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Abstract: Cancer and neurodegeneration are often
thought of as disease mechanisms at opposite ends of a
spectrum; one due to enhanced resistance to cell death
and the other due to premature cell death. There is now
accumulating evidence to link these two disparate
processes. An increasing number of genetic studies add
weight to epidemiological evidence suggesting that
sufferers of a neurodegenerative disorder have a reduced
incidence for most cancers, but an increased risk for other
cancers. Many of the genes associated with either cancer
and/or neurodegeneration play a central role in cell cycle
control, DNA repair, and kinase signalling. However, the
links between these two families of diseases remain to be
proven. In this review, we discuss recent and sometimes
as yet incomplete genetic discoveries that highlight the
overlap of molecular pathways implicated in cancer and
neurodegeneration.

Introduction: Epidemiological Data

At first glance, cancer and neurodegeneration seem to have little

in common. Although neurodegeneration results in the death of

post-mitotic neurons, cancer cells are characterised by an

enhanced resistance to cell death. However, the more we learn

about the molecular genetics and cell biology of cancer and

neurodegeneration, the greater the overlap between these

disorders appears. Many of the recent findings in both fields offer

new avenues of study for these two age-related conditions,

addressing an urgent need for therapeutic options, especially for

patients with advanced disease.

Many epidemiological studies have linked cancer and neurode-

generative disorders. A growing body of evidence suggests an

inverse correlation between the risk of developing cancer and a

neurodegenerative disorder, in particular Parkinson’s disease (PD).

Several case-control and cohort studies have reported a reduced

risk of almost all cancers, both smoking-related and non-smoking-

related, among individuals with PD [1]. The exception to this is a

suggestion of an increased risk of malignant melanoma associated

with a PD diagnosis [2–7]. Additional work has also identified a

possible association between melanoma and amyotrophic lateral

sclerosis (ALS), a form of motor neuron disease (MND) [8,9].

Nevertheless, a recent study showed no significant association

between cancer and either MND or multiple sclerosis [10], in

contrast to previous reports [11–17]. Fewer data are available

linking cancer and either Alzheimer’s disease (AD) or Hunting-

ton’s disease (HD). It has been shown that, after adjustment for

age, a diagnosis of AD was associated with a 60% reduced risk of

cancer, and a history of cancer was associated with a 30% reduced

risk of AD [18,19]. Concerning HD, a lower incidence of cancer

was observed among patients with the disease [20].

There is, of course, a difference between association and

causality, and it has been proposed that the association between

PD and skin cancer could be linked to treatment for PD (e.g.,

Levodopa therapy) rather than with the disease itself. However,

recent reviews of the evidence do not support such a causal

association [21,22]. Additionally, it has been suggested that the

decreased incidence of cancer in patients with PD is linked to the

negative association between PD and smoking [23]. Although this

may account for much of the risk reduction regarding smoking-

related cancers, it fails to explain the decrease of non-smoking-

related cancers.

The origins of the association and interplay between cancer and

neurodegeneration are still a matter of debate, but increasing

evidence suggests that new discoveries in genetics of these two

conditions may help scientists solve the cancer–neurodegeneration

enigma in the coming decade. A number of studies show that the

genes causing neurodegeneration are often mutated or abnormally

expressed in cancer. In the following sections we use a series of

examples to illustrate the emerging genetic evidence linking cancer

and neurodegeneration. We discuss whether genes that predispose

to cancer also cause neurodegeneration and vice versa. Moreover,

we review the genomic means of unravelling the emerging

molecular pathways linking cancer and neurodegeneration.

Proven Genetic Factors Implicated in Both Cancer
and Neurodegeneration: The ATM Gene

The vast majority of cancers and neurodegenerative disorders in

the general population are sporadic in nature but a small

proportion of these (5%–10%) are inherited in a Mendelian

fashion. The search for the genes responsible for these familial

forms of disease has been dominated over the last 20 years by the

identification of genes that cause monogenic forms of disease. Such

mutations have been discovered predominantly through linkage
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studies, which typically find high penetrance, but rare, genetic

variants. Several genes have been unambiguously shown to cause

rare familial forms of neurodegeneration [24,25] and cancer

syndromes [26]. AT-mutated (ATM) provides the closest genetic link

between neurodegeneration and cancer thus far.

