich repeat (LRR) proteins,

two actin depolymerizing factors (ADF2, ADF3), and a protein

phosphatase 2C protein (PP2C) [16]. Rpg5 co-segregated with the

two NBS-LRR, ADF3, and PP2C encoding genes in the

susceptible cv. Morex [16]. Sequencing of resistant cv. Q21861

identified major structural polymorphisms in one of the NBS-

LRRs, such that it encoded a unique combination of NBS and

LRR domains coupled to a serine/threonine kinase (S/TPK)

domain [16]. Virus-induced gene silencing and allele sequencing

implicated this NBS-LRR-S/TPK as Rpg5. The recessive

resistance gene rpg4 has been associated with Adf2 by allele and

recombinant sequencing [16]. Interestingly, resistance to Pgt race

QCCJ in the informative recombinants indicates that both Rpg5

and rpg4 may be required to mediate an effective resistance

response [17]. It is unknown which gene underlies Rpg-TTKSK

mediated resistance to Pgt race TTKSK, but it is hypothesized that

both Rpg5 and rpg4 are required [12].

Recently, several studies have exploited natural variation

combined with expression profiling to decipher complex regula-

tory pathways, and in some cases phenotypic consequences [18].

This approach is referred to as genetical genomics or expression

quantitative trait locus (eQTL) analysis [19,20]. Invariant to the

organism studied, two types of heritable variation have been

identified for gene expression in segregating populations; the most

predominant form being linked to local variation near the physical

position of genes (cis-eQTL) and the weaker distant regulation

generated by genes that impact the transcriptional status of other

genes (trans-eQTL) [21–23]. Although trans-eQTL tend to have

more moderate effects than cis-eQTL, the functional polymor-

phisms that permit their discovery often affect more than one

gene. For example, if a polymorphism altered activity of a

transcription factor or hormone signaling gene, eQTL analysis

may trace the regulation of many to hundreds of genes to the locus

harboring this polymorphism, which would then be termed a trans-

eQTL hotspot [24]. One such trans-eQTL hotspot affecting

secondary metabolism has been associated with the AOP

(ALKENYL HYDROXALKYL PRODUCING) locus, where cis-eQTL

in genes involved in glucosinolate biosynthesis lead to the altered

transcriptional and metabolic status of Arabidopsis [25].

To gain insight into the regulatory functions of the Rpg-TTKSK

locus and the polymorphism(s) responsible for its existence, we

analyzed the mRNA abundance of 22,792 host genes in each

member of the Q21861 6 SM89010 (QSM) doubled-haploid

mapping population subjected to Pgt race TTKSK-inoculation

(INOC) and mock-inoculation (MOCK). By integrating the

dynamics of eQTL hotspot formation, inoculation-responsive

gene expression, and alternative control of eQTL between INOC

and MOCK treatments, we describe two forms of transcriptional

regulation that are associated with the resistance response. First,

we provide evidence for Adf3 (within the Rpg-TTKSK locus) as a

candidate susceptibility gene based on a strong cis-eQTL that has

its effect magnified by inoculation with Pgt race TTKSK. Second,

we report the identification of an inoculation-dependent, trans-

eQTL hotspot that governs the expression of hundreds of genes,

which under normal conditions, are controlled by additional

modular regulators. The position of this chromosome 2H trans-

eQTL hotspot is coincident with a quantitative resistance factor

that acts as an enhancer of Rpg-TTKSK-mediated resistance in

adult plants. Notably, the alleles across this shared genomic

position that enhance Rpg-TTKSK-mediated resistance, lead to

transcriptional suppression of numerous genes associated with

disease defense.

Results

Qualitative and quantitative resistance in seedling and
adult plants in response to Pgt race TTKSK

The parents of the QSM population represent resistant and

susceptible selections of barley against Pgt race TTKSK, with

Q21861 and SM89010 exhibiting seedling infection types (IT) of

0; and 2132 to 3, respectively [12,26]. As illustrated in Figure 1A,

these modified Stakman IT reflect the size of lesions by scoring on

a scale from 0 to 3+ (‘‘;’’ denotes necrotic flecks) and are ordered

by their observed frequency [12,27,28]. The variability of IT on

SM89010 is a classic example of the mesothetic response, a

phenotype frequently observed on barley when challenged with P.

graminis [29]. This mixture of responses in SM89010 is in direct

contrast to the complete resistance observed in Q21861. To

identify additional loci that contribute quantitatively to resistance,

we normalized the Stakman IT from the QSM population

described by Steffenson and associates [12] using weighted

Author Summary

An important step in molecular plant pathology is the
identification of the biologically relevant events that are
directly involved in mediating resistance to pathogens.
Historically, it is known that de novo and modulated gene
expression are important components of the immune
response. And yet, how exactly regulatory cascades
orchestrate transcriptional responses to influence immu-
nity remains unexplored. Several molecular tools have
enabled the dissection of the defense transcriptome. One
such technique, expression Quantitative Trait Locus (eQTL)
analysis, provides the opportunity to identify genes
involved in transcriptional regulation and simultaneously
identifying their downstream targets. This paper describes
an eQTL analysis of a barley population segregating for
qualitative and quantitative immunity to stem rust
(Puccinia graminis f. sp. tritici), a devastating pathogen of
Triticeae grain crops. Analysis of treatment-specific effects
identified several regulatory loci that alter the expression
of many inoculation responsive genes. On chromosome
2H, a trans-eQTL hotspot coincides with an enhancer of
adult plant resistance. Notably, the resistance allele for this
locus is associated with suppressing the transcription for
hundreds of genes, with some of these having been
previously associated with plant disease defense. In this
respect, conventional wisdom is challenged by these
findings.

eQTL Analysis of Ug99 Stem Rust Resistance
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counting of the ordered IT to generate infection frequencies, IF0,

IF1, IF2, and IF3 (see Materials and Methods; Figure S1) [30].

Additionally, these infection frequencies were decomposed using

principal components analysis, a method used previously to

identify residual phenotypic variability in the barley Steptoe 6
Morex (SxM) population in response to Pgt race MCCF [30].

Principal component 1 (PC1) explained 74.4% of the phenotypic

variance, with PC2, PC3, and PC4 explaining 15.1%, 8.7%, and

1.9% of the remaining variance, respectively.

We used a QSM genetic map generated from transcript-derived

markers (TDMs) (see Materials and Methods, Dataset S1) to

perform composite interval mapping (CIM) with infection

frequencies and principal components [12,27,28,30]. The Rpg-

TTKSK locus on chromosome 5H at bin 49 (5H.49) was the major

qualitative locus for all infection frequencies and PC1 (Table 1). In

addition, several minor effect QTL were detected for IF3, PC3,

and PC4 at 7H.7, 1H.35, and 2H.60, respectively. Although

significant, all three QTL contributed very little to resistance as

compared to the Rpg-TTKSK locus. Further analysis of sub-

populations fixed for resistance (Rpg-TTKSK) or susceptibility (rpg-

TTKSK) did not identify any other loci that substantially explained

residual variation (Tables S1 and S2).

In parallel with the seedling experiments, infection phenotyp-

ing was performed in Njoro, Kenya during the 2008 season

using natural inoculum of Pgt race TTKSK and isolates in this

lineage. Reactions of QSM progeny were assessed three times in

October and November by estimating the severity of rust

infection (SEV; scale from 0 to 100%) on stem and leaf sheath

tissue and also lesion size on a semi-quantitative scale (LES;

scale from 0.25 to 1.00) (Figure 1B). An additional trait termed

the ‘infection coefficient’ (IC), was generated by multiplying

percent rust infection by the numeric code for uredinia size

(SEV 6LES). As shown in Table 2 and Figure 2, resistance was

predominantly mediated by Rpg-TTKSK (contributed by the

Q21861 allele), with negative additive effect estimates (AEE) of

SEV by 7.7%, LES by 0.1 units, and IC by 8.4% (i.e., a

reduction in disease). The second most prevalent QTL

identified among the set of temporal observations was located

on chromosome 2H at bin 16 (2H.16). This 2H.16 locus

(contributed by the SM89010 allele) had negative AEE of SEV

by 6.7%, LES by 0.1 units, and IC by 8.5%. QTL analysis using

resistant and susceptible QSM sub-populations (based on their

Rpg-TTKSK allele) revealed that resistance mediated by 2H.16

was only detectable in the resistant sub-population. A two-way

ANOVA test also revealed a significant interaction term

between 5H.49 and 2H.16, further implicating 2H.16 as an

enhancer of Rpg-TTKSK.

