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Abstract

Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple
chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via
suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of
two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the
DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These
DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI–resistant EJ
products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM
causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM
disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF.
We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-
deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We
found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the
regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to
limit incorrect end utilization during c-NHEJ.

Citation: Bennardo N, Stark JM (2010) ATM Limits Incorrect End Utilization during Non-Homologous End Joining of Multiple Chromosome Breaks. PLoS
Genet 6(11): e1001194. doi:10.1371/journal.pgen.1001194

Editor: Nancy Maizels, University of Washington, United States of America

Received June 1, 2010; Accepted October 1, 2010; Published November 4, 2010

Copyright: � 2010 Bennardo, Stark. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH/NCI grant RO1CA120954. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jstark@coh.org

Introduction

Recent sequencing of cancer genomes has revealed a prevalence

of chromosome rearrangements, including interchromosomal

translocations and intrachromosomal rearrangements [1]. These

rearrangements could arise from end joining (EJ) of incorrect ends

of multiple chromosomal double-strand breaks (DSBs). Such EJ

could be performed by classical non-homologous end joining (c-

NHEJ) factors that mediate V(D)J Recombination (e.g. Ku70/

Ku80, XLF, DNA-PKcs, and Xrcc4/Lig4), or by Alternative-EJ

(alt-EJ) pathways that are independent of these factors [2,3]. We

suggest that identifying the mechanisms that are important for the

fidelity of end utilization during c-NHEJ and/or alt-EJ will

provide insight into maintenance of chromosome stability and

tumor suppression.

Factors that reduce incorrect end utilization during EJ are likely

to be important for suppressing chromosome rearrangements.

Mutations in the ATM kinase, found in patients with the genetic

disorder Ataxia-Telangiectasia (A-T), cause elevated levels of

chromosomal abnormalities, along with a predisposition for cancer

[4]. Part of the role of ATM in suppressing chromosomal

abnormalities is likely related to its key function during the DNA

Damage Response (DDR). Without the DDR, cells fail to activate

cell cycle checkpoints following DNA damage, and are more likely

to undergo DNA replication and/or mitosis with broken chromo-

somes, which could lead to rearrangements [5]. Also important for

the DDR is Nbs1, which is a member of the Mre11-complex

(Mre11-Rad50-Nbs1) and is important for ATM activation [6,7].

Patients with mutations in the Nbs1 gene (Nijmegen Breakage

Syndrome), like A-T patients, show cancer predisposition associated

with elevated chromosomal abnormalities [8].

ATM and Nbs1 localize to sites of DSBs, and are important for

their repair [6,9]. Both ATM and Nbs1 are important for cell survival

following ionizing radiation (IR)-induced DSBs [4,8], and promote

homologous recombination [10]. Also consistent with a role in repair,

a subset of IR-induced DSBs persist in ATM-deficient cells [11].

Persistent breaks have also been observed in ATM-deficient

lymphocytes during V(D)J recombination and class switch recombi-

nation (CSR) [12–15]. ATM and Nbs1 affect the repair fidelity of

certain V(D)J recombination substrates, in which the Rag1/2

nuclease forms two types of DSB ends: hairpin coding-ends and

blunt signal-ends [13,16,17]. Correct end utilization in this context

involves pairing coding-coding and signal-signal ends during NHEJ.

When Rag1/2 cleavage sites are placed in an inverted orientation,

both ATM and Nbs1 have been shown to suppress hybrid signal-

coding EJ products [13,16–18]. Thus, these factors are important for
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faithful repair of Rag1/2-induced DSBs. Consistent with this notion,

ATM-deficient lymphocytes show elevated chromosome rearrange-

ments resulting from V(D)J recombination [19,20]. ATM and Nbs1

also promote efficient CSR and suppress translocations between IgH

and c-myc during this process [9,12,21–25]. Similarly, the ATM

orthologue in yeast (TEL1) is important to suppress translocations in

favor of intrachromosomal EJ [26].

Thus, we considered the possibility that ATM and/or Nbs1 play a

role in correct end utilization during EJ repair of multiple

chromosomal DSBs in mammalian cells, outside of the programmed

rearrangements during lymphocyte development. For this, we

monitored EJ products following the induction of two tandem DSBs,

which can be repaired using either correct ends (Proximal-EJ) or

incorrect ends (Distal-EJ). We find that disruption of ATM or Nbs1

causes elevated Distal-EJ, but not Proximal-EJ. Furthermore, the

elevation of Distal-EJ caused by ATM-disruption is dependent on the

c-NHEJ factors DNA-PKcs, Xrcc4, and XLF. In addition, to

examine the role of these factors on end processing, we analyzed

Distal-EJ repair junctions. We find that ATM and Xrcc4 limit

extensive deletions during EJ, whereas Nbs1 and DNA-PKcs

promote short deletions. Thus, the role of individual factors during

end processing does not directly correlate with their roles during end

utilization. In summary, we suggest that ATM is important to limit

incorrect end utilization during repair by c-NHEJ.

Results

Reporter for Distal-EJ versus Proximal-EJ of two tandem
DSBs

We investigated incorrect and correct end utilization during EJ

repair of two tandem DSBs. In this context, incorrect end

utilization involves the joining of distal DSB ends (Distal-EJ), as

this repair event leads to an intrachromosomal deletion between

the two DSBs. In contrast, correct end utilization maintains

proximal ends during repair (Proximal-EJ). We developed a

method to measure Proximal-EJ and Distal-EJ repair of two

tandem chromosome breaks generated by the meganuclease I-

SceI, using the reporter EJ5-GFP (Figure 1) [27,28]. In this

reporter, a promoter is separated from the rest of a GFP

expression cassette by 1.7 kb (puro cassette) that is flanked by two

tandem I-SceI sites. Following I-SceI expression, Distal-EJ places

the promoter adjacent to the rest of the GFP-expression cassette,

such that Distal-EJ can be quantified as the percentage of GFP+
cells [27,28].

Proximal-EJ is difficult to measure with I-SceI expression alone,

since EJ that restores the I-SceI site cannot be differentiated from

the uncut reporter [27]. Thus, we adapted this reporter system to

enable the quantification of I-SceI-resistant Proximal-EJ products

by co-expressing I-SceI with a non-processive 39 exonuclease

(Trex2). As described previously, expression of Trex2 appears to

cause partial degradation of the 4 nt. 39 cohesive ends generated

by I-SceI, such that co-expression of I-SceI with Trex2 leads to a

high level of I-SceI-resistant Proximal-EJ products [27]. Thus,

Proximal-EJ can be quantified by loss of the I-SceI site through

PCR amplification across the 39 I-SceI site, and subsequent I-SceI

digestion analysis (Figure 1, primers p1, p2). In this assay we

determine the percentage of I-SceI-resistant events by quantifying

the relative intensity of the I-SceI-resistant and I-SceI-sensitive

products within the same sample. This approach has been

described previously for other I-SceI assays [29], and confirmed

here to be quantitative within at least two-fold (Figure S1A).

