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Abstract

It is now well established that natural populations of Drosophila melanogaster harbor substantial genetic variation
associated with physiological measures of immune function. In no case, however, have intermediate measures of immune
function, such as transcriptional activity of immune-related genes, been tested as mediators of phenotypic variation in
immunity. In this study, we measured bacterial load sustained after infection of D. melanogaster with Serratia marcescens,
Providencia rettgeri, Enterococcus faecalis, and Lactococcus lactis in a panel of 94 third-chromosome substitution lines. We
also measured transcriptional levels of 329 immune-related genes eight hours after infection with E. faecalis and S.
marcescens in lines from the phenotypic tails of the test panel. We genotyped the substitution lines at 137 polymorphic
markers distributed across 25 genes in order to test for statistical associations among genotype, bacterial load, and
transcriptional dynamics. We find that genetic polymorphisms in the pathogen recognition genes (and particularly in PGRP-
LC, GNBP1, and GNBP2) are most significantly associated with variation in bacterial load. We also find that overall
transcriptional induction of effector proteins is a significant predictor of bacterial load after infection with E. faecalis, and
that a marker upstream of the recognition gene PGRP-SD is statistically associated with variation in both bacterial load and
transcriptional induction of effector proteins. These results show that polymorphism in genes near the top of the immune
system signaling cascade can have a disproportionate effect on organismal phenotype due to the amplification of minor
effects through the cascade.
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Introduction

Drosophila, like other insects, use a generalized immune response

to combat pathogens. Unlike vertebrates, the insect immune

response consists solely of an innate response, with cellular and

humoral (cell-free) arms [reviewed in 1]. Despite considerable

knowledge of the molecular basis of the Drosophila immune

response, and increasing understanding of the extent of natural

genetic variation for immunocompetence in this system [2–4],

relatively little is known about the role of network structure in

shaping the phenotypic consequences of genetic variation.

Linking genetic variation in transcriptional regulation to

differences in complex phenotypes has the potential to illuminate

mechanistic aspects of genotype-phenotype associations. Passador-

Gurgel and coworkers [5] identified several genes in which

transcript levels significantly associate with survival times after

exposure of D. melanogaster to nicotine. Other studies in Drosophila

have identified transcriptional variation associated with male

reproductive success [6], male body size [7], aggressive behavior

[8] and locomotive behavior [9]. While in some cases it has been

possible to show that genetically determined transcriptional

differences are statistically correlated with phenotypic differences,

these studies have generally not identified causal genetic variants.

In Drosophila, linking genetic variation to phenotypic variation via

transcriptional changes has proven difficult [10,11]. The Drosophila

immune system provides an ideal opportunity to examine the

consequences of genetic variation and differences among lines in

patterns of gene expression in the context of a well-defined

network.

In Drosophila, the humoral response is initiated by the recognition

of microbial cell wall component by proteins such as PGRPs and

GNBPs [12–14]. These proteins activate two primary signaling

pathways, the Toll and Imd pathways. The Toll pathway is

primarily activated after infection by fungi and Gram-positive

bacteria, whereas the Imd pathway is primarily activated after

infection by Gram-negative bacteria [15,16], although this

specificity is not absolute [17,18]. In addition to these primary

signaling pathways, the JAK/STAT and JNK pathways are thought

to play a role in immune response, largely as part of the general

stress response and wound healing [19,20]. Activation of the Toll

and Imd signaling pathways leads to the translocation of NF-kB

transcription factors (Relish, DIF, Dorsal) to the nucleus where they

drive transcription of effector genes, which encode proteins that are

directly involved in bacterial clearance, such as antimicrobial

peptides. These effectors are then released into the hemolymph,

where they act to directly kill invading microorganisms [21].
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Previously, we have examined associations between bacterial

load after infection with each of four different bacteria and genetic

markers (SNPs and indels) in candidate genes on the Drosophila

melanogaster second chromosome [2,3]. Here, using markers in

candidate genes on the third chromosome, we examine both

bacterial load and gene expression phenotypes, testing associations

between genotype, sustained bacterial load, and transcription level

of approximately 400 known and putative immune system genes.

Results

Genetic variation for immune function on the third
chromosome in Drosophila

We examined a sample of 94 third-chromosome substitution

lines for variation in bacterial load sustained 28 hours after

infection with each of four different bacteria: Serratia marcescens,

Providencia rettgeri, Enterococcus faecalis, and Lactococcus lactis (Figure 1).