Figure 1. Phenotypic diversity in the barley QSM doubled
haploid mapping population on first leaf in response to
Puccinia graminis f. sp. tritici race TTKSK (Pgt race TTKSK). (A)
Seedling first leaves - modified Stakman infection types reflect the size
of lesions by scoring on a scale from 0 to 3+ (‘‘;’’ denotes necrotic flecks)
and ordered by their observed frequency. (B) Adult plants - range of
lesion sizes (LES) on stems phenotyped in Njoro, Kenya during the 2008
growing season using natural inoculum of Pgt race TTKSK and isolates
in this lineage. S = susceptible; MS = moderately susceptible; MR =
moderately resistant; R = resistant.
doi:10.1371/journal.pgen.1002208.g001

Table 1. Seedling resistance QTL to Pgt-TTKSK identified
using the QSM DH lines under controlled conditions.

Trait Chra Bin cM EWTb LOD AEEc PVEd

Infection Frequency for
Infection Type 0

5H 49 146.78 3.22 23.49 0.33 62.1

Infection Frequency for
Infection Type 1

5H 49 146.78 3.28 18.43 0.23 53.0

Infection Frequency for
Infection Type 2

5H 48 145.43 3.05 4.47 -0.12 19.6

Infection Frequency for
Infection Type 3

5H 49 146.78 3.30 25.75 -0.46 60.4

7H 7 11.18 3.30 3.98 0.10 4.3

Principal Component 1 5H 49 146.78 3.40 34.29 0.63 66.0

Principal Component 2 none detected

Principal Component 3 1H 35 125.14 3.01 3.20 -0.09 13.6

Principal Component 4 2H 60 193.54 3.27 5.50 -0.10 24.8

aChromosome.
bExperiment-wise threshold determined through CIM that included re-selection

of background markers for each of 1,000 permuted versions of the phenotype
data.

cAdditive effect estimate expressed in trait units; positive values indicate the
Q21861 allele causes an increase.

dPhenotypic variance explained by the allelic difference at the test locus,
expressed as a percentage of total variance.

doi:10.1371/journal.pgen.1002208.t001

eQTL Analysis of Ug99 Stem Rust Resistance
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QTL analysis of both seedling and adult progeny of the QSM

population revealed that the most significant locus contributing to

resistance was Rpg-TTKSK. In seedlings, greater than 50% of the

phenotypic variance for IF0, IF1, IF3, and PC1 was attributed to

Rpg-TTKSK, whereas, Rpg-TTKSK explained 11.5% to 35.2% of

the phenotypic variance in adult plants surveyed under field

conditions, depending on the trait and date of data collection. In

the experiments involving adult plants, the weaker relative

contribution of Rpg-TTKSK suggests that it may act so strongly

in seedlings that the effect of loci such as 2H.16 may be masked

(Table 1). We hypothesized that the signaling components

associated with Rpg-TTKSK-mediated defense response could be

identified by characterizing the regulation of host gene expression

in seedlings of the QSM population inoculated and mock-

inoculated with Pgt race TTKSK. To maximize the variability

among experimental genotypes and treatments, we considered Pgt

infection kinetics as well as barley-Pgt time-course expression

profiling data [31]. We selected 24 hours after inoculation (HAI),

just after formation of Pgt haustoria and during intracellular

hyphal growth in seedlings inoculated and mock-inoculated with

Pgt race TTKSK [10,11]. Furthermore, this time point should

capture a mixture of PTI and ETI responses, providing

opportunities to assess their potential overlap in barley-stem rust

interactions.

Gene expression between the parents of the QSM
population and in response to Pgt race TTKSK inoculation

Variation in gene expression between the parental lines Q21861

and SM89010 was estimated by using four biological replicates

that were randomized among the 75 doubled-haploid progeny of

the QSM population (see Materials and Methods). Plants were

inoculated with Pgt race TTKSK urediniospores suspended in a

light-weight mineral oil or mock-inoculated with spore-free

mineral oil. For each genotype, pools of 5 first seedling leaves

were harvested at 24 HAI, mRNA extracted, and hybridized to

individual Barley1 GeneChips, which contain probe sets repre-

senting 22,792 genes [32]. A two-way ANOVA using genotype

(Q21861 and SM89010) and treatment (INOC and MOCK) was

performed using the natural log normalized expression data to

determine the number of differentially expressed genes between

genotypes, treatments, and their interaction. Histogram-based

estimation for false discovery rate (FDR) [33] revealed 6,957,

1,902, and 48 significant differences for genotype, treatment, and

genotype 6 treatment effects when controlled for an FDR of 5%

(Figure 3). Thus, effects of polymorphisms between Q21861 and

SM89010 that are independent of treatment account for the

differential expression of ,25% of the genes on the Barley1

GeneChip, or ,78% of the total number of differentially

expressed genes (Figure S2). The majority of genes with significant

differences with respect to genotype had fold change less than 2

(71.6%). For the treatment effect, 1,902 genes were differentially

expressed, of these, 995 were induced and 907 were suppressed.

For those genes that were induced, 362 (36.4%) displayed a fold

change greater than 2, while only 107 (11.8%) suppressed genes

met the same 2-fold change threshold. Concordantly, the relatively

small number of genes (i.e., 48) with an interaction between

genotype and treatment was expected, as most variation in gene

expression attributed to inoculation is insensitive to the genotype

assayed [34,35]. These results are similar to other plant-fungal

interactions examined, where modulation of gene expression is a

robust response [36,37]. In short, if a gene is induced, it is almost

always induced, or conversely, if a gene is suppressed, it is almost

always suppressed in response to pathogen challenge.

Pgt race TTKSK-responsive gene expression in the QSM
progeny

Observation of differentially expressed genes in the parents

alone sheds light on only a small fraction of the diverse genetic

responses associated with defense. By contrast, the use of a

segregating population provides a biallelic sampling that incorpo-

rates genotypic variability when detecting differences between

treatments (INOC and MOCK). In addition, the greater number

of individuals allows for a precise estimation of differential

expression regardless of the allele used in our experiment [38].

Two approaches were used to estimate the difference in expression

levels between INOC and MOCK in the QSM segregating

population; first, by performing an ANOVA between all QSM

lines in INOC versus MOCK, and second, using a paired t-test

with respect to QSM line between INOC and MOCK.

Table 2. Adult plant resistance QTL identified using the QSM
DH lines grown in a 2008 field trial in Njoro, Kenya.

Trait Date Chra Bin cM EWTb LOD AEEc PVEd

Severity 7-Oct-08 5H 46 141.4 3.26 9.03 -7.17 27.3

7H 32 76.8 3.26 6.04 -5.72 15.7

17-Oct-08 1H 47 165.6 3.22 4.38 6.18 10.2

2H 16 44.2 3.22 4.02 5.88 9.3

5H 27 74.9 3.22 5.77 -7.72 14.1

5H 46 141.4 3.22 7.14 -7.95 17.6

10-Nov-08 2H 16 44.2 3.30 3.92 7.09 11.0

5H 45 141.3 3.30 5.26 -8.34 15.5

6H 14 33.8 3.30 3.68 6.80 10.3

Lesion Size 7-Oct-08 3H 53 178.2 3.14 4.03 -0.08 11.2

5H 46 141.4 3.14 11.04 -0.14 35.2

17-Oct-08 2H 16 44.2 3.15 4.84 0.07 11.3

3H 53 182.2 3.15 4.57 -0.07 10.9

5H 25 72.2 3.15 6.90 -0.09 10.9

5H 50 148.1 3.15 10.02 -0.11 28.0

10-Nov-08 5H 27 74.9 3.13 6.21 -0.06 19.3

5H 48 145.4 3.13 4.06 -0.04 11.8

6H 4 6.7 3.13 3.38 0.04 9.6

Infection
Coefficient

7-Oct-08 5H 46 141.4 2.98 10.25 -8.14 30.9

7H 32 76.8 2.98 6.36 -6.10 16.8

17-Oct-08 1H 44 154.8 3.17 4.16 6.76 10.9

2H 16 44.2 3.17 5.21 7.35 13.3

5H 48 145.4 3.17 7.35 -9.03 19.9

10-Nov-08 1H 47 165.6 3.21 4.33 8.04 11.7

2H 16 44.2 3.21 3.63 7.28 9.6

5H 27 74.9 3.21 5.75 -10.09 16.3

5H 48 145.4 3.21 4.32 -7.83 11.5

aChromosome.
bExperiment-wise threshold determined by composite interval mapping that

included reselection of background markers for each of 1,000 permutations of
the phenotype data.

cAdditive effect estimate expressed in trait units; positive values indicate the
Q21861 allele causes an increase.

dPhenotypic variance explained by the allelic difference at the test locus,
expressed as a percentage of total variance.

doi:10.1371/journal.pgen.1002208.t002
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PLoS Genetics | www.plosgenetics.org 4 July 2011 | Volume 7 | Issue 7 | e1002208



As summarized in Figure 4, controlling the FDR at 0.1%, 5,997

and 5,614 genes were differentially expressed among progeny lines

using the ANOVA and paired t-test approaches, respectively, with

an overlap of 5,325. This suggested that the difference found

between INOC and MOCK either by pooling lines (ANOVA) or

between paired lines (paired t-test) was consistently detected as

responsive to inoculation. A significant overlap was found between

genes that were differentially expressed in the progeny (5,325) and

those that were differentially expressed in the parents (1,902), with

the intersection consisting of 1,476 genes (Figure 4). Though

highly overlapping, these two gene lists had a considerable number

of genes not shared in the intersection (3,849 for the progeny; 426

for the parents). We found that this was mainly accounted for by

the higher sensitivity to declare differential expression when using

progeny as compared to parents, as the correlation of log-fold

change of genes differentially expressed in the parents or DH

progeny but not both was r2 = 0.83. These results indicate that a

considerable proportion of the barley transcriptome is repro-

grammed by 24 HAI in response to Pgt inoculation.

