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Abstract

Population-scale genome sequencing allows the characterization of functional effects of a broad spectrum of genetic
variants underlying human phenotypic variation. Here, we investigate the influence of rare and common genetic variants on
gene expression patterns, using variants identified from sequencing data from the 1000 genomes project in an African and
European population sample and gene expression data from lymphoblastoid cell lines. We detect comparable numbers of
expression quantitative trait loci (eQTLs) when compared to genotypes obtained from HapMap 3, but as many as 80% of the
top expression quantitative trait variants (eQTVs) discovered from 1000 genomes data are novel. The properties of the
newly discovered variants suggest that mapping common causal regulatory variants is challenging even with full
resequencing data; however, we observe significant enrichment of regulatory effects in splice-site and nonsense variants.
Using RNA sequencing data, we show that 46.2% of nonsynonymous variants are differentially expressed in at least one
individual in our sample, creating widespread potential for interactions between functional protein-coding and regulatory
variants. We also use allele-specific expression to identify putative rare causal regulatory variants. Furthermore, we
demonstrate that outlier expression values can be due to rare variant effects, and we approximate the number of such
effects harboured in an individual by effect size. Our results demonstrate that integration of genomic and RNA sequencing
analyses allows for the joint assessment of genome sequence and genome function.
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Introduction

Deeper characterization of genetic variation is becoming

increasingly available with advances in DNA sequencing technol-

ogy [1–5]. This improves our ability to pinpoint protein-coding

variants which disrupt protein structure, and has already begun to

provide insight into the genetic basis of disease with unknown

etiology [6,7]. In addition to protein-coding variation, access to a

more complete spectrum of genetic data facilitates the discovery of

regulatory variants. However, relative to protein coding variation,

the information about the structure of gene regulatory architecture

is incomplete and the existence of a regulatory variant is largely

inferred through its association with gene expression. Such asso-

ciations have previously been identified as exhibiting widespread

and tissue-specific patterns [8–11]. They are also increasingly linked

to the basis of human phenotypic diversity [11]. For instance, recent

studies have implicated the role of regulatory variants in the etiology

of diseases such as obesity [12], celiac disease [13] and migraine

[14]. Now, the compendium of variants acquired from genome

sequencing of population samples provides increased potential for

uncovering new associations, many of which, given this enhanced

resolution, are presumed to be causal. Furthermore, we are able

to begin to analyse genome-wide signals of interactions between

disruptive protein-coding variation and regulatory variation. We

investigate the landscape of regulatory variation as surveyed by

population-scale sequencing by using data acquired from the 1000

genomes project, together with gene expression data in 60 CEU

individuals (CEU: Utah residents with ancestry from northern and

western Europe) acquired using RNA sequencing (RNA-Seq) and

57 CEU and 56 YRI individuals (YRI: Yoruba in Ibadan, Nigeria)

acquired using gene expression arrays [15,16]. In this study, we

demonstrate the value of almost complete information from the

1000 genomes project to reveal the fine structure of rare and com-

mon regulatory variation.

Results

eQTL discovery
We assessed the number of expression quantitative trait loci

within 1 Mb of annotated genes (cis-eQTLs), and compared the

power of HapMap3 (HM3) against the much higher SNP density

of the 1000 genomes project (1KG) genetic variants, using gene

expression data from lymphoblastoid cells for matching individuals

(see Materials and Methods). For both CEU and YRI, similar

numbers of eQTLs were found between the two projects in-

dependent of FDR (estimated by permutations; Figure 1 and

Figure S1). This suggests that, with given power, the majority of

the common regulatory effects can be captured by genome-wide

SNP arrays. Using RNA sequencing data, we were also able to

survey the difference between 1KG and HM3 for regulatory

variation detected through allelic imbalance of heterozygous

coding sites. In 1KG, twice as many heterozygous sites (36015
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versus 14281) had significant allele specific expression (ASE;

reviewed [17]) effect (p#0.05), corresponding to 4971 genes versus

3175 genes. The median log effect size for this imbalance was 1.39

(Figure S2). This increase provides more power to explore within

individual regulatory variation.