In order to assess the effect of different third chromosomes on

bacterial load phenotypes, we compared the likelihood of the data

under a statistical model that includes variation among genetic

(third-chromosome) lines as a main effect to the likelihood of the

data under a model that does not. Likelihood ratio tests reveal a

large, highly significant effect of third chromosome line on

phenotypic variation in bacterial load against all four bacteria

(S. marcescens: x2 = 128.42, d.f. = 1, P,2.2610-16; P. rettgeri:

x2 = 263.88, d.f. = 1, P,2.2610216; E. faecalis: x2 = 51.533,

d.f. = 1, P = 7.04610213; L. lactis: x2 = 35.391, d.f. = 1,

P = 2.7061029). Genetic line explains 66.9% of the non-error

variance (14.5% of the overall variance) for load sustained after S.

marcescens infection and 58.3% (22.1%) for load sustained after P.

rettgeri infection, but only 27.4% (7.2%) for E. faecalis and 19.5%

(6.2%) for L. lactis (Table 1). Total variance in bacterial load is

much higher for the two Gram-positive bacteria (E. faecalis and L.

lactis), as is residual variance and the fraction of total variance

explained by experimental factors, suggesting that these infections

produce noisier data (Table 1). The smaller fraction of variance

attributable to line after infection with these two bacteria

presumably stems from stochastic events during initiation and

establishment of infection. The overall mean load sustained after

infection also varies among bacteria, ranging from a low of 2,186

colony forming units (CFU) per fly 28 hours after infection with S.

marcescens to a high of 653,436 CFU per fly after infection with L.

lactis. Correlations of line means between bacteria (measured as

Spearman’s r) are generally moderate and positive (Table 2).

While the positive sign of correlations between bacteria suggests

that some genetic lines may have generally better immune

responses, the relatively small magnitude suggests substantial

bacteria-specific effects.

Genotype-phenotype associations
We tested for statistical associations between bacterial load and

genotypes at 137 polymorphisms in 26 genes and gene families on

the third chromosome with known or suspected immune function.

These included 6 antimicrobial peptide loci, 10 putative

recognition loci (GNBPs and PGRPs), 8 known signaling loci, the

Toll-like receptor Toll-9, and the iron-binding protein Transferrin

2 (Table 3). Our association test is based on mixed linear models:

we assessed significance by comparing the observed model

coefficient (effect size) for the marker in question to a null

distribution generated from 5070 permuted data sets where

phenotypes are randomly shuffled across lines while preserving

linkage disequilibrium among genetic markers and correlations

among bacterial loads after infection with different bacteria (see

Methods for details of the permutation protocol).

We also tested for associations between SNP markers and the

first principal component estimated from line means of bacteria

after infection with each of the four different bacteria. This

principal component is significantly positively correlated with load

after infection with all four bacteria, suggesting that it represents a

measure of general immune competence and/or general vigor.

Results from this analysis recover statistical associations with

markers that show significant associations with bacterial load

measured after infection with multiple different bacteria, but do

not uncover any additional general immune factors, and are not

discussed further (Table S1). All statistical tests were implemented

in R, as described in the Methods, and presented in Table S1.

Across all bacteria, 43 tests (7.85%) are significant at a nominal

aof 0.05, and 12 tests (2.19%) are significant at a nominal a of

0.01; in both cases, we observe a significant excess of significant

tests (a= 0.05: x2 = 9.35, d. f. = 1, P-value = 0.0022; a= 0.01:

x2 = 7.84, d. f. = 1, P-value = 0.0051). Because some SNPs are in

linkage disequilibrium and because bacterial loads across different

pathogen challenges are weakly positively correlated, the 548 tests

we conducted (137 markers by 4 phenotypes) are not likely to be

independent. Thus, we also calculated the null distribution of

significant SNPs based on permutations that preserve the

correlation structure in the data (see Methods for additional

details). We observe a mean of 28.6 significant tests under the null

hypothesis at an a of 0.05, and a mean of 5.9 significant tests

under the null hypothesis at an a of 0.01. In both cases, the

number of significant tests we observe in the permuted data are

significantly fewer than the values we observe in the real data

(a= 0.05: 43 observed significant tests, P-value = 0.0323; a= 0.01:

12 observed significant tests, P-value = 0.0296).