Identification of eQTL in Pgt race TTKSK INOC and MOCK
treatments

The substantial genotypic variability between Q21861 and

SM89010, paired with the strong gene expression response to

inoculation with Pgt race TTKSK, suggests that this population is

ideal for identifying the regulatory components that reprogram the

defense transcriptome of barley. We identified eQTL using

composite interval mapping in both INOC and MOCK

experiments using natural log normalized expression data from

the QSM population [39,40]. Individual experiment-wise thresh-

olds (EWT) were determined for each expression trait in both

experiments by permuting expression values 1,000 times; the CIM

analyses were performed with reselection of background markers

Figure 2. Field evaluation of the QSM population in Njoro, Kenya, identifies two quantitative trait loci on chromosomes 2H and 5H
that contribute significantly to resistance. Upper panel, the LOD curves from composite interval mapping of the Pgt race TTKSK infection
coefficients [product of percent severity and lesion size (scale of 0.25–1.0)] in the 2008 growing season. Black, gold, and cyan correspond to the 7 Oct
2008, 17 Oct 2008, and 7 Nov 2008 phenotype collection dates, respectively. LOD curves were normalized to their respective experiment-wise
thresholds, shown as the horizontal blue line. Lower panel, the AEE for the additive effect estimate of the infection severity, with the red line denoting
zero. Negative values indicate that resistance is contributed by the Q21861 allele, and positive values indicate that resistance is contributed by the
SM89010 allele.
doi:10.1371/journal.pgen.1002208.g002

Figure 3. Genes differentially expressed using parents Q21861
and SM89010 for genotype, treatment (INOC versus MOCK),
and their interaction. A two-way ANOVA using genotype (Q21861
and SM89010) and treatment (INOC and MOCK) was performed using
the natural log normalized expression data to determine the number of
differentially expressed genes between genotypes, treatments, and
their interaction. False discovery rate was controlled at 5%. Totals for
each class of interaction are displayed in bold italics.
doi:10.1371/journal.pgen.1002208.g003

eQTL Analysis of Ug99 Stem Rust Resistance
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on each permuted data set, which is the more stringent

implementation of this approach [41,42]. When controlled at

a= 0.05, EWT for INOC and MOCK exhibited mean LOD

EWT of 3.138 and 3.142, respectively. These are slightly lower

than global LOD EWT estimated from 1,000 random probe sets

(INOC: 3.168 and MOCK: 3.167) [43], where a single threshold

is used for all genes within a tissue/treatment. As shown in Table 3,

at least one eQTL was detected for 13,919 and 15,468 expression

traits in INOC and MOCK, respectively, with an intersection of

10,127 traits (Datasets S2 and S3). Estimates of FDR among

expression traits that exceeded their EWTs at one or more

genomic locations were 8.2% (0.05622,792/13,919) and 7.4%

(0.05622,792/15,468) for INOC and MOCK, respectively.

The frequency of eQTL that met the EWT for both treatments

is shown across the genetic map in Figure 5. eQTL were found to

be unevenly distributed across the genetic map, with several

regions appearing to contain either an excess or shortage of eQTL

(hotspots and coldspots, respectively). Hotspots may coincide with

a greater density of genes (e.g., a genomic region with little

recombination, common in pericentromeric regions [44]) or even

by the occurrence of a regulator of steady-state mRNA levels with

strong allelic variation. Sequencing of the 5-Gb barley genome is

still underway [45], thus, we could not directly compare all eQTL

to their physical position or the specific number of genes within

each bin. As an alternative, TDMs have been applied as surrogates

for the physical positions of genes as a means to estimate the

number of genes located within a chromosomal region [46].

Regions over and under-saturated with eQTL can be determined

by using a contingency x2 test on the ratio of TDM:eQTL as

compared to the entire experiment. As shown in Figure 5 and

Table 4, we identified five non-overlapping regions in MOCK and

five non-overlapping regions in INOC oversaturated with eQTL

with p,0.001. Except for the shared hotspot 6H.40, all of these

are distinct, indicating that Pgt race TTKSK elicits extensive

remodeling of transcriptional regulation.

Patterns and inheritance of gene expression in the
Rpg-TTKSK region

We hypothesized that an eQTL hotspot would form at the Rpg-

TTKSK locus. However, this region was significantly under-

saturated for eQTL in INOC (-log10(p) = 14.62). Alternately, the

Rpg-TTKSK locus could impart resistance by modulating the

expression of a small set of genes at 24 HAI. We identified 88

genes with Pgt race TTKSK-specific regulation at the Rpg-TTKSK

locus (5H.48/49/50), with several genes known to function in PTI,

ABA signaling, and reorganization of the actin cytoskeleton (Table

S3). In parallel to de novo regulation, regulatory perturbation at

Rpg-TTKSK may manifest itself in the strengthening or weakening

of basal expression after inoculation with Pgt race TTKSK. We

found seven such cases among the 46 genes with eQTL at the Rpg-

TTKSK locus (Table S4); for Contig4389_at, Contig4391_at,

Contig7092_s_at, Contig7641_at, Contig9278_at, Conti-

g26405_at, and rbah27g12_at, the AEE for the eQTL differed

by more than 0.10 when the strengths of the effects were

compared between INOC and MOCK. Of particular interest was

the probe set Contig7092_s_at, as it hybridizes to Adf3 [17], a gene

that was previously implicated in INOC-specific regulation at the

Rpg-TTKSK locus with the probe set Contig7093_at. Conti-

g7093_at has AEE of 0.90 contributed by the SM allele in INOC,

whereas Contig7092_s_at has AEE of 1.51 contributed by the SM

allele in MOCK as compared to an AEE of 1.80 in INOC. This

strong allele-dependent expression of Adf3 in INOC was confirmed

by probe level analysis. We sequenced Adf3 in Q21861, SM89010,

and 12 DH progeny (6 Q allele and 6 SM allele). This analysis

revealed that probes 1–5 of Contig7092_s_at and probes 1–3 of

Contig7093_at contained no SNPs between the probe source

sequence (cv. Morex) and all other lines examined above. Analysis

of these monomorphic probes verified the true expression level

polymorphism as opposed to sequence-dependent hybridization

efficiency. Note: Since the Rpg5 sequence was not identified prior

Figure 4. Genes differentially expressed in parents and
progeny as a result of Pgt race TTKSK-inoculation. Differential
expression in the parents was determined with a two-way ANOVA using
genotype (Q21861 and SM89010) and treatment (INOC and MOCK), and
controlling the false discovery rate (FDR) at 5%. Both ANOVA and paired
t-test were used to identify differentially expressed genes in the
progeny between INOC and MOCK, controlling the FDR at 0.1%. Totals
for each class of interaction are displayed in bold italics.
doi:10.1371/journal.pgen.1002208.g004

Table 3. Number of significant eQTL per trait detected by
composite interval mapping for the INOC and MOCK
experiments.

Number of eQTL detected
per expression trait Number of expression traits

INOC MOCK

1 8,988 9,181

2 3,815 4,674

3 975 1,385

4 130 209

5 10 18

6 1 1

doi:10.1371/journal.pgen.1002208.t003
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to chip design, we were therefore unable to assay its expression for

this analysis.

Identification of regions oversaturated for Pgt race
TTKSK-responsive genes

Phenotypic QTL analysis of seedling and adult progeny

implicated several resistance factors distinct from Rpg-TTKSK.