Given that the 1KG data provides an almost complete ascer-

tainment of common SNPs, we sought to assess whether we are

more likely to detect potentially causal regulatory variants. We

observed that nearly 80% of all eQTVs discovered with the 1KG

were not discovered with the HM3 (Table S1). This indicates that

if these new variants are bonafide causal variants, whole genome

sequencing is uncovering a large number of previously unidenti-

fied variants. Conversely, however, for the eQTVs discovered with

the HM3, up 65% would not have passed the discovery threshold

in the 1KG due to the extra multiple testing correction implicit

through having 5–7 times as many variants (Table S2). In order to

investigate if the 1KG eQTLs exhibited characteristics indicative

of being a functional variant, we fine mapped HM3-discovered

eQTLs into the 1KG (see Materials and Methods). We observed

that for both populations, independent of the gene expression

platform, the majority of these HM3 eQTLs were found in the

1KG with the same or a different variant of higher significance,

and infrequently (,16%) would the association be worse, likely

Author Summary

The recent availability of almost fully sequenced human
genomes by the 1000 genomes project allows the direct
study of genetic variants that influence levels of gene
expression in the cell. In this study, we explore the effect of
rare and common variants on levels of gene expression.
We show that the availability of a more comprehensive list
of variants brings us closer to the likely causal variants, and
we discuss their genomic and evolutionary properties. We
also demonstrate the effects of variants that change
splicing patterns or length of the protein product, the
putative joint impacts of variants that affect gene
expression, and those that affect protein structure. Finally,
we show the impact of rare regulatory variants that cannot
be detected by the conventional methodologies of
association and require the interrogation of full genome
sequencing and full transcriptome sequencing. These
approaches bring us closer to the implementation of
these data and methodologies to a direct clinical
application.

Figure 1. Comparison of eQTL discovery in HapMap 3 and 1000 genomes project data. We compared the discovery of eQTLs from
HapMap 3 (black) and 1000 genomes (red) project variants by expression platform (LCL expression interrogated on arrays from 56 Africans and 57
Europeans, and by RNA sequencing of 60 Europeans) across log-mean permutation threshold. At all levels of FDR across the permutation threshold
range, we observe similar levels of detection of eQTL genes between HapMap 3 SNPs and 1000 genomes project SNPs. This indicates that given our
sample sizes, similar levels of regulatory haplotypes are recovered despite the 5–76 increase in the number of common variants from DNA-
sequencing. Comparison relative to observed p-value instead of FDR (Figure S1) accentuates the effect of increased number of tests in the 1000
genomes project data. Furthermore, the comparison between array and RNA sequencing data shows a reduction in the FDR relative to the total
number of genes for relaxed permutation thresholds, indicating improved performance of the platform to uncover eQTLs in this FDR range.
doi:10.1371/journal.pgen.1002144.g001
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due to genotyping errors in the 1KG (Figure 2). Next, we

compared the properties of these eQTLs in HM3 and 1KG. Since

previous analyses have identified a strong enrichment of eQTLs

around the transcription start site [18–20], we investigated if the

1KG associated SNPs were more proximal to the transcription

start site of their associated gene than the HM3 associated SNPs,

but no significant trend was observed (Figures S3, S4 and S5). This

supports recent observations that the strongest effects on gene

expression are not exclusively defined through promoter variation

[15,21]. We next asked if the newly discovered variants were on

more evolutionarily conserved sites, which would suggest that they

are more likely to be causal variants [22]. In this analysis we had to

account for the fact that the HM3 SNPs are more conserved

overall (Student’s T-test p,2e-16; MW p,2e-16). Thus, we

compared the within platform difference between the best

association and the second best-linked association, expecting that

the increase in conservation between the two could be higher

within 1KG due to the best association being more often the

causal variant than in HM3. However, no significant difference

was observed (Figure S6), which indicates, consistent with

ENCODE findings, that many regulatory elements and thus also

genetic variants in these elements are unconstrained [23,24].

eQTLs for alternative splicing
We investigated the allelic expression properties of transcript

variants that have a putative impact on transcript structure. For

splicing variants (MAF$5%), we saw an enrichment in associa-

tions in RNA-Seq data for the respective donor and acceptor exon

read count levels (the number of RNA sequencing reads which

overlap the exon for an individual, see Materials and Methods)

compared to a background derived from synonymous variants

(Figure S7). This enrichment was observed independent of

Figure 2. Fine mapping of HapMap 3 eQTLs into 1000 genomes variants. For eQTLs discovered with HapMap 3 (HM3) variants we assessed
the best p-value of a variant in linkage disequilibrium (D9$0.8) with the HapMap 3 variant in the 1000 genomes (1KG). This discovery was compared
for all populations and expression platforms and in between exon and gene eQTLs for the RNA-Seq data. We found that usually a better association
was uncovered in 1KG, suggesting that we are more likely to be observing the causal variant. For CEU-eQTLs (top right panel) discovered using arrays,
189 of 398 associations were better in the 1000 genomes (only 34 worse). For YRI-eQTLs (top left panel) discovered using arrays, 187 of 427
associations were better in the 1000 genomes (28 worse). For CEU gene and exon-eQTLs discovered with RNA-seq, 362 of 821 were better in the 1000
genomes (129 worse) and 1130 of 2598 were better (371 worse), respectively.
doi:10.1371/journal.pgen.1002144.g002
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mapping quality filter confirming that it is not due to mapping

biases (Figure S8). We also investigated gained-stop codon variants

for signals of nonsense mediated decay, finding greater than 4-fold

enrichment in exon read count level associations for overlapping

exons when compared to synonymous and nonsynonymous variants

(Figure S9). When assessing this enrichment separately through

ASE signals in the RNA-Seq data, we found that 44% (66 of 150

testable heterozygotes at 32 sites) of stop gained variants where

ASE can be detected are significant compared to only 18.8% of

synonymous variants and 20.9% of nonsynonymous variants.