Figure 1. Measuring end utilization during EJ repair of two
tandem DSBs. Shown is the EJ5-GFP reporter, which contains a GFP
coding sequence that is separated from its promoter by a puromycin
resistance gene (puro) that is flanked by two tandem I-SceI sites. We
express I-SceI to induce two DSBs with four nt. 39 overhangs, and co-
express Trex2 to cause partial degradation of these overhangs, leading
to I-SceI-resistant EJ products. Shown on the left is the Distal-EJ repair
product that causes the deletion of puro and restoration of the GFP+
cassette, which can be measured by FACS analysis. Also depicted are
two primers (p3, p2) for analysis of Distal-EJ repair junctions. Shown on
the right is the Proximal-EJ product, which is quantified by I-SceI
digestion analysis of an amplification product that spans the 39 I-SceI
site (primers p1, p2). This approach enables quantification of two
different I-SceI-resistant EJ products from the same sample: Distal-EJ
(%GFP+ cells) and Proximal-EJ (% I-SceI-resistant product). Proximal-EJ is
much more efficient than Distal-EJ in WT cells, as represented by the
heavier arrow.
doi:10.1371/journal.pgen.1001194.g001

Author Summary

When a chromosome is fragmented by multiple double-
strand breaks (DSBs), each set of DSB ends needs to be
matched correctly during repair to avoid chromosomal
rearrangements. Considering the case of two tandem
DSBs, if the ends of different breaks (incorrect ends) are
used for repair, loss of the intervening DNA can occur.
Alternatively, when the ends of a single DSB (correct ends)
are used for repair, the original order of the chromosome is
restored. Deficiencies in the factors ATM and Nbs1, as seen
in patients with Ataxia Telangiectasia and Nijmegen
Breakage Syndrome, respectively, have been associated
with elevated chromosome rearrangements and cancer
predisposition. Hence, we examined the possibility that
these factors may be important for the usage of correct
ends during repair of multiple DSBs. For this, we
developed a reporter system to examine end usage during
repair of two tandem DSBs in mammalian chromosomes
and found that disruption of ATM or Nbs1 leads to
elevated usage of incorrect ends. Furthermore, we found
that the role of ATM during end usage depends on a repair
pathway called classical non-homologous end joining (c-
NHEJ). We suggest that ATM suppresses genome rear-
rangements via limiting incorrect end utilization during c-
NHEJ.

ATM and End Utilization
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Using this assay system, Proximal-EJ has been shown to be

substantially more efficient than Distal-EJ [27]. To confirm this

finding, we co-expressed I-SceI with Trex2 in a WT mouse ES cell

line with a chromosomally integrated copy of EJ5-GFP [28], and

analyzed the EJ repair products, as described above (Figure 1).

From these experiments, we observed low levels of Distal-EJ (0.2%

GFP+ cells, Figure 2A), and much higher levels of Proximal-EJ

(13% I-SceI-resistant p1,p2 amplification products, Figure 2B). In

contrast, following transfection of I-SceI without Trex2, we found

no detectable I-SceI-resistant Proximal-EJ products (Figure 2B).

These results indicate that Proximal-EJ predominates following

Trex2 and I-SceI co-expression, such that this experimental

approach may uncover factors important for correct end

utilization that are otherwise masked from experiments using I-

SceI expression alone.

Importantly, the Distal-EJ products resulting from co-expression

of I-SceI and Trex2 are also completely I-SceI-resistant [27]. We

have confirmed this notion here, using GFP+ sorted samples from

the aforementioned transfection experiment (Figure 2C, Figure

S1B). Therefore, this method can be used to measure the

frequency of two different I-SceI-resistant products (Distal-EJ

and Proximal-EJ) from a single sample (Figure 1).

ATM-disruption causes elevated Distal-EJ but not
Proximal-EJ

We considered the possibility that ATM may affect end

utilization during EJ, as this factor is important for chromosome

stability [4]. To test this hypothesis, EJ5-GFP was chromosomally

integrated into ATM2/2 mouse ES cells [30], and analyzed in

parallel with the WT ES cell line described above. Furthermore,

Figure 2. ATM suppresses Distal End Utilization. EJ5-GFP was integrated into wild type (WT) and ATM2/2 mouse ES cells. These lines were co-
transfected with expression plasmids for I-SceI and Trex2, and treated with ATMi or DMSO (vehicle). Subsequently, frequencies of Distal-EJ and
Proximal-EJ were determined as described in Figure 1. A. ATM suppresses Distal-EJ. Shown (left) are two representative FACS profiles for WT mouse ES
cells transfected and treated with DMSO or ATMi, as described above. Also shown (right) are the mean GFP+ frequencies (Distal-EJ) for WT and ATM2/2

cells transfected and treated with DMSO or ATMi, as described above (N = 6, error bars denote s.d.). (*) statistical difference between DMSO and ATMi
treatments of the same cell line (p,0.0001), ({) statistical difference between WT and mutant ES cell lines under the same treatment conditions
(p,0.0001). B. Proximal-EJ is modestly reduced by ATMi treatment of WT cells, but is the same for WT and ATM2/2 cells. Formation of an I-SceI-resistant
EJ product at the 39 I-SceI site (Proximal-EJ) was determined by amplification (primers p1, p2) of genomic DNA samples from the transfection
experiments shown in A, followed by I-SceI digestion analysis. Shown (left) are representative samples of uncut (U) and I-SceI-digested (S) products
following co-transfection of expression vectors for I-SceI and Trex2 (S+Trex2), or co-transfection of an expression vector for I-SceI with empty vector
(S+EV). Also shown (right) are the mean Proximal-EJ frequencies from the identical transfection samples shown in A (N = 6, error bars denote s.d.). (*) as in
A (p = 0.0007). C. Co-expression of I-SceI and Trex2 leads to Distal-EJ products that are I-SceI-resistant. The Distal-EJ junctions were amplified from
genomic DNA of sorted GFP+ cells (primers p2, p3) from a representative of each transfection described in A. Shown are uncut (U) and I-SceI-digested
(S) amplification products from these samples. D. Disruption of ATM leads to elevated Distal End Utilization. Distal End Utilization was calculated by
dividing Distal-EJ (% GFP+ cells) by Proximal-EJ (% I-SceI resistant p1, p2 product) for individual samples of the transfections described in A. Mean values
are depicted relative to the mean Distal End Utilization value for WT DMSO-treated cells (N = 6, error bars denote s.d.). (*) as in A (p,0.0001). ({) as in A
(p#0.0035).
doi:10.1371/journal.pgen.1001194.g002