These loci may represent additional basal defense regulators, such

as PRR-mediated recognition of PAMPs that alter the expression of

genes involved in non-specific resistance [47]. To assess evidence for

this type of regulation, we identified regions that were oversaturated

for genes that are differentially expressed between Pgt race TTKSK

and mock-inoculation. We used the 5,997 genes identified as

differentially expressed between INOC and MOCK treatments of

the QSM progeny (Figure 4) and applied a contingency x2 test on

the ratio of genes with eQTL that are differentially expressed as

compared to the total number of genes with eQTL at each bin

(5,997:22,792 gene; 26.31%). As shown in Figure 5, five non-

overlapping regions in both MOCK and INOC were significantly

oversaturated for genes with eQTL that are also differentially

expressed, inoculation-responsive genes (p,0.01; Table 4). Of

particular interest were regions 2H.28/29 in MOCK and 2H.16/

17/18, 2H.21/22, and 6H.40 in INOC, as they also were

oversaturated with eQTL within their respective experiments.

Dissecting the regulatory hierarchy of the 2H.16
trans-eQTL hotspot

Hundreds of genes come under new regulation at the 2H.16

trans-eQTL hotspot as a result of inoculation with Pgt race

TTKSK. By comparing the positions of the most significant

eQTL for each gene in the INOC and MOCK experiments, we

asked whether genes regulated at this locus are specific to

pathogen-induction, or alternatively, if they are regulated by

different loci between MOCK and INOC. We then determined

if an overlap between two loci was significant between INOC

and MOCK by generating a bootstrap p-value based on the

number of genes shared under a random distribution and

excluding comparisons between cis-chromosomal positions. As

shown in Figure 6, 5,538 of 10,127 genes (54.7%) have their

most significant eQTL on different chromosomes between

INOC and MOCK experiments. The altered regulation of

eQTL between INOC and MOCK was not evenly spread

across chromosomes, but instead was saturated at several

vertical and horizontal positions in the map, relative to MOCK

and INOC, respectively. Several of the saturated regions with

p,0.001 (dark red circles in Figure 6A) coincided with eQTL

hotspots, either with loci that were significantly over-saturated

with eQTL in MOCK but not INOC (2H.28, 2H.51, 3H.25/

26, and 6H.40), the reverse (2H.21, 6H.28, 6H.40), or loci not

Figure 5. Distribution of eQTL, hotspots, and differentially expressed genes across the QSM genetic map in INOC (Pgt race
TTKSK) and MOCK experiments. (A) Top: Histogram of eQTL in the INOC experiment. Middle: Log10 of the contingency x2 p-value for
regions over- or under-sampled for genes with eQTL differentially expressed in response to Pgt race TTKSK, as illustrated by closed and open
circles, respectively, above the threshold cutoff of p = 0.001 (dashed line). Bottom: Log10 of the contingency x2 p-value showing regions
containing a significant proportion of genes either over or under-represented. Positive (hotspots) and negative (coldspots) are illustrated by
closed and open circles, respectively, above the threshold cutoff of p = 0.001 (dashed line). (B) Ordered similarly to (A) showing data for the
MOCK experiment.
doi:10.1371/journal.pgen.1002208.g005
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associated with a saturation in eQTL. Many of these genes have

alternative regulation at the sites of eQTL hotspots, but others

are distributed throughout the genome. The only eQTL hotspot

to be shared between treatments was 6H.40. However, the

composition of 6H.40 is significantly altered, suggesting a

reprioritization in the genes regulated by this locus. The eQTL

hotspots at 3H.43/44 and 6H.28 in INOC form after

inoculation without any apparent saturation from MOCK loci.

In addition, some loci (e.g., 2H.59/60, 7H.56/57) were found to

regulate a significant number of genes as a result of inoculation,

but were not found to be oversaturated with eQTL in INOC.

All the phenomena described above demonstrate the complexity

introduced by challenge with Pgt race TTKSK, where

transcriptional reprogramming is modulated by the activation,

deactivation, or reprioritization of regulatory loci that affect

transcription.

The 2H.16 trans-eQTL hotspot functions as a master
switch that responds to pathogen attack

The barley transcriptome undergoes significant reprogramming

in response to environmental stimuli, such as cold [48], salinity

[49], drought [50], or pathogen stress [36,51]. A marked example

of this reprogramming is the transfer of regulatory control from

several distinct loci in MOCK to the 2H.16 locus in INOC,

wherein a total of 368 genes come under alternate regulation after

challenge by Pgt-TTKSK (Table S5). As shown in Table 5,

significant loci that met the bootstrap p-value cutoff of 0.05 were

6H.40, 6H.36/37, 1H.1/2/3/4, 3H.27, and 7H.37/38, transfer-

ring regulation of 10, 10, 3, 5, and 3 genes to the 2H.16 locus after

inoculation with Pgt race TTKSK, respectively. Exclusion of

eQTL on the same chromosome may have removed loci that are

genetically distinct; therefore we used both manual identification

and cis-chromosome bootstrap p-values to identify 2H.28/29 as

one additional MOCK locus where regulatory control was

transferred to 2H.16 in INOC.

Furthermore, we found that the overall extent of eQTL

migration was underestimated, as our analysis of alternative

regulation between INOC and MOCK focused on maximal

eQTL (Table 5). As such, 42, 25, 23, 10, 3, and 3 genes are

regulated at the MOCK loci 2H.28/29, 6H.40, 6H.36/37, 3H.27,

1H.1/2/3/4, and 7H.37, respectively, with the inclusion of non-

maximal eQTL. Of the six loci that significantly contribute to the

INOC 2H.16 locus, 1H.1/2/3/4, and 7H.37 lacked an increase in

eQTL when including non-maximal eQTL and were excluded

from further analysis. In addition to the genes regulated in MOCK

by these six loci, the INOC 2H.16 locus regulates the expression of

an additional 199 genes with MOCK eQTL distributed across the

genetic map and 73 genes that did not have a detectable eQTL in

MOCK.

Coordinated reprogramming of inoculation-dependent
regulons

Alternate transcriptional control in the INOC and MOCK

experiments suggested that one or more regulator(s) at 2H.16 in

INOC override the regulation exerted by MOCK loci 2H.28/29,

3H.27, 6H.36/37, 6H.40, as well as at additional loci distributed

across the genome. This coalescence of regulation in INOC

suggests that each of the loci identified in MOCK may itself

coordinate the expression of a distinct regulon. If this were true,

one might expect the functional polymorphisms that underlie

these eQTL to act pleiotropically on their respective targets in

similar ways. To test this, we compared AEE for eQTL between

INOC 2H.16 and the four MOCK loci listed in Table 5. As

illustrated in Figure 7, the parent that increased gene expression

was either conserved (2H.28/29) or reversed (3H.27, 6H.36/37,

6H.40) for each MOCK locus as compared to the INOC 2H.16,

with correlations of r2 = 0.97, 20.86, 20.97, and 20.98,

respectively. This predictive power between MOCK and INOC

regulatory loci suggests that these genes represent four inocula-

tion-dependent regulons. These regulons were not entirely

distinct, as seven genes were shared between 2H.28/29 and

6H.40, and one gene was shared between 2H.28/51 and 6H.36/

37, 2H.28/29 and 3H.37, and 3H.27 and 6H.36/37. The

overlap in control among regulons is correlated with the number

of genes regulated by each locus and is likely an underestimate

due to population size. Thus, coordinated reprogramming from

multiple loci in MOCK to the single INOC locus suggests that

these genes belong to a buffered regulatory complex in mock-

inoculated leaves that is consolidated by a master switch in

response to pathogen infection.

Table 4. Bins on the genetic map that are significantly over-
saturated with eQTL or inoculation responsive genes in INOC
and MOCK experiments.

Data Set Saturation Term Chromosome Bins -log10(p-value)

INOC DE1 2H 16 2.04

17 2.24

18 2.07

22 2.86

6H 40 2.01

7H 36 2.23

56 4.56

eQTL 2H 16 4.87

17 4.62

21 3.10

3H 43 3.70

44 3.00

6H 28 3.80

40 4.48

MOCK DE 1H 42 2.91

43 2.72

44 2.61

2H 25 3.34

26 4.09

28 6.34

29 4.77

6H 36 4.93

37 5.59

40 10.09

eQTL 2H 28 3.72

51 3.83

3H 25 5.81

26 3.34

6H 36 6.08

37 5.72

40 7.68

1Number of differentially expressed genes in INOC versus MOCK comparison
(n = 369).

doi:10.1371/journal.pgen.1002208.t004
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Figure 6. Genes from 2H.28/29, 3H.27, 6H.36/38, and 6H.40 loci are regulated by the 2H.16 trans-eQTL hotspot after challenge by
Pgt race TTKSK. (A) Genes with eQTL on different chromosomes in INOC and MOCK experiments are included in the larger panel (5,538 genes),
where the genetic positions of the most significant eQTL (based on LOD score) for each experiment is shown (see legend in panel B). The horizontal
and vertical axes correspond to INOC and MOCK, respectively, and where each position in the plot is a superbin. (B) Gene overlap is visualized based
on the diameters of circles, showing the number of genes regulated for a given region between the two experiments (smallest to largest
representing 1 to 16 genes). Bootstrap-determined p-values are represented with colors based on the significance of the number of genes
overlapping between INOC and MOCK under a random distribution, excluding eQTL that reside on the same chromosome. (C) Individual bin position
of the most significant eQTL in INOC and MOCK on chromosome 2H, where a significant distortion from the cis-diagonal implicates altered regulation
between the MOCK 2H.28/29 locus and INOC 2H.16/17/18 and 2H.21/22 loci. Filled red circles with diameter corresponding to the number of genes
with the peak of their maximum eQTL shared between INOC and MOCK. If a position is off-diagonal, it is a filled blue circle with similar
correspondence to the number of genes.
doi:10.1371/journal.pgen.1002208.g006

Table 5. Loci significantly over-saturated for a transfer in regulation to the 2H.16 trans-eQTL hotspot after inoculation with Pgt
race TTKSK.