Ataxia-telangiectasia (AT) is a rare neurodegenerative autoso-

mal recessive disease characterised by chromosomal instability,

immunodeficiency, and a predisposition to cancer. This disease is

caused by mutations in the ATM gene that leads to a total loss of

the ATM protein kinase, which is part of the phosphatidylinositol-

3 kinase (PI3K) superfamily, and plays a central role in cell division

and DNA repair. Mutations in other DNA repair genes have been

shown to cause both cancer and neurodegeneration [27]. Whether

DNA repair is a causal link between cancer and neurodegener-

ation remains, however, to be proven. Nearly 40% of ATM

homozygotes will develop cancer, usually childhood leukaemia or

lymphoma [28–30]. Strikingly, ATM-heterozygote germline mu-

tations were also shown to contribute to breast cancer suscepti-

bility [31,32]. It is noteworthy that the kinase encoded by the ATM

gene is a prominent activator of p53 [27], a key tumour suppressor

protein mutated and inactivated in approximately 50% of human

cancers [33–37]. ATM is a good example of a gene that functions

as a tumour suppressor but whose inactivation also leads to

neuronal loss when the mutations are in the germline [38,39].

Proven Genetic Factors Implicated in
Neurodegeneration and Putatively Implicated in
Cancer: The PARK2 Gene

The PARK2 gene encodes parkin, an E3 ubiquitin ligase. This

gene is the most commonly mutated gene in autosomal recessive

PD [40]. PARK2 was a putative candidate for a tumour suppressor

gene [41–44], with identified whole exon deletions and duplica-

tions of this gene in ovarian and other cancers supporting this

hypothesis [42,45]. More recently, chromosomal microarray

analysis was used to identify PARK2 somatic mutations and

intragenic deletions in glioblastoma, colon cancer, and lung cancer

[46]. This suggests that while germline mutations in PARK2 cause

PD, somatic mutations in PARK2 contribute to cancer. However,

PARK2 is a very large gene prone to deletions and mutations, and

whether somatic mutations in parkin are primarily involved in the

tumour development remains to be confirmed. Homozygous or

compound heterozygous PARK2 mutations unambiguously cause

PD [40]. Several lines of evidence suggest that heterozygous

PARK2 mutations also have a role in the development of

parkinsonism, although this is a matter of debate [47,48]. Notably,

only a few alterations identified in cancer were homozygous, most

being heterozygotes. Strikingly, these mutations sufficiently altered

parkin’s ability to promote tumour growth. Therefore, these data

suggest that, in cancer, PARK2 may act in a haploinsufficient

manner.

Interestingly, PARK2 and ATM mutations in cancer sometimes

occur at the exact same residue, causing neuronal degeneration

[30,46,49]. This observation supports the idea that not only

similar molecules but also similar genetic mutations within the

same molecule can have very different effects, depending on the

type of cell in which they occur: a dividing cell in cancer or a post-

mitotic neuron in neurodegeneration. Notably, neurons are not

the only post-mitotic cells, and yet they are the main cell type

affected in neurodegenerative disorders. Rather than mitosis on its

own, a combination of neuronal functions is therefore likely to

explain the link between cancer and neurodegeneration disorders.

It is not yet clear whether the germline pathogenic mutations in

the PARK genes can also increase the risk for cancer. One way to

answer this question would be to compare the frequency of

tumours in PD patients carrying heterozygote, compound

heterozygote, or homozygote mutations in the PARK genes to

that of idiopathic patients and controls without PARK mutations.

However, this kind of study design is difficult to achieve in an

epidemiologically robust fashion. It would require a very large

number of cases and other epidemiological data as well as detailed

family history and risk factor assessment.

A number of somatic mutations in two other genes unequiv-

ocally linked to PD, namely PINK1 and LRRK2 [50–52], both of

which encode protein kinases, were identified in tissue samples

from patients with various tumours [53]. The dysregulation of

kinases in cancer and neurodegeneration is discussed in more

detail later in the text (A Catalogue Of Somatic Mutations In

Cancer can be accessed via the Wellcome Trust Sanger Institute

COSMIC Web site at http://www.sanger.ac.uk/genetics/CGP/

cosmic/). The PINK1 and LRRK2 somatic mutations identified in

cancer were all heterozygous and their pathological effect remains

to be determined. The prevalence of LRRK2 G2019S (the most

common genetic determinant of PD) is not increased in patients

with melanoma [7,54], but a recent study showed an almost 3-fold

increased risk of non-skin cancers in LRRK2 G2019S mutation

carriers [55]. Moreover, of the 18 known mutation carriers of a

large family with LRRK2 R1441C parkinsonism, four had colon

cancer [56]. Nevertheless, further studies will be required to

ascertain whether the association between LRRK2 parkinsonism

and cancer is real or coincidental. Given the frequency of the

G2019S mutation in Ashkenazi Jews and Arab Berbers with PD, it

should be possible to conduct large epidemiological studies looking

at cancer incidence in these families [57].