Several markers in our dataset (8 and 2 at a nominal a of 0.05

and 0.01, respectively) are nominally associated with variation in

multiple independent bacterial load phenotypes. Assuming all tests

are independent, it is extremely unlikely that we would observe

this number of SNPs associated with more than one bacterial load

phenotype (a= 0.05: x2 = 19.52, P-value (by simula-

tion) = 0.00087; a= 0.01: x2 = 45.42, P-value (by simula-

Author Summary

Genetic variation for resistance to infection is widespread
among insects and other organisms. However, the extent
to which this variation in resistance is mediated by
changes in infection-induced gene expression is not
known. In this study, we assayed expression of immune
system genes and bacterial load after infection in a
genotyped panel of lines of the model insect Drosophila
melanogaster. We find that statistical associations between
genetic variants and bacterial load tend to cluster in genes
encoding proteins involved in microbial recognition.
Variation in suppression of bacterial growth is also
determined in part by genetic variation in the expression
of downstream components of the immune system that
function to directly kill bacteria, despite finding no genetic
variation in any single of these effector gene significantly
associated with phenotype. Instead, it appears that activity
differences in upstream components of the pathway have
a cascading effect that results in larger variation in the
expression of coordinately regulated downstream effector
genes. These results imply that the interactions among
genes need to be taken into account when assessing the
phenotypic consequences of genetic variation, as signaling
cascades such as those in the immune response have the
potential to amplify the phenotypic effects of minor
genetic variation in individual genes.

Associations with Immune Function in Drosophila
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tion) = 0.00299). To verify this conclusion in the face of non-

independence among tests, we used a permutation approach to

estimate the null distribution of the number of SNPs with two or

more significant tests under the assumption of no genotype-

phenotype associations (a= 0.05: P-value = 0.0118; a= 0.01: P-

value = 0.0053; see Methods for details).

Significant tests at a nominal a of 0.01 (0.05) are not randomly

distributed among bacteria: 83.3% (67.4%) of the significant cases

represent associations between genotype and bacterial load after

infection with Gram-negative bacteria (S. marcescens and P. rettgeri).

Gram-positive bacterial load has higher residual error variance

and higher experimental variance in our experiments (Table 1),

which could lead to reduced power to detect associations with this

phenotype. In order to test this hypothesis, we calculated power by

simulation, assuming variances estimated from either the Gram-

negative or Gram-positive bacteria in our study (see Methods for

Table 1. Sources of variance in bacterial load phenotypes.

Line Experimental Residual

S. marcescens 0.436 (0.145) 0.216 (0.072) 2.359 (0.783)

P. rettgeri 1.158 (0.221) 0.830 (0.158) 3.257 (0.621)

L. lactis 0.574 (0.062) 2.362 (0.256) 6.287 (0.685)

E. faecalis 0.876 (0.072) 2.323 (0.190) 8.998 (0.738)

Variance (fraction of total) attributable to the effect of genetic line, to
experimental factors (infector, plater, day), and residual.
doi:10.1371/journal.pgen.1000797.t001

Table 2. Correlations among bacterial load phenotypes.

S. marcescens P. rettgeri L. lactis E. faecalis

S. marcescens 0.1369 0.02828 0.02527

P. rettgeri +0.1561888 0.04021 0.00195

L. lactis +0.2290430 +0.2145092 0.03012

E. faecalis +0.2335280 +0.3202071 +0.2265

Bottom diagonal: Spearman’s rho; Top diagonal: P-value. Correlations were
calculated using the function cor.test in R 2.6.0.
doi:10.1371/journal.pgen.1000797.t002

Figure 1. Mean bacterial load sustained 28 hours after infection by each of four different bacteria. Bacterial load is plotted as the
deviation from the overall mean within each bacterium, adjusted for unbalanced data. The genetic lines are plotted independently in ascending rank
order for each panel, and are not in the same order across panels. (A) Providencia rettgeri bacterial load. (B) Serratia marcescens bacterial load. (C)
Enterococcus faecalis bacterial load. (D) Lactococcus lactis bacterial load.
doi:10.1371/journal.pgen.1000797.g001

Associations with Immune Function in Drosophila
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details). Although power is lower for our simulated Gram-positive

data across a range of effect sizes and two assumptions about

minor allele frequencies (Figure S1), if average effect size of

associations is equal between the two bacterial types we would not

expect to see such a substantial excess of Gram-negative

associations. It is possible that the observed excess of associations

with resistance to Gram-negative infection could be driven by a

biological difference in the response of D. melanogaster to the specific

Gram-negative and Gram-positive bacteria we employed in this

study that results in less among-line variation in load after infection

with these particular Gram-positive bacteria.