Locus Number of genes

MOCK INOC Maximum LOD eQTLa All eQTLb Bootstrap p-value Correlation of AEE (r2)

2H.28/29 2H.16 22 42 ,0.001 0.97

6H.40 2H.16 10 25 0.003 -0.98

6H.36/37 2H.16 10 23 0.005 -0.97

3H.27 2H.16 5 10 0.040 -0.86

7H.37 2H.16 3 3 0.040 NA

1H.1/2/3/4 2H.16 3 3 0.016 NA

aMaximum LOD eQTL refers to the expression QTL with the most significant association with the locus described in each experiment (MOCK or INOC).
bAll eQTL are considered that are regulated in MOCK and INOC experiments.
doi:10.1371/journal.pgen.1002208.t005
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Coupled with the dependence on alternative regulation after

challenge with Pgt race TTKSK, over-saturation of inoculation-

responsive genes at the 2H.16 locus implies that this locus largely

determines the extent to which a gene is differentially expressed

between INOC and MOCK. When we considered the AEE in

INOC eQTL at the 2H.16 locus, we found that it was highly

predictive of the direction of differential expression between

INOC and MOCK, with 78 of 90 genes affirming this association

(Figure 8). Additionally, significant correlation was observed

between the AEE in INOC and the log-fold change of differential

expression (r2 = 0.71; 90 genes) (Figure 8). Selecting only those

genes differentially expressed in the comparison of INOC versus

MOCK strengthened the correlation, r2 = 0.85 (48 genes). In

contrast, genes not declared differentially expressed between

treatments had a considerably weaker correlation of r2 = 0.51 (42

genes). These results indicate that the regulation in INOC from

the 2H.16 locus is either the principal source or major component

of gene expression changes due to challenge by Pgt race TTKSK.

The SM89010 allele at the 2H.16 locus leads to
transcriptional suppression of defense-associated genes

Our final analyses aimed to characterize shared aspects of the

genes regulated by the 2H.16 trans-eQTL hotspot following

challenge by Pgt race TTKSK. First we examined the AEEs of

these genes and observed a bias in the directionality of effects.

Specifically, of the 229 genes with eQTL that have positive AEE

(Q21861 allele), 162 are induced and 67 are suppressed. The

opposite is seen for the 139 genes with eQTL that have negative

AEE (SM89010 allele), with 39 induced and 100 suppressed.

Figure 7. Allelic effects in gene expression are predictive
between INOC and MOCK treatments by distinct loci. Plots
comparing the additive effect estimate (AEE) of the INOC eQTL at 2H.16
locus with the AEE of the MOCK eQTL at (A) 2H.28/29, (B) 3H.27, (C)
6H.36/37, and (D) 6H.40. A positive value for AEE implies that if a plant

Figure 8. Allelic effects for INOC-specific eQTL are significantly
correlated with the fold change between Pgt race TTKSK-
inoculated and mock-inoculated plants. Plot comparing the
natural logarithm of the fold change difference between INOC and
MOCK versus the AEE from the INOC eQTL at 2H.16. Genes included
have predictive AEE between 2H.16 in INOC and 2H.28/29, 3H.27, 6H.36/
37, and 6H.40 in MOCK (Figure 5). Black circles correspond to genes
declared differentially expressed between INOC and MOCK populations,
grey triangles correspond to those genes that did not meet the 0.1%
FDR cutoff.
doi:10.1371/journal.pgen.1002208.g008

carries the Q21861 allele, then gene expression is increased by twice
the estimate for that allelic effect. Conversely, negative values for AEE
means the SM89010 allele increases the level of expression.
doi:10.1371/journal.pgen.1002208.g007
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Thus, for the 368 genes regulated, the SM89010 allele at 2H.16

attenuates expression levels for 262 of them (,71%).

Since we previously established that the genes regulated by the

2H.16 trans-eQTL hotspot are oversaturated for differential

expression in response to stem rust (Figure 5 and Figure 6), we

wished to consider any additional evidence for their functional

involvement in defense. To address this, we performed gene

ontology (GO) enrichment analysis using the suite of analysis tools

from agriGO to identify functional conservation [52]. Singular

enrichment analysis (SEA) of genes having an eQTL where the

SM89010 allele contributes the greater allelic effect identified

over-representation of genes targeted to the plastid (37 of 111

annotated genes; p = 2.0e-6; q = 1.2e-4). In contrast, no significant

GO terms were identified using SEA for eQTL with Q21861 allele

contributing the greater allelic effect.

Although SEA directly tests for enrichment of GO terms, it does

not take into account the magnitude of differential expression or

allelic effects. To address this, we used a parametric analysis of

gene set enrichment (PAGE) to incorporate these effects. In

agreement with the results from SEA, we found that localization to

the plastid was significant for genes down-regulated after challenge

by Pgt race TTKSK (p = 1.7e-3; q = 3.3e-2). We also found that

genes with negative allelic estimates, where the SM89010 allele

results in lower expression, were moderately over-represented

among the set of genes predicted to be localized to the plastid

(p = 6.3e-3; q = 0.12). Additional statistically significant GO terms

were identified with PAGE that were associated with either up-

regulation or down-regulation after inoculation with Pgt race

TTKSK. GO terms associated with lower expression in INOC

(down-regulation) included: biosynthetic processes (GO:0009058),

nitrogen compound metabolism (GO:0006807), nucleobase,

nucleoside, nucleotide and nucleic acid metabolism (GO:

0006139), and cellular biosynthetic processes (GO:0044249). In

contrast, protein metabolism (GO:0019538), protein modification

(GO:0006464), macromolecule modification (GO:0043412), cel-

lular protein metabolism (GO:0044267), and localization to the

membrane (GO:0016020) are associated with up-regulated genes

(greater expression in INOC).

The relative enrichments of GO terms observed are diagnostic

of plant-pathogen interactions where genes involved in protein

metabolism, modification, and membrane localization are typi-

cally up-regulated, while those genes targeted to the plastid are

down-regulated [53–55]. Together with the directionalities of

allelic effects, we have shown that the prototypical pattern of gene

expression associated with defense is attenuated by the SM89010

allele at the 2H.16 trans-eQTL hotspot. This result is paradoxical,

since presence of SM89010 alleles across this same locus also

enhances Rpg-TTKSK-mediated resistance (Table 2).

Discussion

The intricacies of genetic inheritance of gene expression have

contributed significantly to our current understanding of gene

regulation [18,21,56,57]. Early studies established that the majority

of expression polymorphisms were highly heritable and provided

evidence for both monogenic and oligogenic regulation of gene

expression [21]. Additionally, the majority of eQTL appeared to act

locally, such that eQTL are localized near the physical position of

the gene. These initial observations looked to be conserved across

eukaryotes, although this may reflect the ease of detecting cis-eQTL

as compared with trans-eQTL [21–23]. In line with this observation,

local regulation generally has a stronger effect as compared to

distant regulation. Underlying each trans-eQTL is one or several

functional polymorphism(s) that typically manipulates the expres-

sion of tens, if not hundreds, of genes. Thus, the weaker effect of

trans-eQTL is compensated for by the co-localization of many genes

and is identified by the occurrence of trans-eQTL hotspots. Notably,

eQTL analysis of segregating populations of Arabidopsis and barley

has been used to establish links between circadian rhythm and

metabolism [58], determine the limited pleiotropic effect of

mutation on gene expression [59], and identify candidate genes

for disease resistance QTLs based on cis-eQTL [51,60].