Cis-regulatory modifiers of protein-coding variants
Regulatory variation can also modify the functional impact

of protein-coding variation. We had previously reported that

18.2% of nonsynonymous variants were modulated by regulatory

variation [25]. We now discovered that at least 20.9% of testable

heterozygotes for nonsynonymous SNPs (n = 32859) had signifi-

cantly different expression levels of the two nsSNP alleles (p#0.05;

this is 23.3% for n = 38645 when both known alleles are not

required to be observed). This corresponds to 46.2% of non-

synonymous variants having an ASE effect in at least one indi-

vidual (n = 5686). These results suggest that regulatory variation

may have a fundamental role in explaining individual differences

in penetrance of disease predisposing variation. Thus, surveys of

coding variation through large-scale exome resequencing studies

[7,26–28] would benefit from complimentary information of regu-

latory variation e.g. from RNA sequencing of the same samples.

Given that regulatory modifiers of protein-coding variation

were prevalent, we looked for population genetic signals of inter-

action between protein-coding and cis regulatory variation. Such

co-evolution would imply a selective advantage of some regulatory

and coding variant combinations over other haplotypes in that

locus potentially increasing linkage disequilibrium (LD). In order

to seek for such patterns from the ASE data, we calculated the

proportion of heterozygous individuals that have significant ASE

as a proxy for linkage disequilibrium between the coding ASE

variant and the unknown regulatory variants. Furthermore, we

used both HM3 and 1KG datasets to control for putative effects of

genotyping error (Figure S10). We observed an increase signal for

nonsynonymous compared to synonymous variants (p = 3.5e-4;

Figure S11), which is suggestive coevolution of functional non-

synonymous and regulatory variants. The result is unlikely to be

caused by nonsynonymous SNPs being causal regulatory variants

more often than synonymous SNPs: the two types of variants have

a nearly equal enrichment of exon associations (Figure S9), and

while a change in protein structure might change the overall

expression level of the gene itself through an autoregulatory

mechanism, this is not expected to lead to allelic imbalance. When

stratifying by the derived allele’s expression, in the 1KG data we

observed a large and statistically significant enrichment of the ASE

proportion for rare nonsynonymous variants where the derived

allele has lower expression than the ancestral (Figure S12). This

suggests that some low-frequency deleterious coding variants may

be tolerated in the population only because they lie on a lower

expressed haplotypes and thus have reduced penetrance. This may

be particularly important for understanding the phenotypic effects

of loss-of-function variants – it has been estimated that each person

carries 250 to 300 loss-of-function variants (50 to 100 of which are

previously implicated in inherited disorders) [29], but sometimes

their functional impact may be diminished or strengthened by

their regulatory background.

Detection of rare regulatory variants
Genome sequencing offers the ability to interrogate the func-

tional impact of recent and rare regulatory variants in individuals

[30]. We calculated whether individuals sharing an rare ASE effect

are more likely to show increased haplotype sharing, measured as

haplotype homozygosity, which would be a signal of the ASE

effect being driven by a shared rare regulatory variant (as de-

scribed in [15]). Concordant with previous results, we found an

excess of haplotype sharing for rare ASE haplotypes (Figure S13).

Next, we sought to identify the putative causal variants by

investigating genetic variants which were perfectly concordant

with this rare ASE effect (see Materials and Methods). For each

such effect, we identified a median of 4 and a mean of 8.83

putative regulatory SNPs (prSNPs) within 100 kb of the TSS

(compared to a median of 3 and mean of 7.64 putative regulatory

SNPs under the null; Figure 3 and Figure S14). Altogether, we

identified at least one putative regulatory SNP for 1711 of 2693

genes demonstrating a rare ASE effect (compared to 1517 under

Figure 3. prSNPs detected for rare ASE effects (real and non-ASE). For each ASE effect, we observe more prSNPs for the real ASE versus the
non-ASE null data. On average, we find 1 more prSNP in the real ASE data, which is expected given that the real data should contain at least 1 causal
variant more than the null.
doi:10.1371/journal.pgen.1002144.g003
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the null), totalling 23234 prSNPs for rare ASE effects (compared to

20393 under the null). Additionally, the prSNPs showed signs of

increased functional potential compared to the null group: they

were more likely to be distributed around the transcription start

site and within the gene relative to control SNPs (x2 p-value,2e-16;

Figure S15). Furthermore, the prSNPs were more likely to have a

lower derived allele frequency (p = 3.437e-12) and also trended to

have higher evolutionary conservation, indicating that they are

more likely to be functional and putatively slightly deleterious

(p = 0.07 with PhyloP vertebrate conservation scores; Figure S16).

We then sought for a signal of rare regulatory variants un-

derlying large changes in gene expression by calculating whether

individuals with outlier array expression values are enriched for rare

genetic variants. We found that individuals with gene expression

Z-score $2 (a measurement of how far the observed value is from

the mean of the sample – see Materials and Methods) have an excess

of rare variants within 100 kb of the transcription start site, a signal

that was statistically significant (outside the 95% CI) for rare variants

landing in highly conserved sites derived from 17-way vertebrate

alignments (Figure 4). The average log-2 difference in expression

from the mean for these variants was 0.7460.52 in CEU and

0.6660.49 in YRI (Figure S17). Overall, there was an excess of 162

coincident singleton, conserved SNPs with expression outliers (Z$2)

in the CEU sample (one-sided p-value,0.05) and the same number,

162, in YRI (one-sided p-value,0.05). Divided by the number of

studied individuals, this indicates that there are approximately 3

such effects per individual for this cell type. For other Z-score

thresholds and for RNA-Seq data, we observed the same type of

enrichment (Figures S18 and S19).