Nominally significant associations are also not evenly distributed

within functional classes of the immune system. The proportion of

tested markers that are associated with bacterial load phenotypes

(at a nominal a of 0.05) significantly varies among functional

classes (Figure 2; x2 = 11.35, d. f. = 2, P = 0.0034). Markers in

genes encoding recognition proteins have the highest proportion of

significant associations with bacterial load (12.11% of tested

markers in these genes are significantly associated with phenotype),

followed by markers in genes encoding signaling proteins (5.36%

of tested markers in these genes are significantly associated with

phenotype). Markers in genes encoding effector proteins are rarely

associated with differences in bacterial load (only 1.39% of tested

markers in genes encoding effectors are significantly associated

with phenotype). Average intralocus linkage disequilibrium is not

significantly different among functional classes (data not shown),

suggesting that this pattern is not driven by biases introduced by

LD among SNPs. However, in order to rule out this possibility we

generated a distribution for the fraction of significant associations

in each of the three functional categories under the null hypothesis

that there is no association between genotype and phenotype.

Markers in genes encoding recognition proteins are significantly

more likely to have significant associations (a= 0.05: 31 observed

significant tests compared to a mean of 13.3 in the permutated

data, P = 0.0016; a= 0.01: 10 observed vs. mean of 2.73 in

permuted data, P = 0.0059). The same pattern does not hold,

however, for markers in genes encoding signaling or effector

proteins (a= 0.05: Psignaling = 0.492, Peffector = 0.965; a= 0.01:

Psignaling = 0.500, Peffector = 1). Furthermore, while the average

fraction of markers with significant associations at a= 0.05 (0.01)

that are in recognition genes in the permuted dataset is 51.21%

(50.96%), in the observed data it is 75.6% (83.3%).

Polymorphism at the GNBP75D locus, consisting of the genes

GNBP1 and GNBP2, is particularly striking in the extent and

significance of associations with resistance to Gram-negative

bacteria (Figure 3). Seven of the 10 SNPs at this locus are

nominally significantly associated with variation in bacterial load

after infection with P. rettgeri, although average linkage disequilib-

rium is high at this locus (average pairwise r2 = 0.303; average

pairwise D9 = 0.636). Four of those seven SNPs are also

significantly associated with differences in bacterial load after

infection with S. marcescens. These include one SNP in the 39 UTR

of GNBP2 (GNBP75D_1041), one SNP in the 59 UTR of GNBP1

(GNBP75D_3350), and a pair of SNPs in the first intron of GNBP1

(GNBP75D_3696 and GNBP75D_3768). Notably, GNBP75D_3696

is one of two SNPs that is significantly associated with differences

in bacterial load after infection with two different bacteria at a

nominal a of 0.01.

Table 3. Candidate loci genotyped in this study.

Functional Class Locus
Cytological
Position

Markers
typed

Antimicrobial peptide Attacin D 90B6 2

Antimicrobial peptide CecAB 99E2 4

Antimicrobial peptide CecC 99E2 3

Antimicrobial peptide Drs 63D2 2

Antimicrobial peptide DrsL 63D1–2 4

Antimicrobial peptide dro2-5 63D1 3

Recognition GNBP3 66E5 5

Recognition GNBP1/GNBP2 75D6 10

Recognition PGRP-LA 67B1 7

Recognition PGRP-LB 86E6 6

Recognition PGRP-LC 67B1 10

Recognition PGRP-LD 64E7–8 6

Recognition PGRP-LF 67B1 4

Recognition PGRP-SB1 73C1 5

Recognition PGRP-SB2 73C1 6

Recognition PGRP-SD 66A8 5

Signal transduction BG4 94A1 5

Signal transduction ECSIT 83C5 4

Signal transduction Rel 85C3 6

Signal transduction Toll 97D2 8

Signal transduction ird5 89B1 5

Signal transduction pll 97E11 5

Signal transduction spz 97E1 7

Signal transduction tub 82A5 2

Iron binding Tsf2 69C4–5 4

Toll-like Toll-9 77B6 9

doi:10.1371/journal.pgen.1000797.t003

Figure 2. Distribution of significant associations among
functional classes. Bar plot shows the proportion of tested markers
within each functional class (pooled across all bacteria) that are
significantly associated with bacterial load phenotypes at a nominal a
of 0.05 (dotted line). The difference among classes is significant
(x2 = 11.35, d. f. = 2, P = 0.0034).
doi:10.1371/journal.pgen.1000797.g002
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The haplotype structure at the GNBP75D locus is unusual for