ATM and End Utilization
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during co-expression of I-SceI and Trex2, we treated the cells with

either a highly-specific ATM kinase inhibitor (ATMi) [31] or

vehicle (DMSO). Subsequently, the percentage of GFP+ cells

(Distal-EJ) was measured by FACS analysis. From these

experiments, we found that ATMi treatment of WT cells caused

an increase in Distal-EJ, as compared to DMSO treated cells (3.4-

fold, p,0.0001, Figure 2A). Similarly, ATM2/2 cells exhibited

higher levels of Distal-EJ as compared to WT cells (7.4-fold,

p,0.0001, Figure 2A). Finally, treatment of the ATM2/2 cells

with ATMi had no effect on Distal-EJ, which is consistent with the

high-specificity of ATMi [31]. These data indicate that ATM

kinase activity is important for the suppression of Distal-EJ.

To measure Proximal-EJ, we isolated genomic DNA from the

same samples used in the FACS analysis, and determined the

percentage of I-SceI-resistant amplification products, as described

above (Figure 1, primers p1, p2). For both WT and ATM-deficient

cells, we found that co-expression of I-SceI and Trex2 results in a

significant level of I-SceI-resistant Proximal-EJ products, which

are not detectable from expression of I-SceI alone (S+Trex2 versus

S+EV, respectively, Figure 2B, Figure S1C). Regarding frequen-

cies, we found that WT and ATM2/2 cells exhibited equivalent

levels of Proximal-EJ (Figure 2B). ATMi treatment caused a

modest reduction in Proximal-EJ in WT cells (Figure 2B, 1.5-fold,

p = 0.0007), but not in ATM2/2 cells. Thus, loss of ATM kinase

activity, but not complete disruption of ATM, appears to modestly

reduce Proximal-EJ. Importantly, neither ATMi nor genetic

disruption of ATM caused an increase in Proximal-EJ.

We then directly compared Distal-EJ and Proximal-EJ values to

determine the relative frequency of incorrect end utilization (Distal

End Utilization). First, we confirmed that the Distal-EJ products

(GFP+) formed following I-SceI and Trex2 co-expression were I-

SceI-resistant for all cell types. We sorted GFP+ cells, isolated

genomic DNA, amplified the Distal-EJ products (Figure 1, primers

p2, p3), and performed I-SceI digestion analysis. We found that

Distal-EJ products were completely I-SceI-resistant for both WT

and ATM-deficient cells following I-SceI and Trex2 co-expression,

unlike Distal-EJ products resulting from transfection with I-SceI

alone (Figure 2C, Figure S1B). We then quantified Distal End

Utilization by calculating the ratio of Distal-EJ versus Proximal-EJ

for individual samples. From this analysis, we found that ATMi-

treatment of WT cells led to a substantial increase in Distal End

Utilization in comparison to DMSO treated cells (Figure 2D, 5.3-

fold, p,0.0001). Similarly, ATM2/2 cells exhibited a striking

increase in Distal End Utilization, in comparison to WT cells

(Figure 2D, 8.7-fold, p,0.0001). Last, ATMi-treatment of ATM2/2

cells did not affect Distal End Utilization.

In the above experiments, ATM appears to suppress Distal-EJ

without promoting Proximal-EJ to a similar degree. However, in

all conditions, Proximal-EJ is predominant (e.g. 13% for WT,

11.7% for ATM2/2) over the minor Distal-EJ product (e.g. 0.2%

for WT, 1.6% for ATM2/2). Thus, Distal-EJ is relatively

infrequent, as compared to Proximal-EJ. Accordingly, the fold-

increase in Distal-EJ caused by ATM-disruption would not

necessarily be matched by a similar fold-decrease in Proximal-

EJ. Considering one other detail of these experiments, we note that

determining the effect of ATMi on Distal End Utilization after 6

days of culturing post-transfection was not statistically different

from the 3 days protocol described in Figure 2 (Figure S1D). This

finding indicates that 3 days is a reasonable end-point for these

experiments.

We next considered the possibility that ATM might inhibit the

formation of both I-SceI-induced DSBs, which would limit Distal-

EJ. For this, we used clonal analysis to determine the frequency of

I-SceI-resistant Proximal-EJ products at both tandem I-SceI sites.

Specifically, we expressed I-SceI and Trex2 in WT ES cells treated

with ATMi or DMSO. Following the usual 3 days of culturing, we

plated transfected cells at low density to isolate single clones. For

individual clones, we determined whether the 59 and/or 39 I-SceI

recognition sites had been lost, by performing PCR amplification

and I-SceI digestion analysis. From this experiment, we found that

clones with loss of either the 59 or 39 I-SceI site frequently lost the

second site (Figure S2A; WT DMSO treated cells: 19 clones lost

both 59 and 39 sites, 18 clones lost only one of the sites). Thus,

cutting at two tandem I-SceI sites, followed by EJ that leads to I-

SceI-resistant products at both sites, appears efficient in WT cells.

Furthermore, ATMi treatment did not cause an increase in clones

that lost both I-SceI sites (Figure S2A; WT ATMi treated cells: 9

clones lost both 59 and 39 sites, 25 clones lost only one of the sites).

These results indicate that ATM does not suppress the formation

of tandem I-SceI-induced DSBs. However, we note that these

experiments do not address potential effects of ATM on the

probability that both DSBs persist simultaneously (see break

persistence model in Discussion).

We also performed the ATMi analysis in a distinct cell type: a

transformed human embryonic kidney cell line (HEK293, Figure

S2B) that contains a chromosomally integrated EJ5-GFP reporter

[28]. Using this HEK293-EJ5-GFP cell line for the same

transfection experiment described for ES cells, we found that

ATMi treatment caused elevated levels of Distal-EJ (2.1-fold,

p,0.0001), but did not affect Proximal-EJ, leading to an increase

in Distal End Utilization (Figure S2B, 2.2-fold, p,0.0001).

Combined, these findings indicate that ATM is important for

limiting Distal End Utilization during EJ repair of multiple DSBs

in both mouse ES and human HEK293 cells.