Discussion

In this study, we have analyzed common and rare regulatory

variation in the human genome using resequencing data, high-

lighting the many advantages of population-scale sequencing in

understanding the spectrum of functional variation in the genome.

Figure 4. Excess of rare regulatory variants coincident with expression outliers. We calculated the excess of expression outliers as a
function of frequency for all SNPs within 100 kb of the transcription start site of array-quantified genes for both Europeans and Africans. We further
sub-selected to only include SNPs in 17-way most conserved elements from UCSC. We observed an enrichment of conserved singleton SNPs
coincident with expression outliers (Z.2; p,0.05). The confidence intervals were estimated by randomizing expression labels 200 times.
doi:10.1371/journal.pgen.1002144.g004
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The comparison of eQTL discoveries using 1000 genomes and

HapMap 3 data indicated that while many novel associations are

discovered with resequencing data, most of common effects are

already captured with genotyping arrays. Even though mapping

common causal regulatory variants remains a challenge, we

observed a clear enrichment of regulatory effects in splice-site and

nonsense SNPs. Furthermore, we showed that regulatory variation

can putatively modify the effects of a large proportion of non-

synonymous coding variants, and present population genetic

evidence suggestive of such interactions. The possibility to study

rare variants has been one of the main motivations for large-scale

resequencing experiments, and we presented several novel ap-

proaches to analyse rare regulatory variation from genomic as well

as RNA sequencing data. For rare regulatory effects identified

from RNA sequencing data, we were able to pinpoint a median of

four putative regulatory variants per rare effect, one of which is

expected to be causal – a number low enough for feasible

experimental validation. Additionally, individuals with outlying

expression values were shown to have an enrichment of rare

conserved regulatory SNPs, with each individual carrying an

estimation of approximately 3 rare regulatory variants that have a

large effect (Z. = 2) on gene expression in the studied cell type.

Across all the tissues and developmental stages, each individual

is expected to have even hundreds of such rare, large effect

regulatory variants. We have also demonstrated how studies

integrating genomic or exome sequencing with RNA sequencing

data from different tissues will also provide information of how

the functional effects of protein-coding variation are modified

by regulatory variation. Altogether, these approaches will bring

us closer to a joint assessment of how genome sequence

affects genome function, and how this relates to phenotypic

diversity.

Materials and Methods

SNP and indel genotypes
We used 1000 genomes polymorphisms from the March 2010

pilot 1 and 2 release (www.1000genomes.org; REL-1003) and

HapMap 3 release 3 genotypes (www.hapmap.org). For associa-

tion analysis, we used 5 404 174 common (MAF$0.05) SNPs for

60 RNA-sequenced CEU individuals (Utah residents with ancestry

from northern and western Europe) and 5 329 982 and 6 976 232

SNPs for 57 and 56 expression-arrayed CEU and Yoruban

individuals (Yoruba in Ibadan, Nigeria), respectively. For two

individuals which were parents in a CEU trio which had variants

independently called in the 1000 genomes (pilot 2), we intersected

their genotype calls with pilot 1 calls; in cases where no genotypes

were reported in the trio individuals, we added the reference

homozygote state. Between pilot 1 and pilot 2, 3 398 517 sites

were concordant and had genotypes reported (for 950 sites the

reference and alternative allele were different between the trio

individuals and the 58 pilot 1 individuals and these sites were

excluded from further processing). For indels, we used calls from

the same release. In total, 592 081, 586 604 and 710 931 common

indels were used in each population sample (60 CEU with RNA-

Seq, 57 CEU with arrays and 56 YRI with arrays). For rare

variant and ASE-based analyses we used only the pilot 1 1000

genomes genotype calls; this was to prevent biases due to the

improved rare variant calling on the pilot 2 trio.

Gene annotation and gene expression data
RNA-sequencing and expression arrays experiments were

performed and quantified on RNA extracted from lymphoblastoid

cell lines as previously reported [15]. We updated our annotation

for RNA-Seq quantification to use the Gencode v3b annotation

[31].

Exon read level associations
For RNA-Seq data, we calculated associations per exon by

quantifying the number of reads overlapping known exon an-

notation for each individual and then performing Spearman rank

correlation with respect to corresponding genotypes as previously

reported [15].

Allele-specific expression analysis
Allele-specific expression was assessed by calculating the allelic

imbalance of variants over heterozygote positions. Significance is

assessed using the binomial probability distribution where the

probability of success is weighted by that individual’s/lane’s

reference allele to non-reference allele mapping bias. ASE

variants used in this study were not monoallelic as we required

both reported alleles to be observed at least once. We also

conditioned on the ASE effect being present for reads quantified

above MAQ10 mapping quality and Phred score of 10 but

subsequently reinforced there was no threshold effect by re-

quiring significance when there was no mapping or base quality

filter.