D. melanogaster. Despite spanning more than 2 kb, the four SNPs

mentioned previously are found in only 6 of the 16 possible

haplotypes in 91 of the 94 genetic lines (the remaining three lines

have unique haplotypes). There are two major haplotypes (A-A-A-

T and C-G-G-A) at frequencies of 0.244 and 0.449 respectively.

When the phenotypes of the lines that carry these two haplotypes

are compared directly using nonparametric tests, the A-A-A-T

haplotype has a significantly higher median bacterial load after

infection with both S. marcescens (medianAAAT = 8.12, med-

Figure 3. Genotype-phenotype associations at the GNBP locus in chromosomal band 75D. Upper panel: Plot of the effect size for each of
the 10 SNPs genotyped at this locus. Gram-negative bacteria are shown in dashed lines, Gram-positive as solid lines. Arrows above the main graph
indicate significance at a nominal a of 0.05. Lower panel: Pattern of linkage disequilibrium among the 10 genotyped SNPs. Grid shows R2 values,
shaded by value: .0.50 red, 0.25-0.50 orange, 0.10–0.25 yellow.
doi:10.1371/journal.pgen.1000797.g003
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ianCGGA = 7.48, Mann-Whitney U P = 0.036) and P. rettgeri

(medianAAAT = 13.16, medianCGGA = 12.26, Mann-Whitney U

P = 0.000299).

Further support for a biologically meaningful association of

genetic differences at the GNBP75D locus with phenotypic

variation comes from an analysis of per-gene significance. Because

of the high intra-locus LD, we applied permutation tests to assess

significance of effects attributable to genetic variation at each gene.

We generated a null distribution of the sum of the x2 test statistics

for each marker within a locus under the assumption of no

association between genotype and phenotype, while controlling for

confounding effects of correlation among markers within a locus,

and compared the observed sum of the x2 test statistics to this

permuted distribution (see Methods for details; full results in Table

S2). We find significant evidence for an association between

markers in GNBP75D and bacterial load after infection with P.

rettgeri (P = 0.00059; P = 0.015 after multiple test correction using

the Holm method implemented in the R function p.adjust) and,

more weakly, S. marcescens (P = 0.023; P = 0.577 after multiple test

correction as above).

PGRP-LC is another recognition gene with repeatable evidence

for a significant association between SNPs and bacterial load,

albeit somewhat weaker than the evidence for the GNBP75D

association. In this case, genotypes at two out of 10 SNPs are

associated with variation in bacterial load against at least two

different bacteria at a nominal a of 0.05, and a third marker has

marginal significance. A SNP marker approximately 125 bp

upstream of the transcriptional start site of PGRP-LC

(PGRPLC_884) is associated with resistance against both E.

faecalis (P = 0.0556) and S. marcescens (P = 0.038). A SNP marker in

the third exon of splice variant PGRP-LC-RB (PGRPLC_5624;

intronic in splice variants PGRP-LC-RA and PGRP-LC-RC) is

associated with variation in bacterial load against L. lactis

(P = 0.0481) and S. marcescens (P = 0.006), with the same allele

associated with lower bacterial load against both bacteria. Another

SNP marker in the fourth exon (in the PGRP domain) of PGRP-

LC-RA (PGRPLC_6635; in the intron of PGRP-LC-RA and PGRP-

LC-RC) is also associated with variation in bacterial load against L.

lactis (P = 0.0075) and S. marcescens (P = 0.0095). These two SNP

markers are in linkage disequilibrium (r2 = 0.193, P = 7.9261024),

but neither is in significant linkage disequilibrium with the

upstream marker.