ATM limits Distal-EJ only in c-NHEJ proficient cells
We next tested whether the increase in Distal-EJ that is caused

by ATM-disruption involves c-NHEJ factors, specifically DNA-

PKcs, Xrcc4, and/or XLF. DNA-PKcs is recruited to DSBs by the

Ku70/Ku80 heterodimer, and can stabilize the two ends of a DSB

prior to ligation by the Xrcc4/Lig4 complex, which is promoted

by XLF [2]. We integrated EJ5-GFP into DNA-PKcs2/2 [32],

Xrcc42/2 [33], and XLF2/2 [34] ES cells, and analyzed EJ

efficiency in these cell lines following expression of I-SceI and

Trex2, along with ATMi or DMSO treatment, as described above

for WT cells. From these experiments (Figure 3A), we found that

ATMi treatment did not affect Distal-EJ in DNA-PKcs2/2 and

XLF2/2 cells, and caused a decrease in Distal-EJ in Xrcc42/2 cells

(1.9-fold, p,0.0001), all of which are distinct from the 3.4-fold

increase observed in WT cells. Importantly, these results indicate

that DNA-PKcs, Xrcc4, and XLF are essential for the increase in

Distal-EJ caused by ATM-disruption.

Regarding overall frequencies of EJ in ATM-proficient cells, we

observed some differences between WT versus DNA-PKcs2/2,

Xrcc42/2, and XLF2/2 cells. For instance, we found that I-SceI-

resistant Proximal-EJ products were below the level of detection

for both the DNA-PKcs2/2 and XLF2/2 cells (,2%, Figure 3B),

similar to previous findings in Xrcc42/2 cells [27] that we have

repeated here (Figure 3B). These results indicate that DNA-PKcs,

Xrcc4, and XLF are essential for significant levels of Proximal-EJ

of DSB ends processed by Trex2. Consistent with these results,

DNA-PKcs, Xrcc4/Ligase IV, and XLF were previously shown to

promote NHEJ of non-cohesive DSB ends in vitro [35]. Regarding

Distal-EJ frequencies compared to WT cells, DNA-PKcs2/2 and

Xrcc42/2 cells showed a reduction (1.6-fold, p,0.0001, and 1.3-

fold, p = 0.0041, respectively, Figure 3A), whereas XLF2/2 cells

exhibited an increase in Distal-EJ (1.8-fold, p = 0.0014, Figure 3A).

Unfortunately, since Proximal-EJ is below the limit of detection in

ATM and End Utilization
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the c-NHEJ-deficient cells, it is not possible to quantify Distal End

Utilization for these cell lines. Nevertheless, Proximal-EJ is

substantially reduced in these cells (,2%) compared to WT cells

(13%), whereas Distal-EJ levels in these cells are within 2-fold of

WT cells. These results indicate that DNA-PKcs, Xrcc4, and XLF

are important for correct end utilization.

We then sought to determine whether the EJ events measured

with EJ5-GFP may be mechanistically distinct from c-NHEJ

during V(D)J recombination. For this, we examined the c-NHEJ

factor Artemis: a nuclease that is important for hairpin opening

during V(D)J recombination [2]. We integrated the EJ5-GFP

reporter into Artemis2/2 ES cells [36], and performed the

transfection analysis described above. In contrast to the above c-

NHEJ factors, Artemis2/2 cells showed no clear distinction from

WT cells on the frequencies of Distal-EJ, Proximal-EJ, or Distal

End Utilization, nor on the effect of ATMi treatment on these EJ

events (Figure 3). These results indicate that Artemis is not

involved in these EJ processes, which provides a contrast to the

findings with DNA-PKcs, Xrcc4, and XLF. These findings also

confirm the notion that repair of the EJ events measured here

show mechanistic distinctions from the hybrid coding-signal joints

of V(D)J recombination substrates, which are also elevated in

ATM-deficient cells, yet require Artemis [2,18,36].

Nbs1 limits Distal-EJ but not Proximal-EJ, similar to ATM
As Nbs1 is important for activation of ATM following DSBs

[6,7], we considered that this factor might also affect end

utilization. To test this hypothesis, we used an Nbs1-hypomorphic

mouse ES cell line (Nbs1n/h), in which both alleles of the Nbs1 gene

are targeted [37], causing a 5-fold decrease in the level of Nbs1

protein [27]. The Nbs1n/h cell line containing EJ5-GFP was

described previously, and shown to exhibit an elevated level of

Figure 3. The elevation in Distal-EJ caused by ATMi is dependent on DNA-PKcs, Xrcc4, and XLF, but not Artemis. A. Shown are mean
Distal-EJ frequencies for WT, DNA-PKcs2/2, Xrcc42/2, XLF2/2, and Artemis2/2 mouse ES cell lines, each with an integrated EJ5-GFP reporter, which
were transfected and treated with DMSO or ATMi, as described in Figure 2 (N = 6, error bars denote s.d.). (*) statistical difference between DMSO
versus ATMi treatments of the same cell line (p,0.0001), ({) statistical difference between WT and mutant ES cell lines of the same treatment
(p#0.0014). B. Proximal-EJ requires DNA-PKcs, Xrcc4, and XLF, but not Artemis. Shown are representative samples of uncut (U) and I-SceI-digested (S)
p1, p2 amplification products from representative transfections described in A. C. The effect of ATMi on EJ is not distinct between WT and Artemis2/2

cells. Shown (left) are the mean frequencies of Proximal-EJ for the WT and Artemis2/2 transfection experiments described in A (N = 6, error bars
denote s.d.). (*) as in A, p,0.0001 for WT, p = 0.0461 for Artemis2/2. Shown (right) are mean Distal End Utilization values of individual samples relative
to DMSO-treated WT cells (N = 6, error bars denote s.d.). (*) as in A (p,0.0001).
doi:10.1371/journal.pgen.1001194.g003

ATM and End Utilization
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Distal-EJ, compared to WT cells [27]. To determine the role of

Nbs1 on the relative efficiency of Proximal-EJ and Distal-EJ, as

well as the effect of ATMi treatment on these EJ events, we

performed the aforementioned I-SceI/Trex2 experiment using the

Nbs1n/h-EJ5-GFP cell line. We found that Nbs1n/h cells exhibited a

substantial increase in Distal-EJ repair relative to WT cells (5.1-

fold, p,0.0001, Figure 4A). ATMi treatment of the Nbs1n/h cells

caused a modest increase in Distal-EJ (1.4-fold, p = 0.0053,

Figure 4A). Proximal-EJ was equally efficient in WT and Nbs1n/h

cells, and ATMi treatment of the Nbs1n/h cells casued a slight

reduction in the frequency of Proximal-EJ (1.3-fold, p = 0.0156,

Figure 4B). Lastly, Distal End Utilization in Nbs1n/h cells was

higher than in WT cells (4.9-fold, p,0.0001, Figure 4C), and was

enhanced by ATMi treatment (1.8-fold, p = 0.0011, Figure 4C).