What forms the basis for qualitative resistance?
The presence of trans-eQTL hotspots at the site of major

regulators has become a common theme in the control of gene

expression [18,61,62]. Interestingly, a hotspot was not identified at

the Rpg-TTKSK locus, but several models can account for its

absence. First, our selection of 24 HAI may represent a very early

(or late) time point in the activation of resistance signaling, such

that only the primary targets of Rpg-TTKSK-specified resistance

would be differentially regulated at this time. Second, if the

primary transcriptional targets of Rpg-TTKSK-mediated resistance

had considerable structural variation in their promoters, then the

regulatory contribution from the Rpg-TTKSK locus may be

effectively masked by strong cis-eQTL effects, or be too small to

be detected with this approach. In this scenario, trans-eQTL

hotspots composed of secondary targets will form at the genetic

positions of primary transcriptional targets of R-gene signaling,

rather than the R gene itself. These two hypotheses overlap, as the

selection of time points would determine whether primary,

secondary, or more general responses are detected. Lastly, the

primary resistance response mediated by Rpg-TTKSK may not

include gene expression as a causal component in defense.

The absence of a trans-eQTL hotspot refocused our efforts to

identify cis-eQTL that are biologically relevant at the Rpg-TTKSK

locus, an approach used previously to dissect partial resistance to

barley leaf rust [51]. ADF proteins are involved in the

reorganization of the actin cytoskeleton by altering the rate of

actin dissociation from the pointed ends of actin filaments [63] and

are known to play a role in basal defense and mlo-mediated

resistance in barley-powdery mildew interactions [64]. Notably,

Adf3 is located within 5H.49 and is proximal to the Rpg5 resistance

gene. Previously, this gene was excluded as a candidate for Rpg5,

which mediates resistance to Pgs isolate 92-MN-90, because the

ADF3 amino acid sequence was identical between resistant and

susceptible cultivars [17]. Our results suggest that after inoculation

with Pgt race TTKSK, Adf3 has enhanced regulation (AEEINOC .

AEEMOCK) at 5H.49, with lower expression in lines carrying Rpg-

TTKSK. Therefore, resistance is associated with the suppression of

Adf3 expression, a hypothesis suggested for Adf2 by Brueggeman

and colleagues [17]. Although Adf3 was not considered a candidate

for Rpg5 based on the failure to observe non-synonymous variation

between Q21861 and susceptible alleles of the coding region [16],

our data suggest that Adf3 may be a factor contributing to Rpg-

TTKSK-mediated resistance based on its strong expression

polymorphism. Several hypotheses have been put forth for the

biological role of ADF in plant-pathogen interactions [16,30].

Here, the enhanced expression of Adf3 in plants carrying the

susceptible (SM89010) allele implicates its functional role as a

susceptibility factor induced by Pgt race TTKSK. Significant

structural variation does occur in the promoter of Adf3 [16],

although additional functional analysis will be required to establish

the requirement of Adf3 induction in compatibility. However, it

has been shown that an intact host actin cytoskeleton is required

for successful colonization in several plant-fungal pathosystems

[65], therefore Adf3 may be a potential target of pathogen-derived

effectors.
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What accounts for massive transcriptional
reprogramming in response to stem rust?

Even in the absence of a trans-eQTL hotspot at Rpg-TTKSK,

extensive transcriptome reprogramming due to invasion by Pgt

race TTKSK revealed key regulators that were altered between

INOC and MOCK treatments. Most significant was the trans-

eQTL hotspot at 2H.16, where saturation in both the number of

eQTL and inoculation-responsive genes suggests that regulator(s)

at this locus usurp the steady-state regulatory machinery to actively

remodel gene expression. Dissection of this hotspot revealed a

transcriptional hierarchy of several distinct loci in MOCK that

converge on 2H.16 after challenge with Pgt race TTKSK, with a

predictive allelic effect between INOC and MOCK conditions.

The co-localization of the hotspot with an enhancer of adult

plant, R gene-mediated defense may implicate a causal relation-

ship between gene expression and enhanced resistance. There

exists some difficulty in making this connection, as the cloning of

both classical and expression QTL can be confounded by the

presence of tightly linked genes contributing to the phenotype. In

mouse, dissection of the Qrr1 (QTL rich region on chromosome 1) region

found that multiple genes likely regulate different subsets of trans-

eQTL that had previously been grouped together [66]. With the

use of informative recombinants and multiple populations,

Mozhui and colleagues [66] separated the Qrr1 region into

proximal and distal portions, and found the distal region

specifically regulated RNA metabolism and protein synthesis. In

doing so, they were able to focus the eQTL candidate gene list that

underlies a classical QTL associated with seizure susceptibility.

This case study provides a model for how a single locus associated

with an abundance of both QTLs and trans-eQTL was broken into

two regions that are associated with entirely different pathways.

Similarly, it is possible that the 2H.16 region may be comprised of

several regulators. At present, our strongest evidence against this

hypothesis is the predictive power in the allelic effects between the

MOCK loci (2H.28/29, 3H.27, 6H.36/37, and 6H.40) and the

INOC 2H.16 locus, suggesting a single regulator or family of

regulators that control these regulons after challenge with Pgt race

TTKSK.

The deactivation of the MOCK 2H.28 trans-eQTL hotspot
in INOC

In our investigation of eQTL regulation after treatment with Pgt

race TTKSK, we focused on the dynamics in response to

pathogen invasion. This is one approach for identifying genes that

act as nodes in regulatory networks, but several other methodol-

ogies may be similarly powerful. For example, candidate genes can

be identified from unrelated eQTL experiments by using

additional information such as physical map position, functional

annotation, expression polymorphisms, and correlation

[18,51,67]. Druka and colleagues [30] provided a case study for

the eQTL candidate gene selection of the cloned resistance gene

Rpg1 [68] by using correlation and tissue-specific expression to

associate the causal gene, albeit from unrelated tissue (grain) [30].

Similarly, they extended this approach to identify candidate genes

for several minor effect stem rust resistance QTLs from the SxM

population. They leveraged expression profiling of rpr1 [69], a

gene required for Rpg1-mediated resistance, and physical map

position to identify a sensory transduction histidine protein kinase

(represented by probe set Contig13680_s_at) that was strongly

down-regulated in non-inoculated rpr1 plants and physically

mapped near the QPgt.StMx-2H QTLs (IF2 and PC2) [30]. In

light of the results from this previous study and the importance of

both phenotypic QTL and trans-eQTL hotspots on chromosome

2H in our work, we linked the QSM and SxM genetic maps via

the conserved TDMs used to generate both maps (Figure 9). Based

on shared TDMs, it appears that the QPgt.StMx-2H QTLs

detected in the SxM population inoculated with Pgt race MCCF

and the QTL identified in adult QSM progeny in Njoro, Kenya

are largely distinct. Both QTLs have broad 2-LOD support

intervals that overlap, but the 1-LOD support intervals are

separate. Though the histidine protein kinase does have an

overlapping 1-LOD support interval with QPgt.StMx-2H, we found

that the peak of the QPgt.StMx-2H co-localized precisely with the

2H.21 and 2H.22 regions, shown by our results to be a trans-eQTL

hotspot and over-saturated with differentially expressed genes after

inoculation with Pgt race TTKSK. The histidine protein kinase

exhibits a strong expression level polymorphism in the QSM

population similar to the SxM population. An eQTL for the gene

co-localizes with the 2H.28/29 trans-eQTL hotspot and is detected

in both INOC and MOCK, having a LOD of 16.71 (15.24) and

AEE of 0.67 (0.66), with greater expression contributed by

SM89010 allele in INOC (MOCK). Thus, three tightly linked

loci, 2H.16, 2H.21/22, and 2H.28/29 control the QTLs to Pgt

race TTKSK, Pgt race MCCF, and the regulation of a steady-state

trans-eQTL hotspot, respectively. It is of interest that both QTLs

detected in the SxM and QSM populations against Pgt races

TTKSK and MCCF, respectively, enhance the effect of their

respective R genes, Rpg-TTKSK and Rpg1. As Druka and colleagues

used tissue derived from germinating embryos, it is unclear

whether a trans-eQTL hotspot underlies the histidine protein

kinase in leaf tissue in the SxM population [30]. Clearly, this

region of chromosome 2H is a hotbed of phenotypic and

expression QTLs that are involved in resistance to stem rust and

points to an interconnected set of regulatory loci that link these

genetic loci with resistance.

Can suppression of certain defense-associated genes
actually benefit overall defense?