Marker by sex interactions
Empirical and theoretical work [22–24] suggests that immune

function may differ between the sexes, as males and females make

different resource allocation decisions between immune defense

and reproductive output. These observations lead to the

hypothesis that the genetic basis of the immune response may

depend on sex: indeed, these kinds of genotype by sex interactions

have been observed for other quantitative traits in D. melanogaster

[e.g., 25]. To test this hypothesis, we compared the likelihood of

our observed bacterial load data under a model with a Sex by

Marker interaction to the likelihood of the data under a model

without such an effect (but retaining the main effects of Sex and

Marker). To assess the significance of the resulting likelihood ratio

test statistics, we used a null distribution of likelihood ratio test

statistics calculated by permuting the data 1000 times.

We find little evidence for significant effects of marker by sex

interactions on bacterial load. While 6.93% of tests are significant

at a nominal a of 0.05, a weakly significant excess over the null

expectation (x2 = 4.32, d. f. = 1, P = 0.0377), only 0.91% of tests

are significant at a nominal a of 0.01, which is not different from

the null expectation (x2 = 0.042, d. f. = 1, P = 0.8367). While it is

possible that there are weak marker by sex interactions that we do

not have the power to detect in this experiment, we believe that

such effects are likely to be small compared to main effects of SNP

across sexes. There is a clear main effect of sex: males have

consistently lower bacterial loads irrespective of genotype,

consistent with the hypothesis that the sex bias in immune

function is phenotypically plastic in Drosophila, and depends on

food and mate availability [22]. We have only examined variation

on the third chromosome in this study; a similar studies of genes

on the second chromosome also find little evidence for substantial

sex by SNP interactions [2,3]. However, a recent study of variation

in X-linked immune genes suggests substantial sex by SNP

interactions [26].

Measuring gene expression using BeadChips
In order to understand the mechanistic basis of differences in

immune phenotypes linked to genetic variation on the third

chromosome, we measured gene expression of approximately 700

transcripts in males from a subset of 30 of the 94 phenotyped

chromosome 3 substitution lines. Using custom-designed Illumina

BeadChip microarrays, we measured transcript abundance under

three different conditions (uninfected, 8 hours post S. marcescens

infection [Sm-infected], and 8 hours post E. faecalis infection [Ef-

infected], where S. marcescens and E. faecalis were chosen arbitrarily

to represent Gram-negative and Gram-positive bacteria respec-

tively). We selected the subset of assayed lines to be biased toward

the tails of the phenotypic distribution in order to enhance our

power to detect correlations between transcript abundance and

phenotype. We normalized and log-transformed expression values

as described in the Methods. For most analyses, we focused on the

Ef-induced (Ef-infected minus uninfected) and Sm-induced (Sm-

infected minus uninfected) samples.

In addition to quantifying the 329 genes with a known or

putative immune function (including 172 genes with some

characterized function and 157 genes predicted to have a role in

immunity based on transcriptional induction after infection), our

BeadChip microarrays include genes involved in metabolism (139)

and sex/reproduction (164), as well as 69 probesets consisting of

housekeeping gene controls, and genes involved in insecticide

resistance. Full details of the BeadChip design are described in the

Methods; the full list of genes are presented as Table S3 (probe

sequences are available upon request from T. B. S.). For most

analyses, we focus on the 329 immune genes on the BeadChips,

although in some cases we use the other genes as controls.

Genotype-expression associations
Although with only 30 lines applied to the BeadChip arrays we

have limited power to detect associations between SNPs and gene

expression variation, we tested for significant associations by

comparing a mixed model with a fixed effect of SNP to one with

just a fixed intercept. Because permutations are not computation-

ally feasible for the large number of tests required for this analysis,

we assessed significance by comparing the likelihood ratio test

statistic to a standard x2 distribution. Overall, 3.55% (9.09%) and

2.98% (10.33%) of genotype-expression association tests are

significant at a nominal a of 0.01 (0.05) in the Sm-induced and

Ef-induced samples, respectively. In all cases it is highly

improbable to obtain this many significant tests purely by chance

under the assumption that regulation of expression of all genes is

independent (Sm-induced, a= 0.01: x2 = 6351, P,2.2610216; Ef-

induced, a= 0.01: x2 = 3833, P,2.2610216; Sm-induced,

a= 0.05: x2 = 5791, P,2.2610216; Ef-induced, a= 0.05:

x2 = 3416, P,2.2610216). The same pattern holds if we consider

Associations with Immune Function in Drosophila
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the absolute expression level in the Ef-infected, Sm-infected, and

uninfected samples individually (data not shown).