Fine mapping HapMap3 eQTLs into the 1000 genomes
The best association per gene (or in the case of RNA-Seq data

per exon) at or below the 0.01 permutation threshold was fine-

mapped from the HM3 into the 1KG data. Each of these eQTL

variants from the HM3 was compared to D9 calculated by

Haploview for all the 1KG variants with a Spearman association

of p#10e-3 with the same gene. The 1KG variants which were in

LD (D9$0.8) with the original HM3 variant were deemed to be

underlying the same effect originally discovered in the HM3; the

best association for that gene in the 1KG meeting this LD criterion

was selected for comparison to the original HM3 variant. This

methodology allowed us to survey new discoveries irrespective of

whether they were the same variant, different variants at different

frequencies or divergently-located with respect to the transcription

start site.

Functional variation determination
Functional variation was determined using the EnsEMBL 54

pipeline [32]. Splicing variants were compared to the Gencode

annotation and were deemed accurate for essential splicing

variants if they were within 5 bp of an exon boundary and

accurate for a general splicing variant if they were within 100 bp

of an exon boundary. For testing exon association enrichment,

we took the splicing variant associations for their respective

donor (59) and acceptor (39) exons. To find a matching set to

test for enrichment of association, we considered synonymous

variants which were greater than 15 bp away from an exon

boundary. We calculated enrichment by calculating the qvalue

statistic1-p0 for acceptor and donor associations only when there

were more than 30 associations; the log-ratio of this enrichment

was reported [33]. This calculation was made across the range of

mean read depths for exons from 1–1000 reads. Stop gain

variants were tested against the exon they overlapped and were

also compared in a similar way to synonymous and nonsynon-

ymous mutations.

Conservation and allele-frequency analysis
The PhyloP base-wise conservation scores were based on

alignments of 46 vertebrate genomes, 33 mammalian genomes,

Rare and Common Regulatory Variation
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and 10 primate genomes, and were downloaded from UCSC [34].

Ancestral alleles were obtained from the 1000 genomes pilot

release.

Haplotype homozygosity from RNA-Seq data
Haplotype homozygosity indicates the relative age of a haplo-

type by assessing the incidence (or lack thereof) of recombination

or other mutation. This is achieved by comparing the extent of

homozygosity between haplotypes by calculating the length of

sequence from a target marker until a mismatch occurs. Phased

data is required in non-haploid species to assess and compare

individual haplotypes from a target marker position. Furthermore,

since haplotype homozygosity is being assessed from a heterozy-

gous target marker (required for assessing ASE), a decision needs

to be made about what allele should be taken to represent the

reference haplotype and in what direction haplotype homozygosity

should be assessed (59 or 39). Here, we used phasing data as

provided by the 1000 genomes project pilot release and compared

all haplotypes carrying each allele for the heterozygous marker

and in both directions to select the allele and direction with the

average longest tract of haplotype homozygosity. Then, given this

direction and reference haplotype, we take as a criterion for

comparison that there must be at least 6 individuals where

between 2 and 4 have ASE significant haplotypes in the same

direction and at least 2 are non-significant for ASE. To compare

the extent of haplotype homozygosity given the reference

haplotype and the ASE status of each haplotype we compare

significant ASE to significant ASE haplotypes and significant to

non-significant ASE haplotypes and compute the average length of

haplotype homozygosity for all pairwise individual comparisons

within these categories. We then stratify the results for each ASE

marker based on the number of significant ASE haplotypes were

original discovered.

Causal regulatory variant detection for rare regulatory
haplotypes

To identify putative regulatory SNPs on rare regulatory

haplotypes using ASE calculations we looked for all variants

within 100 kb of the transcription start site which satisfied ASE

sharing in 1, 2 or 3 individuals when at least 6 heterozygotes

individuals could be tested for ASE. To satisfy sharing, the variant

must be heterozygous with the same direction of effect (assessed

through phasing) when an ASE effect is present in an individual

and homozygous when the ASE effect is not present. To assess

how well our putative causal regulatory variants discovery was

performing we assessed the distribution of discoveries around the

transcription start site by comparing counts of real predictions

versus control predictions in 5 kb windows using the Fisher’s exact

test (Bonferroni-corrected for multiple testing). Control (null)

predictions were obtained by matching each ASE test by

reassigning significance in the opposite direction. For instance, if

there were 6 heterozygotes, 2 of which show ASE, the control

reassignment would assign ASE to the two least significant

heterozygote individuals. To assign direction of effect, we matched

the distribution of real directions determined with the phasing data

to the control set.

Z-score analysis
We compared the co-occurrence of expression outliers with rare

variants by recomputing our expression files as Z-scores and

binning at each allele frequency the distribution of expression

measurements that were incident with the non-reference variant.

To assess significance of divergence in this distribution, individual

labels were permuted 200 times and 90 and 95% CI were

obtained.