It is noteworthy that the monogenic forms of neurodegeneration

and cancer are, on the whole, very rare. While most of what we

know about the molecular background of idiopathic diseases is

based on information gleaned from the study of rare familial forms

of these disorders, one cannot readily assume that any information

learnt from the Mendelian forms of a disease can enlighten us

about the idiopathic forms of this disease. In light of this, extending

a link that might exist between monogenic disorders to the

sporadic forms of cancer and neurodegeneration should be

attempted with caution.

Proven Genetic Factors Implicated in Cancer and
Putatively Implicated in Neurodegeneration

It is not always the case that cancers are less common in patients

with neurodegenerative disease. This is exemplified by melanoma,

which has a recognised increased incidence in PD patients. A

positive family history is a strongly associated risk factor for

melanoma [58–62], and approximately 50% of affected families

have mutations in one of the three following genes: cyclin-

dependent kinase inhibitor 2A (CDKN2A), alternate reading frame

(ARF), and cyclin-dependent kinase 4 (CDK4). These mutations,

identified through linkage studies, are inherited in an autosomal

dominant manner and have a high penetrance. High-frequency

alleles with small effects on melanoma risk have also been

identified in a number of genes, including MC1R (Melanocortin 1

Receptor) and TYR (tyrosinase). Moreover, an approximately 2-

fold increase in the risk of PD was reported among individuals who

reported a family history of melanoma compared with individuals

without such a family history. The significant association was

independent of several known risk factors for PD, including

smoking [63]. No significant associations were observed between a

family history of several other common cancers and PD risk [64],

suggesting the existence of common genetic determinants between

Cancer and Neurodegeneration
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PD and melanoma. There remains, however, the possibility that

another unknown environmental factor could contribute to the

observed association between a family history of melanoma and

PD risk. Other genes, such as the CDKs, for which an increased

expression or dysregulation has been observed in melanomas [65]

and PD [66,67], could also play a role in the observed association.

Two genome-wide association studies (GWAS) have recently

been performed in melanoma and melanocytic nevi [68–70]. One

study replicated two previously suggested associations with the

disease, MC1R and TYR. In addition to hits near these two genes,

a locus flanking the familial melanoma susceptibility locus

CDKN2A was identified. The second study demonstrated that

methylthioadenosine phosphorylase (MTAP), a gene adjacent to

CDKN2A, and another locus encompassing PLA2G6 (a member of

the phospholipase A2 gene family) both showed an association

with melanoma risk. Interestingly, mutations in the gene encoding

the phospholipase PLA2G6 can cause parkinsonism [71].

PLA2G6 is also associated with lung cancer susceptibility [72].

The combination of these accumulating epidemiologic and genetic

linkages between melanoma and PD suggest a need for more

mechanistic/biological work in this area.

Notably, no major known cancer gene was among the

combination of genetic variants identified as risk factors for

neurodegenerative disorders. In fact, recent studies from GWAS of

AD and PD have mainly identified genes principally implicated in

protein accumulation and the complement cascade of the immune

system [73].

Post-Translational Modifications—Strongly
Implicated in Cancer, with an Emerging Role in
Neurodegeneration?

Post-translational modifications also play a role in the

association between cancer and neurodegeneration. For example,

protein alterations that predispose the cell toward cell death might

lead to a decreased risk of cancer and an increased risk of

neurodegeneration, whereas conditions that favour cell growth

might lead to an increased risk of cancer and a decreased risk in

neurodegeneration [74–77]. Indeed, the same molecules are often

used for different purposes in the control of cell division, cell

differentiation, and cell death. Depending on whether the cell is an

actively dividing or a post-mitotic neuron, responses to alterations

in these molecules and pathways may differ, ultimately leading to

either cancer or neurodegeneration (for a comprehensive overview

of the genes implicated in neurodegeneration and cancer, see

Table 1).