Notably, the effect of ATMi on Distal End Utilization in Nbs1n/h

cells (1.8-fold, Figure 4C) is substantially reduced as compared to

the effect in WT cells (5.3-fold, Figure 2D, Figure 4C). In

summary, these data indicate that Nbs1 is important to limit Distal

End Utilization to a similar degree as ATM.

The role of individual factors during Distal-EJ is not
predictive of their effect on end processing

Apart from suppressing Distal End Utilization, we considered

whether ATM and/or Nbs1 might also affect the degree of end

processing during EJ. For this, we cloned Distal-EJ amplification

products from GFP+ sorted cells following I-SceI and Trex2 co-

expression of WT (DMSO and ATMi treated), ATM2/2, and

Nbs1n/h cells (DMSO and ATMi treated), (p3, p2 products shown

in Figure 2C, Figure S1B). For each condition, 30 independent

clones were sequenced to determine the Distal-EJ repair junctions.

As compared to an I-SceI+ Distal-EJ product, we classified the

sequences into five groups: +1 insertion, 1 to 5 nt. deletions, 6 to

9 nt. deletions, 10 to 19 nt. deletions, and $20 nt. deletions

(Figure 5 and Table S1). For WT cells, we found that Distal-EJ

products showed mostly deletions of the I-SceI overhang region

(17/30 with 1 to 5 nt. deletions), and the remaining clones showed

only slightly larger deletions (12/30 with 6 to 9 nt. deletions, 1/30

with a 10 nt. deletion). For both ATMi treated WT cells and

ATM2/2 cells, we found an increase in the frequency of deletions

greater than 9 nt., as compared to DMSO treated WT cells (12/

30 for WT+ATMi, p = 0.0011; 17/30 for ATM2/2, p,0.0001;

compared to 1/30 for WT). In contrast, for Nbs1n/h cells we found

a reduction in clones showing deletions greater than 6 nt., in

comparison to WT cells (1/30 for Nbs1n/h cells, p = 0.0004;

compared to 13/30 for WT). In summary, while ATM and Nbs1

both suppress Distal End Utilization, these factors appear to show

divergent effects on end processing, with ATM suppressing longer

deletions, and Nbs1 promoting short deletions. Notably, for ATMi

treated Nbs1n/h cells we found an increase in clones showing

deletions greater than 9 nts., as compared to either WT or Nbs1n/h

cells (29/30 for Nbs1n/h with ATMi, p,0.0001; compared to 1/30

for WT and 1/30 for Nbs1n/h). This latter result indicates that the

increase in longer deletions caused by ATMi is dominant over the

decrease in short deletions caused by the Nbs1n/h alleles.

The finding that Distal-EJ events in ATMi-treated cells show

longer deletions, yet are promoted by c-NHEJ factors, indicates

that deletion size may not necessarily be predictive of the

involvement of the c-NHEJ pathway. This result is consistent

with previous studies showing that while Xrcc4-deficiency causes

longer deletion EJ products, DNA-PKcs-deficiency does not lead

to elevated deletion sizes [38–41]. To confirm this distinction in

our experiments, we performed the above sequence analysis using

the DNA-PKcs2/2 and Xrcc42/2 cell lines. Namely, we cloned

Distal-EJ amplification products from GFP+ sorted cells following

co-expression of I-SceI and Trex2 in these cell lines (p2, p3

products shown in Figure S1B), and subsequently sequenced 30

clones each (Figure 5, Table S1).

From this analysis, we found that junctions from DNA-PKcs2/2

cells showed fewer deletions greater than 6 nts. in comparison to

WT cells (3/30 for DNA-PKcs2/2, p = 0.0074; compared to 13/30

for WT), along with a number of 1–5 nt. deletions (16/30). Thus,

DNA-PKcs2/2 cells showed a shift towards shorter deletions as

compared to WT cells, similar to the findings of Nbs1n/h cells. The

rest of the DNA-PKcs2/2 junctions were +1 insertions (11/30),

which were not observed in WT cells, but were found in ATM2/2

(9/30) and Nbs1n/h cells (12/30). In contrast, Xrcc42/2 cells show

much more extensive deletions, with all clones showing $20 nt.

deletions (30/30), compared to none with WT cells (p,0.0001).

These results indicate that Xrcc4 is important to limit extensive

deletions during Distal-EJ, whereas DNA-PKcs promotes short

deletions.

Apart from variations in deletion size, use of microhomology

and templated nucleotides are distinct between individual repair

events, but these characteristics also are not necessarily predictive

Figure 4. Nbs1 suppresses Distal-EJ to a similar degree as ATM. A. Distal-EJ is elevated in Nbs1-deficient cells, and ATMi treatment shows a
diminished effect on Distal-EJ in these cells, compared to WT cells. Shown are the mean Distal-EJ frequencies for WT and Nbs1n/h ES cells, each with an
integrated EJ5-GFP reporter, which were transfected and treated with DMSO or ATMi, as described in Figure 2 (N = 6, error bars denote s.d.). (*)
statistical difference between DMSO versus ATMi treatments of the same cell line (p#0.0053), ({) statistical difference between WT and Nbs1n/h cells
of the same treatment (p,0.0001). B. Proximal-EJ is not affected by Nbs1-deficiency. Shown are the mean frequencies of I-SceI-resistant p1, p2
amplification products (Proximal-EJ) for the transfection experiments described in A (N = 6, error bars denote s.d.). (*) as in A, p,0.0001 for WT,
p = 0.0156 for Nbs1n/h. C. Distal End Utilization is elevated in Nbs1-deficient cells, and ATMi treatment shows a diminished effect on Distal End
Utilization in these cells, compared to WT cells. Shown are the mean Distal End Utilization values of individual samples relative to DMSO-treated WT
cells (N = 6, error bars denote s.d.). (*) as in A (p#0.0011), ({) as in A (p#0.0053).
doi:10.1371/journal.pgen.1001194.g004
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of the involvement of c-NHEJ. For instance, only clones from

Xrcc42/2 cells showed any evidence of microhomology greater

than 4 nt. (19/30 show a junction with 6 nt. of microhomology).