Supporting Information

Figure S1 Comparison of HapMap 3 and 1000 genomes project

eQTL discovery (p-value thresholds). The discovery of eQTLs

from HapMap 3 (black) and 1000 genomes (red) project variants

by expression platform (LCL expression interrogated on arrays

from 56 Africans and 57 Europeans and LCL expression from

RNA sequencing of 60 Europeans) was compared across p-value

thresholds. Here, the equivalent permutation threshold for the

0.01 and 0.001 levels are highlighted. This highlights that the

addition of 5–76 as many markers through whole genome

sequencing is requiring a higher threshold for association sig-

nificance providing the potential to remove many weaker but pre-

viously significant regulatory haplotypes.

(EPS)

Figure S2 Fold changes for significant allele specific expression

variants. We plotted the fold change distribution for significant

ASE variants (p#0.05). The median fold was 1.39. The mean

inter-individual fold change was 1.41 with a standard deviation of

0.16.

(EPS)

Figure S3 Comparison of distance to transcription start site of

fine mapped variants from HapMap3 (HM3) into 1000 genomes

(1KG). An estimate of whether newly discovered associations in

the 1KG are more likely to be causal mutations is to assess their

position relative to the transcription start site (TSS) with the

expectation that causal mutations may be more proximal to the

TSS. We assessed this for array-based and RNA-seq eQTLs and

for each platform we observed that there was no significant trend

towards to the TSS for improved associations. However, we

observed that many of the newly discovered variants are proximal

to the previous reported association from HM3. This supports

that measured eQTLs are not strictly limited to a class that is

influencing the proximal promoter machinery.

(EPS)

Figure S4 Comparison of distance to exon midpoint of fine

mapped variants from HapMap3 (HM3) into 1000 genomes

(1KG). Considering that many newly discovered associations for

the 1KG may be marking genetic differences in splicing or

transcript termination, we interrogated if these associations were

more likely to be discovered proximal to the mid-point of the exon

compared to the original associated variant discovered in HM3.

We assessed the distance to the exon midpoint for exon-eQTLs

discovered in HM3 that were also discovered and in the 1000

genomes. We did not observe a pattern which preferentially

indicated that the new associations were closer to the exon

midpoint. This indicates that in general the improvement in

association is not a function of a particular component of gene

regulatory architecture but is likely a heterogeneous mix of

different genetic effects which influence the transcriptome.

(EPS)

Figure S5 Comparison of distance to transcription start site of

fine mapped variants from HapMap3 (HM3) into 1000 genomes

(1KG) for CpG versus non-CpG promoters. We hypothesized that

the genetic effects on gene expression would be manifested

differently depending on whether a gene’s proximal promoter

contained a CpG island. Our rationale was that CpG promoters

might have broader effect locations while non-CpG and likely

more binding-sequence dependent promoters might be con-

strained closer to the TSS. We did not observe that either had
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preferential discovery closer to the transcription start site. A

prevailing observation was that discovered effects were close to the

original tagging variant in HM3.

(EPS)

Figure S6 Comparison of conservation difference between best

association and second best association within platforms. Given

that the average conservation for HM3 variants was higher than in

1KG (Student’s T-test p,2e-16; MW p,2e-16), we tested if we

saw a larger improvement in conservation score between the best

association and the second best association (conditioned on them

being in D9$0.8). This was matched for the same eQTL as the

HM3 and 1KG best associations were also in D9$0.8. In general,

this was not observed except for YRI (and there only for primate

and not mammalian or vertebrate conservation differences). This

suggests that many of these newly discovered associations in 1KG

are not more highly constrained at the base level then the HM3

associated-variants.

(EPS)

Figure S7 Enrichment of 1000 genomes splicing associations.

To assess the impact of splicing variation identified through

annotation, we assessed the enrichment of associations that we

observed for acceptor versus donor exons stratified by acceptor

(left-panel) and donor snps (right-panel). We plotted this relative

enrichment as a function of mean number of reads per individual

to assess if difference in gene quantities were responsible for

differential discovery of splicing effects.We further also plotted as

the background the same relative enrichment for synonymous

variants which were greater than 15 bp away from the splice

junction and had not be identified as splicing SNPs. We observed

that we could detect enrichment of splicing variation in the RNA-

seq data when sufficient reads were present. This was consistent

specifically for better quantified exons (with sufficient read depth).

This pattern of enrichment for splicing variants is reinforced by

both tests having consistent deviation from the background despite

some observable stochasticity. In this plot, for each binned mea-

sure of enrichment at least 30 variants were available. Enrichment

was measured as the log ratio of the 1-pi0 statistic for acceptor

versus donor exon associations (using q-value statistics).

(EPS)

Figure S8 Enrichment of 1000 genomes splicing associations

without mapping filter. To address if the enrichment of splicing

variants we observed was due to threshold effects due to mapping

we removed mapping quality filters and repeated the same analy-

sis. For both acceptor and donor variants we observed the same

enrichment relative to synonymous variants.