It is interesting that the trans-eQTL hotspot at 2H.16 regulates

genes that are both induced and suppressed in response to Pgt race

TTKSK invasion. Overall, the allelic effects for trans-eQTL at this

locus were biased for greater expression when carrying the

Q21861 allele (304 Q21861 vs. 219 SM89010). This effect was

mutually predictive with up-regulation in response to Pgt race

TTKSK associated with the Q21861 allele. In contrast,

enhancement of Rpg-TTKSK-mediated adult plant resistance was

associated with the SM89010 allele. This is especially relevant, as

Q21861 contributes Rpg-TTKSK and SM89010 is susceptible to Pgt

race TTKSK. Taken together, these results suggest that

transcriptional suppression was correlated with resistance, where

enhancement would have been expected. This model of host-

mediated gene suppression may be a defense mechanism against

pathogen-mediated gene activation, which has been observed in

several phytopathosystems as a method to distract or enhance

accessibility of the host. The bacterial pathogen Pseudomonas syringae

pathovar tomato DC3000 produces the jasmonic acid-mimic

coronatine that induces jasmonic acid/ethylene-associated path-

ways that compete with bacterial defense pathways dependent on

salicylic acid signaling [70–72]. In contrast, direct binding to host

promoters by TAL effectors in Xanthomonas spp. activate genes

involved in host susceptibility [73–76]. Though counter-intuitive,

several systems have shown that this mechanism is a bona fide

approach for manipulating the host and enhancing virulence.

Therefore this locus may provide a degree of insensitivity to

effector-dependent manipulation of the host.

It is important to recognize that genes regulated at 2H.16 in

INOC were not dependent on Rpg-TTKSK. Therefore the enhanced

eQTL Analysis of Ug99 Stem Rust Resistance
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resistance conferred by 2H.16 in the presence of Rpg-TTKSK

suggests that the manipulation of gene expression may only impact

the interaction of barley and Pgt under the appropriate conditions.

Here, regulation at 2H.16 in INOC overrides the control of several

steady-state regulators in MOCK. Thus, these MOCK regulators

may be prone to manipulation by Pgt, whereas 2H.16 is non-

responsive. Alternatively, the 2H.16 locus may control the precise

timing of gene expression, such that the full impact of these genes is

maximized to strengthen Rpg-TTKSK-mediated resistance. Ulti-

mately, increased resolution in the 2H.16 region will be required to

dissect the causal polymorphisms that enhance R gene-dependent

adult plant resistance and the regulator(s) that generate the trans-

eQTL hotspot.

Materials and Methods

Seedling resistance assays to Pgt race TTKSK
The barley QSM doubled-haploid mapping population was

generated from a single Q218616SM89010 F1 plant [26,77]. All

data used for infection type analysis are derived from Steffenson et

al. [12]. Briefly, three to five seeds of each doubled-haploid line or

parent were planted in plastic cones and placed in flats in a

completely randomized design. Plants were placed in the

greenhouse at 22uC with supplemental lighting by 1,000-W

sodium vapor lamps for 14 hours per day at the USDA-ARS

Cereal Disease Lab, University of Minnesota, St. Paul. Pgt race

TTKSK isolate 04KEN156/04 was initially increased on a

susceptible wheat host, collected, desiccated, and stored in tubes

at 280uC. Nine days after sowing (PO:0007094 - first leaf

unfolded), flats were inoculated with a low density of Pgt race

TTKSK urediniospores (0.004 mg/plant) suspended in a

lightweight mineral oil carrier using the inoculation protocols

described by Sun and Steffenson [29]. After inoculation, the plants

were placed in a mist chamber for 16 hours in the dark, followed

by light for 5 hours, and then moved to the greenhouse using the

previously described conditions. Plants were phenotyped at 14 to

17 days after inoculation. The full experiment was repeated twice,

with the evaluation of three to five plants per replicate.

Figure 9. The deactivation of the MOCK 2H.28 trans-eQTL hotspot in INOC. The QSM and SxM TDM genetic maps (upper and middle panels)
were linked by shared TDMs, shown as lines between these panels. Numbers indicate the bin number for each genetic map. One and 2-LOD support
intervals derived from standard interval mapping are shown for all QTL reported with box and whiskers, respectively. HK is the sensory transduction
histidine protein kinase (represented by probe set Contig13680_s_at). White circles are the peak position identified using composite interval
mapping. Phenotypic QTLs for the adult QSM field trials in Njoro, Kenya are shown above the QSM genetic map. Two genetic maps exist for the SxM
population, one derived from TDMs (Potokina map; middle panel) and another from RFLP, SNP, AFLP, and RAPD markers (Druka map; lower panel). As
the support intervals for QTL were considerably different, we report them here showing the correspondence of these two SxM maps [30,46]. Grey
and/or black filled in regions on the genetic map indicate whether the region was oversaturated with eQTL (trans-eQTL hotspot) or differentially
expressed genes, respectively.
doi:10.1371/journal.pgen.1002208.g009
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Adult resistance assays to Pgt race TTKSK
Field trials were carried out at the Kenya Agricultural Research

Institute in Njoro, Kenya during the 2008 growing season. QSM

DH lines were planted in 0.3 m rows (20–35 seed per row) in a

completely randomized design with one replicate. Parents were

included at random in the planting plan in three replicates.

Infection phenotypes were scored on 7 October 2008, 17 October

2008, and 10 November 2008. The majority of lines were at the

mid-dough stage of development (Zadoks scale 8.5; Feeke’s scale

11.2) at the first scoring date [78,79]. Other lines with later

maturity reached the mid-dough stage by 17 October and 10

November. The bulk of the natural inoculum found in the field

was typed to Pgt races TTKSK (used in seedling resistance assays)

and TTKST (same virulence pattern as TTKSK with the addition

of virulence for wheat stem rust resistance gene Sr24). Pgt race

TTTSK (same virulence pattern as TTSKS with the addition of

virulence for Sr36) may have been present at a low frequency.

QTL analysis of resistance traits
Stakman infection types (ITs) for seedling plants were

normalized using a modified approach that weights the counts

of ordered ITs (Figure 1A and Figure S1, Table S6) [30]. Weights

given were 1.0, 0.65, 0.25, and 0.1 for the 1st, 2nd, 3rd, and 4th

ordered ITs, respectively. IFs were determined by averaging

weights for two replicates, where full weight is given to ITs of 0, 1,

2, and 3 or partial weights for ITs of ‘0;’, ‘12’, ‘1+’, ‘22’, ‘2+’, and

‘32’. For partial weights, 70% is given to the IT shown (0, 1, 2, or

3) and 30% to the modified IT (‘+’ to the greater IT, ‘2’ to the

lower IT). In the unique case of ‘3+’, a weight of 1.3 was given to

IT 3. For adult plants, LES was quantified on a scale from 0.25 to

1.0 based on resistance or full susceptibility, where resistant is

equal to 0.25, moderately resistant is equal to 0.5, and a fully

susceptible LES score is 1.0 (Figure 1B). The IC was determined

by multiplying the SEV by LES. Principal components analysis for

seedling and adult phenotypic data was performed using R (www.

r-project.org) (Table S7). Composite interval mapping (Zmapqtl;
model 6) was performed with QTL Cartographer v1.17j, with a

walking speed of 2 cM, window size of 10 cM, and five

background markers (SRmapqtl) [39]. EWT were computed

using permuted data (Prune) with reselection of background

markers (SRmapqtl), where each iteration maximum LOD

scores were stored and after 1,000 runs the 95th quantile (a= 0.05)

was selected as the EWT [41,42]. QTLs that exceeded the EWT

were extracted using Eqtl.

eQTL experimental design
Two flats (each flat contained 75 doubled-haploid lines + 4

replicates of each parent = 81 cones/flat) were grown in a

completely randomized design at the USDA-ARS Cereal Disease

Lab, University of Minnesota, St. Paul. For the INOC flat, a

higher density of Pgt race TTKSK urediniospores (0.25 mg/plant)

was used as compared to the seedling phenotypic assay. For the

MOCK flat, spore-free mineral oil was used. After inoculation,

both flats were placed in the same mist chamber for 16 hours in

the dark, exposed to light for 5 hours, and then moved to the

greenhouse for 2 hours. Five seedlings were harvested, pooled, and

placed in liquid nitrogen for each line in the population within a

1.5 hour period at 24 HAI. RNA was extracted using a hot acid-

phenol protocol and RNAeasy columns (Qiagen) were used for

further purification of the isolated RNA. Labeling, hybridization,

washing, and scanning were performed according to standard

Affymetrix protocols using the Barley1 GeneChip which contains

probe sets representing 22,792 (21,439 non-redundant) genes [32]

at the ISU GeneChip Facility (www.biotech.iastate.edu/facilities/

genechip/Genechip.htm).

Development of the transcript-derived marker map
At any single genetic locus, each of the 75 doubled haploid lines

carries two copies of either the Q21861 or the SM89010 allele.