The rest of the repair junctions observed in our experiments

showed 0–4 nt. of microhomology, without any clear distinction

between the cell lines. As the mechanistic requirements for limited

microhomology during different EJ pathways is still unclear

[42,43], EJ events with 0–4 nts. of microhomology could be

mediated by c-NHEJ factors or alt-EJ. Similarly, the +1 insertion

events likely involve Family X DNA Polymerases (Pol X), which

also could function during c-NHEJ or alt-EJ events [44]. Though,

in this case, we observe an increase in +1 insertion events in cells

deficient for Nbs1, ATM, and DNA-PKcs, which could reflect an

improved recruitment of Pol X polymerases during EJ.

To summarize the junction analysis, we found that ATM and

Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs

promote short deletions. In contrast, we found that Distal-EJ is

suppressed via ATM and Nbs1, and that the elevated level of

Distal-EJ caused by ATM-disruption requires both Xrcc4 and

DNA-PKcs. These findings indicate that the role of individual

factors during end processing is not predictive of their role during

end utilization.

Discussion

Limiting the use of incorrect ends during EJ repair of multiple

chromosome breaks is likely an important aspect of genome

maintenance, and hence tumor suppression. Using a method for

quantifying end utilization during repair of two tandem DSBs, we

present evidence that ATM and Nbs1 are important to limit Distal

End Utilization. We also present evidence that the increase in

Distal-EJ that is caused by ATM-disruption is dependent on c-

NHEJ factors (DNA-PKcs, Xrcc4, and XLF). We suggest that

ATM and Nbs1 may suppress genome rearrangements not only

through activating the DDR, but also via promoting faithful end

utilization during c-NHEJ. This notion is consistent with

important previous studies showing that ATM supports correct

utilization of hairpin coding ends during V(D)J recombination via

c-NHEJ factors [13,16–20]. Our findings indicate that such a role

for ATM is not limited to Artemis-dependent c-NHEJ of hairpin

ends generated by the Rag1/2 endonuclease, but is also important

for Artemis-independent c-NHEJ repair of multiple DSBs with

open ends. In summary, we suggest that cells that are deficient in

ATM or Nbs1 are more prone to chromosome rearrangements

during c-NHEJ of multiple DSBs.

In addition, we find that c-NHEJ-deficiency does not cause a

substantial effect on Distal-EJ levels in ATM-proficient cells

(within 2-fold of WT, Figure 3A). This finding is consistent with

other studies showing that neither Ku70 nor Xrcc4 are required

for chromosomal translocations that result from repair of multiple

I-SceI-induced DSBs [45–48]. These studies have raised the

possibility that c-NHEJ factors may not play a role in promoting

chromosome rearrangements outside the programmed rearrange-

ments during lymphocyte development. Rather, these studies

suggested that alt-EJ mechanisms might be responsible for such

chromosome rearrangements. However, we have presented

evidence that c-NHEJ factors (Xrcc4, DNA-PKcs, and XLF) can

promote genome rearrangements caused by ATM-deficiency.

Thus, we suggest that c-NHEJ may indeed play a role during

genome rearrangements, but specifically under conditions that

enable incorrect end utilization (e.g. deficient in ATM or Nbs1).

Break persistence versus end tethering
The increase in Distal-EJ versus Proximal-EJ caused by

disruption of ATM (and/or Nbs1) could be due to at least two

mechanisms: increased break persistence and/or defective end

tethering (Figure 6). Considering the former, ATM-disruption

could enhance the persistence of each DSB, thereby increasing the

probability of both DSBs existing simultaneously, leading to more

Distal End Utilization. This model is supported by findings that

DSBs formed during V(D)J recombination in ATM-deficient cells

persist longer, even through multiple cell doublings [12–15].

However, c-NHEJ-deficiency also causes an increase in break

persistence [49], but does not lead to a substantial increase in

Distal-EJ. Thus, not all conditions that lead to elevated break

persistence appear to cause an increase in Distal-EJ. To

summarize the break persistence model, ATM (and/or Nbs1)

could be important to limit the persistence of DSBs, and thereby

reduce the probability that multiple DSBs occur simultaneously,

which would limit the frequency of chromosome rearrangements.

Alternatively, disruption of ATM and/or Nbs1 could cause

defective end tethering, thereby increasing the probability of distal

end synapsis, and hence Distal End Utilization. A role for Nbs1

during end synapsis is consistent with the DNA tethering activity

of the Mre11-complex (Mre11-Rad50-Nbs1) [50–52]. Such

tethering could be important not only for recruitment of the sister

chromatid during homologous recombination, but also for end

synapsis during EJ. ATM could support this tethering function of

the Mre11-complex, as Nbs1 is a target of ATM kinase activity

Figure 5. Discrete roles of individual factors on deletion size during Distal-EJ. ATM and Xrcc4 suppress longer deletions, whereas Nbs1 and
DNA-PKcs promote short deletions. Distal-EJ products were amplified and cloned for sequencing analysis from GFP+ sorted samples following co-
expression of I-SceI and Trex2. Shown is a summary of sequence analysis for WT cells, WT cells treated with ATMi, ATM2/2 cells, Nbs1n/h cells, Nbs1n/h

cells treated with ATMi, DNA-PKcs2/2 cells, and Xrcc42/2 cells. Shown are the numbers of products (out of 30 total, sequences in Table S1) in five
different classifications: +1 insertion (ins.), 1 to 5 nt. deletions (del.), 6 to 9 nt. del., 10 to 19 nt. del., and $20 nt. del.
doi:10.1371/journal.pgen.1001194.g005
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[6,7]. Alternatively, since ATM is important for recruitment of a

number of factors to chromatin to activate the DDR, such factors

could stabilize damaged chromatin [53], and thereby support

faithful end tethering during repair. In a related model, ATM

could regulate the end tethering functions of c-NHEJ factors, since

ATM can phosphorylate XLF [54] and DNA-PKcs [55], the latter

of which can tether DNA molecules in vitro [56]. A role for ATM

during these events is supported by findings that combined loss of

ATM with DNA-PKcs or Lig4 caused substantially elevated levels of

broken mitotic chromosomes, as compared to either single mutant

[15,57]. Nbs1 could also be important for such ATM-dependent

mechanisms of end tethering, since Nbs1 activates ATM kinase

activity following DSBs [7]. Thus, ATM and/or Nbs1 could

support the end tethering functions of either the Mre11 complex

and/or c-NHEJ factors themselves, and thereby limit incorrect

end utilization during EJ.