(EPS)

Figure S9 Enrichment of exon-eQTLs for overlapping exons of

synonymous, nonsynonymous and gained stop variants. We

observed significant enrichment for exon-eQTLs for gained stop

variants when compared to enrichment we observed for synony-

mous and nonsynonymous variants. This enrichment suggests that

nonsense mediated decay is detectable in RNA-Seq data. The level

of enrichment was estimated using the 1-pi0 statistic.

(EPS)

Figure S10 Proportion of ASE of all heterozygotes per variant

with respect to derived allele frequency. To investigate the

relationship between regulatory and coding variation we looked

at the proportion of heterozygotes which had allele specific

expression (ASE). This proportion is expected to be high when the

coding variant is in strong linkage with a cis-regulatory variant

causing the allelic imbalance. We calculated the proportion of

ASE with respect to DAF for cSNPs with ASE and at least 3

heterozygotes in the full 1KG data (a), in 1KG SNPs with both

allele observed at least once (b), and in SNPs with genotypes

concordant with HM3 data (c). The dark blue lines are means in

sliding windows of 600, 400 and 150 SNPs respectively,

proportionally to the number of SNPs, and the cyan lines denote

the 10% upper and lower quantiles. The analysis was performed

for these three datasets to control for possible effects of false

heterozygote genotype calls in the 1KG data. However, it is

frequent that only one allele is observed in the RNA-Seq data even

when analyzing the high-quality heterozygotes from the HM3

dataset (2042 of 6859 (30%) of ASE heterozygotes). This

proportion was higher in the full 1KG data (41%, 21122/

51585), which could be caused by genotyping error. However,

false ASE calls are likely to create single random ASE observations

per SNP and decrease the mean ASE proportion; thus, our

analysis looking of an increase is likely to be conservative in this

respect. Altogether, the results show increased ASE proportion in

the end of the DAF distribution. This can arise by chance through

new regulatory mutations landing on haplotypes carrying a rare

coding allele, or a new coding mutations landing on haplotypes

carrying a rare regulatory allele. Additionally, even co-evolution-

ary pressure on a haplotypes containing both variants can increase

the proportion of ASE.

(EPS)

Figure S11 Proportion of ASE of all heterozygotes per variant

for synonymous and nonsynonymous variants. For sSNPs and

nsSNPs with ASE and at least 3 heterozygotes in the full 1KG

data (a), in 1KG SNPs with both allele observed at least once (b),

and in SNPs with genotypes concordant with HM3 (c), we

observed that that the proportion of ASE is higher for non-

synonymous than synonymous variants. This may suggest

increased LD between regulatory variants and nsSNPs through

favoring of functional coding variants on a particular regulatory

haplotype over other haplotype combinations. Significance was

assessed using Mann-Whitney.

(EPS)

Figure S12 Mean proportion of ASE of all heterozygotes with

respect to derived allele frequency for synonymous and nonsynon-

ymous variants where the derived allele is higher or lower

expressed. The proportion of heterozygote individuals with ASE

was separated by derived allele’s expression (either ‘‘loss’’ or

‘‘gain’’) for sSNPs and nsSNPs with ASE and at least 3 hetero-

zygotes in the full 1KG data (a), in 1KG SNPs with both allele

observed at least once (b), and in SNPs with genotypes concordant

with HM3 (c). The lines are means in sliding windows of 300, 200

and 75 SNPs respectively, proportionally to the number of SNPs,

and the Mann-Whitney p-values for sSNPs versus nsSNPs have

been calculated in DAF bins of 0.05 with an overlap of 0.025. The

proportion of ASE is high especially in rare nonsynonymous

variants where the derived allele is lower expressed, potentially

suggesting evolutionary preference of rare derived nsSNP alleles to

be on the lower expressed haplotype. This could be a signal of rare

deleterious coding variants that are tolerated in the population due

to being on a lower expressed haplotype, which lowers their

penetrance. The trend can be seen also in the 1KG data with both

alleles observed but is expectedly weaker, since this phenomenon

would be strongest when the rare derived allele is hardly expressed

at all. The lack of signal in HM3 may be explained by these

variants being underrepresented in the SNP genotyping arrays.

(EPS)

Figure S13 Extent of haplotype homozygosity for shared

ASE effects. To identify signals of recent and rare eQTLs in

the 1000 genomes data, we assessed the extent of haplotype
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homozygosity for shared ASE individuals versus ASE and non-ASE

individuals (when there was greater than 6 heterozygotes individuals

which were quantifiable for ASE and a significant ASE effect was

observed in 2,3 or 4). We observed that when ASE was shared

among 2 or 3 individuals, there were longer tracks of haplotype

homozygosity indicating shared genealogy for an underlying causal

mutation. This result supports previous findings we observed using

HapMap3 phasing data (Montgomery et al, 2010).

(EPS)

Figure S14 Number of prSNPs detected for real ASE and non-

ASE effects. We plotted the distribution of the number of real

prSNPs from control prSNPs detected for each ASE effect. Here,

at each testable marker, the number of real prSNPs is subtracted

from the number of control prSNPs identified and plotted as a

histogram. The shift to the left shows that many more ASE effects

have more real prSNPs than control prSNPs.