Many proteins when abnormally expressed or aberrantly

regulated have been linked to cancer or neurodegeneration; in

particular, proteins implicated in cell cycle regulation [75]. For

example, many human cancers have lost the function of p53, a key

tumour suppressor transcription factor playing an important role

in cell cycle arrest in response to DNA damage and apoptosis [33–

37]. Increasing evidence supports the contribution of transcrip-

tional inhibition to neurotoxicity of DNA damage [78]. Interest-

ingly, p53 is associated with several neurodegenerative disorders,

including HD, AD, and PD [35,37]. P53 protein can regulate

huntingtin (htt) expression at transcriptional level [79]. Moreover,

p53 provides strong protection from neurotoxicity associated with

the mutant htt with expanded polyglutamine in HD fly and mouse

models [80]. The PD-associated protein parkin can repress p53

transcriptional activity that is impaired by the PARK2 mutations

associated with PD [81,82]. Finally, p53 regulates and is regulated

by AD-associated proteins such as the members of the c-secretase

complex [83]. A recent review discusses the role of p53 as a

potential candidate that may explain the inverse association

between AD and cancer [84]. It would be interesting to determine

whether patients with Li-Fraumeni syndrome, characterised by

germline mutations in the p53 gene [85], have an altered risk for

neurodegeneration. Cancer-related proteins can cause neurode-

generation when abnormally expressed or regulated and the

opposite is also true. A number of genes associated with

neurodegeneration were investigated in cancer research before

their role in neurodegeneration was identified, but whether these

genes are true oncogenes or tumour suppressors remains to be

proven. For example, DJ-1 was identified as an oncogene before it

was linked to autosomal recessive PD [86,87]. This gene was

initially cloned as a cMyc interactor. It is expressed at high levels

in lung and prostate cancer biopsies and in the sera of breast

cancer patients [88–90]. DJ-1 was shown to suppress the function

of the tumour suppressor PTEN [91], a gene shown to induce

PINK1 when overexpressed [92]. However, DJ-1 showed a weak

transforming activity by itself, throwing into doubt its oncogenic

function [86].

Protein kinases, when abnormally expressed or dysregulated,

can lead to cancer. Because of the key apical role of kinases in the

control of key signal transduction networks that impact normal

cellular physiology and pathological conditions, the development

of small molecule kinase inhibitors as potential cancer therapeutics

is an area of intense research. A subset of these agents target CDK

activity. Interest in the therapeutic potential of CDK inhibitors has

expanded to include neurodegenerative diseases [93]. Specifically,

there is growing evidence suggesting that CDK5, an important

modulator of neuronal activity and a critical player in a number of

cancers, is involved in various physiological roles within the central

nervous system and a number of neurodegenerative disorders such

as AD, ALS, HD, and PD [94]. Interestingly, variations in the

CDK5 gene are associated with AD [95]. Finally, as a result of their

putative kinase function, PINK1 and LRRK2 are attractive

potential targets in the treatment of PD and cancer even though

their potential influence in tumour growth remains mostly indirect

and suggestive thus far (see Table 1; [1,96,97]).

Challenges for the Future

Although many epidemiologic studies have found a relationship

between cancer and neurodegeneration, in particular in PD, the

results have been inconsistent. Variations in the design, methods,

and quality of the studies on cancer risk among patients with PD

have made it difficult to ascertain the link between the two

disorders. In the next section, we discuss the means of exploring

this link in order to accelerate progress in the next few years. Our

understanding of the control of signalling pathways is further

advanced in cancer studies compared to neurodegeneration. As a

result, many small molecule inhibitors, such as histone deacetylase

inhibitors and kinase inhibitors, have been approved as anticancer

agents or are currently being tested in clinical trials [98]. Thus,

discoveries in cancer research are likely to provide a solid base

upon which scientists will study the pathophysiology of neurode-

generative diseases.

The results of the many epidemiologic studies that have found

patients with a neurodegenerative disease to be associated with a

modified incidence of cancer have varied in their consistency.

Diversity in the design and quality of the studies exploring cancer

risk in patients with neurodegenerative disease has made it difficult

to confirm the relationship between the two diseases with

certainty. The GWAS approach has effected a step change in

human genetic research by linking a number of variants to

complex diseases. Each variant robustly linked to a disease offers a

Cancer and Neurodegeneration
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possible route to unravelling the molecular pathways associated

with the disease. GWAS have been performed for most cancers

and neurodegenerative disorders; a catalog of published GWAS is

available online at http://www.genome.gov/. However, the

results of GWAS have also been variable [73], and it is likely

that much larger epidemiologic and genetic studies and meta-

analysis will be required to determine if there is a real association

between cancer and neurodegeneration. A quantitative analysis of

several independent studies has confirmed the overall lower cancer

risk ratio among patients with PD [99].