Of course, these two aspects of repair need not be mutually

exclusive, as defects in end tethering could delay EJ causing

increased break persistence, and vice versa. However, we suggest

that even in situations of elevated DSB persistence, incorrect end

tethering is still essential for generation of Distal-EJ products. In

summary, we suggest that disruption of ATM (and/or Nbs1) leads

to defective end tethering and/or elevated break persistence in a

manner that results in a substantial elevation of incorrect end

utilization during c-NHEJ repair of multiple DSBs (Figure 6).

End utilization and end processing appear to be distinct
processes

We also find that individual factors show distinct effects on end

processing during EJ. The end processing observed in these

experiments could be influenced by 59 to 39 end resection, and/or

other mechanisms of DSB end degradation. Since Nbs1 appears to

promote 59 to 39 end resection during in vitro EJ assays [58], this

mechanism likely contributes to its role in promoting short

deletions during EJ.

In contrast to Nbs1, we find that ATM appears to suppress

deletions, which is supported by recent findings that ATM limits

terminal end processing of DNA ends in vitro, and during plasmid

EJ in vivo [59,60]. Furthermore, we find that ATMi causes longer

deletions even in the Nbs1-deficient cells. This result indicates that

loss of ATM-mediated end protection may enable the low level of

Nbs1 in these cells (5-fold reduced relative to WT [27]) to facilitate

end resection. Alternatively, loss of ATM-mediated end protection

could lead to an Nbs1-independent mechanism of end degrada-

tion. The former model is supported by a recent study showing

that Mre11 promotes the terminal end processing caused by

ATM-disruption [60]. Somewhat paradoxical to these findings of

ATM-mediated end protection, ATM has been shown to promote

end resection as measured by recruitment of ssDNA binding

protein (RPA) to DSBs [61], although apparently not in all

circumstances [62]. Perhaps ATM may limit terminal end

resection, but promote extensive end resection [61,63]. Such a

model is consistent with studies in yeast that support a two-step

end resection process [64].

Notably, ATM and Nbs1 affect end processing in different

directions, while both suppress Distal End Utilization. We also find

a distinction between Xrcc4 versus DNA-PKcs. Namely, we find

that Xrcc4 is important to limit the extent of deletions during EJ,

while DNA-PKcs promotes short deletions. This distinction is

consistent with other reports [38–41], as well as the notion that c-

NHEJ is a modular and flexible process that can result in a variety

of products [42]. In contrast, we find that both Xrcc4 and DNA-

PKcs are important for the elevated level of Distal-EJ caused by

ATM-disruption. In summary, these studies of ATM, Nbs1,

Xrcc4, and DNA-PKcs indicate that the regulation of end

processing appears to be distinct from that of end utilization.

Therapeutic relevance
In conclusion, correct end utilization is likely an important

mechanism for limiting chromosome rearrangements that can lead

to cancer development. While disruption of ATM kinase activity

may be beneficial for promoting tumor cell death via clastogenic

agents [31,65], such a therapeutic strategy may also disrupt

faithful end utilization in non-tumor cells, which could lead to

therapy-related malignancies. Conversely, developing therapeutic

strategies to enhance faithful end utilization in non-tumor cells

could have the potential to reduce therapy-related malignancies.

As well, since meganucleases are being developed as potential

genome engineering tools [66], we suggest that Trex2 expression

could enhance mutagenesis around the DSB site of meganucleases.

However, as such nucleases may form DSBs at multiple sites, we

also suggest that functional ATM would be critical for limiting

genome rearrangements during such a therapeutic approach.

Materials and Methods

Cell lines
XLF2/2 [34], DNA-PKcs2/2 [32], and Artemis2/2 [36] ES cells

were generously provided by Dr. Frederick Alt, and ATM2/2 ES

cells [30] were generously provided by Dr. Yang Xu. Cells (107 in

0.8 ml Optimem, Invitrogen) were electroporated with 70mg of

XhoI digested pim-EJ5-GFP at 710–720V/10mF. Hygromycin B

selection (0.12 mg/ml) was used to select for targeting to the pim1

locus in XLF2/2, DNA-PKcs2/2 and Artemis2/2 cells, as confirmed

by PCR analysis [28]. Puromycin selection (1.2 mg/ml) was used

to select random integrants of EJ5-GFP in ATM2/2 cells.

Integration of an intact copy of the reporter in ATM2/2 cells

was confirmed by Southern blot analysis, as described previously

[28]. Other cell lines with chromosomally integrated EJ5-GFP

were described previously: WT ES (AB2.2), Nbs1n/h ES, Xrcc42/2

ES, and HEK293 [27,28].

Repair assays
Mouse ES and HEK293 cells were cultured as described

previously [28], and 105 cells were plated the day before an

incubation with a mixture of 0.8mg of pCBASce, 0.4mg of

pCAGGS-Trex2, and 3.6mL of Lipofectamine 2000 (Invitrogen),

Figure 6. ATM limits incorrect end utilization during c-NHEJ of
two tandem DSBs. Shown is a diagram of EJ repair of two tandem
non-cohesive DSBs. Incorrect end utilization is shown to be caused by
elevated break persistence and/or incorrect end tethering. Notably,
even when individual breaks are more persistent, incorrect end
tethering is still essential to generate the Distal-EJ product. ATM/
Nbs1-deficiency is modeled to cause elevated break persistence and/or
incorrect end tethering, leading to incorrect end utilization during c-
NHEJ.
doi:10.1371/journal.pgen.1001194.g006

ATM and End Utilization

PLoS Genetics | www.plosgenetics.org 8 November 2010 | Volume 6 | Issue 11 | e1001194



in 1ml of antibiotic-free media [27]. After 3 hr, the transfection

media was removed and replaced with complete media containing

either 10mM ATMi [31](EMD Biosciences) or DMSO (vehicle).

Subsequently (3 days), half of each transfection sample was

analyzed by FACS (CyAN ADP, Dako) to determine %GFP+ cells

(Distal-EJ), and the other half was used to isolate genomic DNA

for determination of Proximal-EJ, as described previously [27].

Briefly, genomic DNA was amplified using EJ5purF (p1, 59

agcggatcgaaattgatgat) and KNDRR (p2, 59 aagtcgtgctgcttcatgtg).

The amplification products were purified (GFX, GE), and digested

with I-SceI (NEB), separated on agarose gels, and detected with

ethidium bromide, where complete digestion was confirmed with

parallel samples from untransfected cells. The percentage of I-

SceI-resistant product was calculated from the relative staining

intensity of I-SceI+ versus I-SceI-resistant bands within the same

lane, as described previously [27,29].