(EPS)

Figure S15 prSNPs distributed around the transcription start

site. We assessed the location of prSNPs discovered for the real

versus non-ASE predictions. We found many of the real pre-

dictions where centred around the transcription start site and

downstream within the respective gene. The difference in this

distribution was highly significant (x2 p-value,2e-16). Bins where

there were significant prediction differences using a Bonferroni-

corrected Fisher’s exact test are highlight by stars. This result

indicates that many real prSNPs are located within the gene or

near promoters and suggests that the predictions are preferentially

targeting regions with a higher prior of functionality.

(EPS)

Figure S16 Real prSNPs are more conserved and have lower

derived allele frequency. We compared evolutionary constraint

and derived allele frequency for prSNPs versus control SNPs and

found that the prSNPs trended towards being slightly more

conserved (PhyloP primate base conservation p = 0.12 MW;

PhyloP mammalian base conservation p = 0.09; PhyloP vertebrate

base conservation p = 0.07) and were more likely to have lower

derived allele frequency (p = 3.437e-12 MW). This suggests that

the prSNPs are more likely targeting functional sequence and are

more likely to be slightly deleterious.

(EPS)

Figure S17 log2 difference from mean for Z.2 conserved

singleton variants. The distribution of expression differences for

conserved singleton Z.2 variants was plotted to observe the

average effect size of these variants. Approximately 4/5th of these

variants are expected by chance. However, large differences can

also be observed and are candidates for bonafide rare variants

which have important effects. Of note, the CEU variants also

appear enriched for expression differences relative to YRI.

(EPS)

Figure S18 Observed coincident array expression outliers by

expected number for singletons. For singletons, we plot the

number of expected coincident outliers at a particular Z-score

(calculated by running 200 permutations of the expression

individual labels) versus the observed number (black line). Where

the difference is greater than 5% of all permuted observations, a

red dot is marked and the number of effects per individual is

tabulated. Here, we observe, consistent with results summarized in

Figure 4, that YRI enrichment is more significant than the CEU.

However, this plot indicates that this enrichment is across the Z-

score spectrum. It should be noted that CEU SNPs are significant

for Z. = 2 in this plot while the CEU SNPs did not exceed the 5%

CI bound in Figure 4; this is because there we used a two-sided

bound, whereas in this plot, we are using a one-sided estimate of

significance since our expectation is that there will be an excess of

effects. The significance for the excess for CEU SNPs is marginal

though at disappears if we require the observed to be greater than

2.5% of all permuted observations.

(EPS)

Figure S19 Observed coincident RNA-seq expression outliers by

expected number for singletons. For CEU RNA-Seq data we observe

a similar pattern of enrichment for conserved singletons being

outliers as we observe in the array data (Figure S18). Here we chose a

smaller window size than we used for arrays to reduce the number of

tests and increase signal (50 kb instead of 100 kb around the

transcription start site). However, we find slightly fewer effects than

the arrays. This is likely due to the fact we are still testing a factor of 2

more expression measurements and the RNA-Seq experiment may

contain more stochasticity for any individual estimate of exon read

count level. We expect that as we improve within individual estimates

of specific transcript levels, we may find the RNA-Seq data will better

uncover many more rare variant effects.

(EPS)

Table S1 Associated variant discovery from 1000 genomes (1KG)

to HapMap 3 (HM3). EQTL variants discovered in the 1KG (best

associated variant at 0.01 permutation threshold per gene) were

compared to their equivalent discovery in HM3. Only 1/5 of these

1KG eQTLs were found in the HM3 and passed its equivalent

significance threshold. Approximately 2% were in the HM3 but fell

below this threshold indicating either genotype error in the HM3 or,

less likely, stochastic improvement in association due to genotyping

error in the 1KG. The remaining 4/5 of the association are for new

markers that were not assayed in the HM3. This indicates that if

these new variants are bonafide causal variants, whole genome

sequencing is uncovering a large number that had previously not

been identified. *Independent eQTLs defined by recombination

interval and LD filtering as previously reported in [35].

(DOCX)

Table S2 Associated variant discovery from HapMap 3 (HM3)

to 1000 genomes (1KG). EQTL variants discovered in HM3 (best

associated variant at 0.01 permutation threshold per gene) were

compared to their equivalent discovery in 1KG. Approximately 2/

5 of the associations genotyped in both passed the equivalent

discovery thresholds. Approximately 3/5 of the associations did

not pass the discovery threshold in 1KG indicating that the extra

multiple testing correction of the many extra variants gained

through whole genome sequencing is masking some eQTLs. Only

a marginal fraction of the associated SNPs were not found in the

1KG. *Independent eQTLs defined by recombination interval

and LD filtering as previously reported in Nica et al. [Nica AC,

Parts L, Glass D, Nisbet J, Barrett A, et al. (2011) The Architecture

of Gene Regulatory Variation across Multiple Human Tissues:

The MuTHER Study. PLoS Genet 7: e1002003. doi:10.1371/

journal.pgen.1002003]

(DOCX)
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