Although the variants that have been identified thus far confer

only a small risk of the disease, identifying additional variants that

contribute to the pathogenesis of the disease is likely to help the

scientific community to move forward in understanding the link

between these two disorders. With this in mind, a second

generation of GWAS will be performed using new chips targeting

Table 1. Genetic determinants at the interface of cancer and neurodegeneration.

Gene Function Role in Neurodegeneration Role in Cancer

a-synuclein (PARK1/4) Unclear Gain of function leads to PD [104]. Main component
of Lewy bodies in PD [105].

a-synuclein is aberrantly expressed and
methylated in cancer [106].

PINK1 (PARK6) Kinase Loss of function leads to PD [50]. Loss of PINK1
functions leads to mitochondrial deficits.

Somatic mutations in cancer (COSMIC
Web site). Tumour suppressor? Induced
by PTEN [92].

DJ-1 (PARK7) Unclear Loss of function leads to PD [87]. DJ-1 might act
as a neuroprotective oxidative stress sensor.

Oncogene [86]. Regulates negatively
PTEN. Over-expression in several tumours.

LRRK2 (PARK8) Kinase, GTPase Gain of function leads to PD [51,52]. Enzymatic
activities thought to play key role in disease [105].

Somatic mutations in cancer (COSMIC
Web site). Oncogene?

ATP13A2 (PARK9) ATPase Loss of function leads to PD [107]. May alter
autophagic lysosomal function.

ALP plays an important role in cancer.

PLA2G6 (PARK14?) Phospholipase A2 Mutations lead to infantile neuroaxonal dystrophy
(INAD), idiopathic neurodegeneration with brain iron
accumulation (NBIA) and dystonia-
parkinsonism [71].

PLA2G6 was identified as a risk factor for
melanoma [69].

Tau (MAPT) Microtubule-associated protein Mutations in Tau lead to AD and FTDP-17 [105,108]
Tau is the major component of neurofibrillary
tangles in AD.

Reduced expression in several tumours.

APP/PS1,2 Unclear Gain of function leads to AD type [109]. Mutations
in APP and the presenilins increases production
of Ab, which is the main component of
senile plaques in AD.

APP is overexpressed in acute myeloid
leukemia patients with complex
karyotypes [110].

SOD1 Superoxide dismutase Gain of function leads to ALS. Mutations
thought to cause cell death via aggregation
and oxidative damage [111,112].

Role in breast cancer? [113]

Huntingtin Unclear Gain of function leads to HD [114].

Parkin (PARK2) E3 ubiquitin ligase Loss of function leads to PD [40]. Parkin enzymatic
activity is thought to play a key role in disease.
Loss of parkin function leads to mitochondrial
deficits [115,116].

Tumour suppressor [46].

ATM Kinase (PI3K) Mutations in the ATM gene cause ataxia-
telangiectasia [30]. ATM inactivation leads
to cerebellar neuron loss.

Tumour suppressor. ATM mutations
carriers at increased risk of developing
cancer, especially breast cancer. Role in
cell cycle and DNA damage.

CDK5 Kinase CDK5 can phosphorylate Tau [117] and
parkin [118]. Also is associated
with AD [95].

Somatic mutations in cancer.

p53 Transcription factor Functional link between p53 and parkin,
Ab and APP [83].

Tumour suppressor [33].

PTEN Phosphatase Functional link between PTEN and PINK1,
parkin and DJ-1 [119].

Tumour suppressor, mutated in sporadic
and inherited tumours [120].

mTOR Kinase May play a role in neurodegeneration
through inhibition of autophagy.

Autophagy can be both oncogenic as
well as tumour suppressive.

TSC1/TSC2 Vesicular transport May play a role in neurodegeneration
through mTOR-dependant autophagy.

Tumour suppressors [121].