These two genotypes can be distinguished by differential success in

hybridizing RNA to Barley1 arrays, providing robust genetic

markers. Transcript-derived markers were generated as described

by Potokina and colleagues [46], using an implementation in

Python (www.python.org). This technique identifies single feature

polymorphisms (SFPs) by using individual probes on the

Affymetrix Barley1 GeneChip as quantifiable measures of probe

hybridization efficiency. After background correction and quantile

normalization using R/Bioconductor (www.bioconductor.org),

individual probe signals were separated into two distinct groups

with k-means clustering. Goodness-of-fit using a Z-statistic found

over 2,500 quality markers for the QSM genetic map. This

analysis was performed separately with the INOC and MOCK

data sets, and only those markers conserved between these data

sets (1,503 markers) that had three (of 75) or fewer data points

missing were included. A scaffold of 294 markers shared with the

SxM doubled-haploid mapping population was used to place the

remaining 1,200 markers [46]. Available information for the

genetic positions of genes represented on the Affymetrix Barley1

GeneChip was used to confirm marker order; this included data

from a recently developed SNP-derived genetic map [44]. Manual

curation of marker positions was assisted with visualization of two-

point marker linkages using MadMapper (Figure S3; http://

cgpdb.ucdavis.edu/XLinkage/MadMapper) [46,80]. The final

map has a total of 378 unique markers (bins) with a genetic

length of 1,259 cM, with an average of approximately 3.3

recombination events between bins (Figure S4, Dataset S1).

ANOVA of inoculated and mock-inoculated Q21861,
SM89010, and QSM population

ANOVA was performed with SAS v9.1 (SAS Institute Inc.,

Cary, North Carolina). All comparisons between these data sets

were generated using Python scripts. q-values were determined

using histogram-based estimation proposed by Mosig and

colleagues [81], using the implementation by Nettleton and

associates [33].

eQTL analysis of INOC and MOCK experiments
All microarray data for eQTL analysis were normalized with the

Bioconductor implementation of the MAS5.0 algorithm (www.

bioconductor.org). Composite interval mapping was performed

with QTL Cartographer v1.17j, using a walking speed of 2 cM,

window size of 10 cM, and five background markers [39]. eQTL

that exceeded individual EWT were extracted using a Python script,

such that two peaks within close proximity were declared different

eQTL if the distance between peaks was greater than 2 LOD [46].

Individual EWT were computed using a combination of Python

scripts, bash shell scripts, and QTL Cartographer. Briefly,

composite interval mapping was performed using the same criteria

in the eQTL analysis except the data were permuted (Prune) with

reselection of background markers (SRmapqtl) a total of 1,000

times [41,42]. Maximum LOD scores were stored and the 95th

quantile (a = 0.05) was selected as the individual EWT.

Detection of trans-eQTL hotspots
The over and under-saturation of eQTL were identified using a

contingency x2 test on the ratio of TDM:eQTL for a region as

eQTL Analysis of Ug99 Stem Rust Resistance
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compared to the entire experiment. To fulfill the requirements of

this contingency x2 test, we merged successive bins in the genetic

map until the sum of observed eQTL and TDMs was greater than

73 for INOC and 85 for MOCK for each set of bins. The same

bins were used to analyze both experiments by incorporating the

distribution of eQTL in MOCK and INOC in parallel.

Bootstrap analysis of eQTL migration between INOC and
MOCK

A bootstrap approach was used to estimate the significance

associated with alternate regulation in the INOC and MOCK

data sets for genes with eQTL in both data sets, using the

maximum LOD eQTL. Genetic regions were compared with non-

overlapping merged bins (superbins) that were generated with a

greedy approach. This approach required a minimum number of

TDMs and eQTL in INOC (73 TDM and eQTL) and MOCK

(85 TDM and eQTL) to be placed within a superbin. Hence, the

same bins in each experiment were collected into a single

superbin. This approach is similar to that used for the

identification of trans-eQTL hotspots and regions for over-

saturation of differentially expressed genes (see Results). Two

strategies were used to account for (1) alternate regulation on the

same chromosome and (2) regulation on different chromosomes

between INOC and MOCK. For both, genes were redistributed

from MOCK using probabilities determined by the distribution of

eQTL in INOC based on the eQTL histogram. This was repeated

1,000 times for the maximum LOD eQTL in the overlap between

INOC and MOCK. Probabilities were generated differently for

the first and second strategies by including all genes with eQTL

(10,127 genes) in INOC and MOCK or only those genes with

maximum LOD eQTL on a different chromosome between data

sets (5,538 genes). Bootstrap p-values were determined by

comparing the observed overlap versus the 1,000 bootstrapped

samples.

Gene ontology enrichment analysis
Gene ontology enrichment analysis was carried out using

agriGO v1.0b (http://bioinfo.cau.edu.cn/agriGO) [52]. Singular

enrichment analysis (SEA) was performed using the default

parameters, Fisher test, the Yekutieli multi-test adjustment

method, a significance level of 0.05, and a minimum number of

five mapped entries using the complete set of gene ontology terms.

Parametric analysis of gene set enrichment (PAGE) was used with

SEA default parameters, with a difference in requiring a minimum

of ten mapped entries and FDR cutoff at 0.1.

Data access
All MIAME-compliant GeneChip profiling data are available as

accession BB64 at the PLEXdb expression resource for plants and

plant pathogens (www.plexdb.org), accession GSE20416 at NCBI-

GEO, as well as accessions GN235, GN236, GN237, GN238 at

GeneNetwork (www.genenetwork.org) [82].

Supporting Information

Dataset S1 Excel spreadsheet of the QSM genetic map.

Transcript-derived marker genetic map of the Q21861 x

SM89010 doubled-haploid population. Markers have been

derived from probe-level data as described in the Materials and

Methods. The first sheet contains the representative genetic map

containing all non-redundant markers (N = 378). The second

sheet contains data for all markers (N = 1,494).

(XLS)

Dataset S2 Excel spreadsheet of the eQTL identified in the

MOCK experiment. eQTL determined to be significant based on

individual EWT in the MOCK experiment as described in the

Materials and Methods.

(XLS)

Dataset S3 Excel spreadsheet of the eQTL identified in the

INOC experiment. eQTL determined to be significant based on

individual EWT in the INOC experiment as described in the

Materials and Methods.

(XLS)

Figure S1 Modified Druka et al. [30] procedure for processing

infection type (IT) data. Stakman ITs for seedling plants were

normalized using a modified approach that weights the counts of

ordered ITs [30]. Weights given were 1.0, 0.65, 0.25, and 0.1 for

the 1st, 2nd, 3rd, and 4th ordered ITs, respectively. Infection

frequencies (IF) were determined by averaging weights for two

replicates, where full weight is given to ITs of 0, 1, 2, and 3 or

partial weights for ITs of ‘0;’, ‘1-‘, ‘1+’, ‘2-‘, ‘2+’, and ‘3-’. For

partial weights, 70% is given to the IT shown (0, 1, 2, or 3) and

30% to the modified IT (‘+’ to the greater IT, ‘-’ to the lower IT).

In the unique case of ‘3+’, a weight of 1.3 was given to IT 3.

(TIF)

Figure S2 Ternary plot of percent effect explained by genotype

(G), treatment (T), and genotype x treatment (G x T). (A) Genes

shown have over 50% of their variance (from two-way ANOVA)

explained by the sum of the three effects (G, T, and G x T). Point

colors of magenta and green show whether or not a given gene

had a transcript-derived marker, respectively. The majority of

genes having TDMs are those with a significant genotype effect,

suggesting strong allelic polymorphisms between parents Q21861

(Q) and SM89010 (SM). The bottom panel shows representative

examples for the extremes of genotype (B), treatment (C), and their

interaction (D).

(TIF)

Figure S3 Two-point locus heat map of the QSM DH genetic

map. Heat map of the non-redundant QSM DH genetic map

showing linkage for all marker x marker comparisons, genetic

distance between markers (right), and proportion of the contrib-

uted allele (Q: red, SM:blue) for every marker (bottom).

(TIF)

Figure S4 Recombination map of the QSM DH population.

(TIF)

Table S1 Quantitative trait loci identified in the resistant sub-

population (Rpg-TTKSK) of seedlings of the QSM DH mapping

population inoculated with Pgt race TTKSK.

(XLS)

Table S2 Quantitative trait loci identified in the susceptible sub-

population (rpg-TTKSK) of seedlings of the QSM DH mapping

population inoculated with Pgt race TTKSK.

(XLS)

Table S3 Genes identified with an inoculation-specific eQTL at

the Rpg-TTKSK locus.

(XLS)

Table S4 Genes identified with eQTL in INOC and MOCK at

the Rpg-TTKSK locus.

(XLS)

Table S5 Genes identified with an inoculation-specific eQTL at

the 2H trans-eQTL hotspot.

(XLS)
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Table S6 Phenotypic data for seedling and adult QSM lines

inoculated with Pgt race TTKSK.

(XLS)

Table S7 Coefficients of the principal components for QSM

seedling phenotyping.

(XLS)
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