For single clone analysis, we performed the same transfection

protocol, except we included 0.4mg of dsRED-N1 (Clontech) and a

total of 4.8mL of Lipofectamine 2000. Three days after

transfection, we enriched for transfected cells by sorting dsRED+
cells, which we plated at low density to isolate single clones. For

each clone, we determined whether the 59 and 39 I-SceI sites had

been disrupted, using the Proximal-EJ assay described above,

where the 59 I-SceI site was analyzed using the primers KNDRF

(p3, 59 ctgctaaccatgttcatgcc) and EJ5purR (p4, 59 cttttgaagcgtgca-

gaatg) [27].

To calculate Distal End Utilization for individual samples, the

percentage of GFP+ cells was divided by the percentage of I-SceI-

resistant amplification products. To facilitate comparison to WT,

each individual Distal End Utilization value was divided by the

mean value for WT DMSO treated cells. We amplified Distal-EJ

products from GFP+ sorted cells from representative transfections,

using KNDRF (p3) and KNDRR (p2). The amplification products

were digested with I-SceI, as above. I-SceI-resistant bands were

isolated and cloned into TA vectors (Invitrogen) for sequencing

with the M13R primer.

Statistical analysis
For comparison of EJ frequencies, we used Student’s unpaired t-

test. For comparison of Distal-EJ breakpoint junctions, we used

Fisher’s Exact Test.

Supporting Information

Figure S1 Details of EJ assays. A. The Proximal-EJ assay is

quantitative within two-fold. WT mouse ES cells were transfected

with an expression vector for I-SceI (S), along with either the

Trex2 expression vector (S+Trex2), or empty vector (S+EV).

Following transfection, genomic DNA was isolated from S+Trex2

cells, and also from an equal mixture of S+Trex2 cells and S+EV

cells. As I-SceI-resistant Proximal-EJ products require Trex2

expression (see Figure 2B), the mixed sample should show a 2-fold

reduction in such products, as compared to the S+Trex2 sample.

Shown are representative Proximal-EJ products (left) along with

the mean Proximal-EJ value from separate transfections used to

generate independent samples (right, N = 3, error bars denote s.d.).

(*) statistical difference between S+Trex2 versus the equal mixture

of S+EV and S+Trex2, p = 0.0009. Also shown (left) are Proximal-

EJ products of an S+Trex2 transfection of Xrcc42/2 cells,

performed in parallel. B. Trex2 and I-SceI co-expression leads

to Distal-EJ products that are I-SceI-resistant. Several cell types

with the EJ5-GFP reporter (WT ES treated with DMSO or ATMi,

ATM2/2, Nbs1n/h, Xrcc42/2, DNA-PKcs2/2, and XLF2/2) were

transfected as in A. Subsequently, GFP+ Distal-EJ products were

sorted and the restoration of the I-SceI site was determined by

PCR amplification and I-SceI digestion analysis as in Figure 2C.

Shown are uncut (U) and I-SceI-digested (S) products from these

samples. Some of these products were also shown in Figure 2C,

which we show here to enable comparison. C. Formation of I-

SceI-resistant Proximal-EJ products is dependent on Trex2

expression, including in ATM2/2 cells. Shown are representative

Proximal-EJ samples from S+EV and S+Trex2 transfection of

ATM2/2 cells, as described in A. D. ATMi treatment causes an

increase in Distal End Utilization when the end-point analysis is

performed at either 3 or 6 days. WT mouse ES cells were

transfected as in A, and cultured for 3 or 6 days prior to

determining Distal End Utilization values as described in

Figure 2D. Shown are the mean Distal End Utilization values

for independent transfections for 3 and 6 days end points (N$3,

error bars denote s.d.). (*) distinct from DMSO treatment from the

same end point, p,0.0014; values were not statistically different

between 3 and 6 days.

Found at: doi:10.1371/journal.pgen.1001194.s001 (0.81 MB

PDF)

Figure S2 Efficiency of I-SceI-induced DSBs at tandem

recognition sites; ATM limits Distal End Utilization in

HEK293 cells. A. ATM does not inhibit formation of I-SceI-

induced DSBs at both tandem I-SceI sites. WT mouse ES cells

were transfected with expression plasmids for I-SceI, Trex2, and

dsRED. Also, transfections were treated with DMSO or ATMi as

in Figure 2. Following transfection (3 days), dsRED+ cells were

sorted to enrich for transfected cells, and were plated at low

density to isolate single clones. Loss of the 59 and 39 I-SceI-

recognition sites was determined by PCR amplification and I-

SceI digestion for individual clones, using the primers depicted in

the diagram. Shown (left) are representative clones with loss of

both the 59 and 39 I-SceI sites (Clone 1), loss of only the 39 site

(Clone 2), and loss of only the 59 site (Clone 3). Also shown (right)

are the percentages of clones that have lost one I-SceI site (59 or

39 S-, e.g. Clones 3 or 2, respectively) versus both sites (59 and 39

S-, e.g. Clone 1), for DMSO and ATMi treated samples. B. ATM

suppresses incorrect end utilization in HEK293 cells. HEK293

cells with an integrated copy of EJ5-GFP were co-transfected

with expression plasmids for I-SceI and Trex2 and treated with

ATMi or DMSO. Shown are the mean frequencies of Distal-EJ

(left), Proximal-EJ (middle), and Distal End Utilization (right) for

these samples, determined as in Figure 2 (N = 6, error bars denote

s.d.). (*) statistical difference between DMSO and ATMi

treatment (p,0.0001).

Found at: doi:10.1371/journal.pgen.1001194.s002 (0.35 MB

PDF)

Table S1 Sequences of Distal-EJ junctions. For reference, shown

is the unmodified I-SceI site in capital letters with the cleavage site

marked by a slash, which would be generated by Distal-EJ that

restores the I-SceI site. Shown are the five categories of products

shown in Figure 5, along with the sequences of each individual

repair product. Inserted nucleotides are in bold, substituted

nucleotides are in italics and bold, and microhomology is

underlined. Shown are the numbers of each product, out of 30

total, from analysis of Distal-EJ products (GFP+ cells), following

co-expression of I-SceI and Trex2, from a number of cell types: WT

ES treated with DMSO, WT ES treated with ATMi, ATM2/2,

Nbs1n/h, Nbs1n/h treated with ATMi, Xrcc42/2, and DNA-PKcs2/2

(the p3, p2 I-SceI-resistant amplification products are shown in

Figure 2C, Figure S1B).

Found at: doi:10.1371/journal.pgen.1001194.s003 (0.08 MB

PDF)
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