Common factors and overlapping pathways can be identified in the progression of both cancer and neurodegeneration. A number of molecules genetically associated
with these diseases are kinases and/or play a role in apoptosis, cell cycle, and DNA repair. Protein degradation pathways are often disturbed in both cancer and
neurodegeneration. Mitochondrial dysfunction and oxidative stress are also shown to cause both diseases. Finally, the autophagic lysosomal pathway is increasingly
recognised as playing a major role in the physiopathological mechanisms associated with both the disorders. Importantly, all these processes are regulated during
aging, the first risk factor for both cancer and neurodegeneration.
In bold—Strong genetic association with neurodegeneration.
In italic—Strong genetic association with cancer.
In bold and in italic—Strong genetic association with both cancer and neurodegeneration.
doi:10.1371/journal.pgen.1001257.t001
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variants throughout the genome at even lower frequencies.

Additionally, as sequencing technology becomes cheaper, an

explosion of targeted gene-sequencing studies looking for rarer risk

variants is to be expected. The use of approaches such as array-

based comparative genomic hybridisation, high-throughput se-

quencing, and transcriptome analysis has already enabled the

identification of common variants for cancer and neurodegener-

ation, for example PARK2 in cancer [46].

The next generation of sequencing is also likely to help with the

understanding of the link between cancer and neurodegeneration.

Exome sequencing may represent only an intermediary step before

whole-genome sequencing becomes widely available. However,

this technology may still be able to shed light on important coding

mutations in these disorders. It is important to note that this

approach can miss potentially important non-coding changes (e.g.,

regulatory regions or miRNAS), which will require the systematic

approach offered by whole-genome sequencing. Some major

cancer genome screening projects aim to eventually sequence the

full genomes of thousands of tumour samples and those of people

from whom the tumours were taken. Currently, most laboratories

investigating these diseases are carrying out exome sequencing,

although whole-genome sequences of a patient with acute myeloid

leukaemia have already been obtained [100].

Finally, it is becoming increasingly clear that a multitude of

complex and interconnected epigenetic modifications such as

miRNAs, DNA acetylation, and DNA methylation can conspire

with genetic alterations in disease pathogenesis [101]. As a result,

methodologies like genome-wide promoter DNA methylation

profiling could reveal specific patterns that are associated with the

disease [102].

Conclusion

Both cancer and neurodegeneration are thought to be the result

of the interaction of genetic and environmental factors [103]. Age

is the single most important risk factor for both cancer and

neurodegeneration and, although the exact mechanisms of aging

are not yet completely defined, age is likely to play an important

role in the link between the two disorders. Both cancer and

neurodegeneration are also characterised by the contribution of

the inheritance of mutated genes. Research showing that cancer

and neurodegenerative disorders share some of the same genes

Figure 1. Common pathways to cancer and neurodegeneration? An illustration of some of the genes that are linked to cancer and
neurodegeneration, and the crosstalk plus overlap between them. Although the links between genes involved in the individual disorders themselves
are not yet completely clear (for example, there is evidence that there may be several parallel pathways leading to cell loss in the substantia nigra and
the clinical symptom of parkinsonism), there is an intriguing picture emerging of fundamental links between cell proliferation and cell death. ALP,
autophagy-lysosome pathway; UPS: ubiquitin-proteasome system.
doi:10.1371/journal.pgen.1001257.g001
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and molecular mechanisms strengthens the idea that individuals

affected by a neurodegenerative disease may have a decreased risk

of some cancers. Despite a number of intriguing pointers, little is

known about the genetic association between cancer and

neurodegeneration. Although a large number of genes have been

implicated in the genesis of cancer and neurodegeneration, only

two, parkin and ATM, have been shown to strongly overlap

(Figure 1). Given the large number of signalling molecules that

crosstalk in multiple pathways, one cannot exclude that these

overlaps could be coincidental. Further, large genetic and

epidemiological studies looking at cancer incidence in the

population afflicted with neurodegenerative disease (and vice

versa) will be required to find putative new genes at the interface of

the two diseases and to ascertain that the genetic link between

these two disorders is not coincidental. Unravelling the precise

molecular processes that may be involved in both disorders is likely

to be enlightening. Most degenerative diseases of the brain are

incurable and the study of tissue from the brains of people with

significant neurodegeneration should be approached with caution

because the neuronal cells that are dysregulated and likely to be

most informative are already dead. However, cancer research has

been extremely prolific over the past two decades, and one could

imagine that research in neurodegeneration will benefit from

breakthrough studies in cancer. Therefore, the extensive thera-

peutic developments in cancer research may allow the identifica-

tion of prognostic markers for cancer and neurodegeneration that

could result in improved treatments for both disorders.
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