Because we assumed the null distribution of the test statistic

follows an asymptotic chi-square distribution, it is possible that the

excess of significant P-values we observe is primarily due to mis-

specification of the null distribution. We expect that polymorphisms

in genes known to have a role in the immune system will be more

likely to affect expression of immune-related genes than expression

of other genes on the BeadChip. Indeed, for the Ef-induced sample,

we see significantly more tests with both P,0.01 and P,0.05

among immune-related genes than other genes (P,0.01: 0.0325 vs.

0.0274; x2 = 21.6874, d.f. = 1, P = 3.20661026; P,0.05: 0.0933 vs.

0.0889; x2 = 5.6409, d.f. = 1, P = 0.01755), although this is not the

case for the Sm-induced sample (but note that ‘‘non-immune’’ genes

may still be responding transcriptionally to infection). Thus, while it

appears that some of the genotyped SNPs in this study have

significant effects on gene expression, particularly for the Ef-induced

sample, limiting our experiment to 30 lines reduces our power to

detect significant associations. Nonetheless, there are 304 and 350

associations between genotypes and induction of immune genes

after E. faecalis and S. marcescens infection respectively significant at a

10% false-discovery-rate, which are presented in Table S4. Of

particular note is the marker PGRPSD_494, which is associated

with expression of 73 of the 329 immune genes we assayed.

However, given the uncertainty in the true estimates of significance,

we focus on overall qualitative patterns of genotype-expression

associations.

Significant associations tend to follow the predicted
network structure

Because a considerable amount is known about the transcrip-

tional feedback relationships in innate immune networks, we can

make some predictions about the expected direction of associa-

tions between genotypes and variation in gene expression of

specific genes. Most generally, we expect that markers in upstream

genes in the immune pathway should predict expression of

downstream genes much more often than vice versa. For example,

we believe that genetic differences in signaling genes could lead to

differential expression of effector genes, but that genetic differences

in effector genes do not result in feedback that influences

transcription of signaling genes. For both the Ef-induced and

Sm-induced samples, we consistently see an excess of associations

between markers in upstream loci and gene expression of

downstream loci relative to associations between markers in

downstream loci and expression of upstream loci (Table 4). This

pattern is consistently more significant between ‘‘adjacent’’

functional classes in the immune network, although the recogni-

tion/effector pair is also the case with the smallest number of tests

and thus the lowest power.

The network structure argument also has implications for the

distribution of cis and trans associations across expression of

effector, signaling and recognition genes. Specifically, while there

is no reason to believe that cis associations should be related to

network structure, we hypothesize that downstream categories

(particularly effector genes) will have significantly more trans

associations than upstream categories. For both Ef-induced and

Sm-induced samples, we find support for this hypothesis. In the

Sm-induced sample, 4.32% of tests between trans markers and

expression of effector genes are significant, compared to 2.75% for

expression of signaling genes and 2.37% for expression of

recognition genes (x2 = 47.6607, d.f. = 2, P-value = 4.473610211).

In the Ef-induced sample, 4.64% of tests between trans markers

and expression of effector genes are significant, compared to

2.65% for signaling genes and 2.62% for recognition genes

(x2 = 64.5568, d.f. = 2, P-value = 9.587610215). These differences

remain significant if trans tests are split into those that involve

markers in the same functional class as the expression phenotype

being measured and those that involve markers in different

functional classes (data not shown). In neither case do we observe

significant differences in the proportions of cis tests that are

significantly associated with gene expression phenotypes (data not

shown), although pooled across all markers we observe a higher

proportion of significant cis tests that trans tests (Ef-induced:

Fisher’s Exact Test P = 0.02737, Odds Ratio = 1.99; Sm-induced:

Fisher’s Exact Test P = 0.08566, Odds Ratio = 1.69).

To dissect the role of crosstalk and cross-regulation between

signaling pathways in the pattern of associations between gene

expression and SNPs, we examined the number of significant

associations between markers in signaling genes in either the Toll

or Imd pathway and expression of signaling genes in other

signaling pathways. On the BeadChips, we have representatives

from the Toll, Imd, JAK/STAT, JNK, Ras, p38, and Notch

signaling pathways. We compared the observed number of tests

significant at a= 0.01 (excluding potential cis associations) to the

expected number based on chance alone, using x2 tests. For the

Ef-induced sample, we observe a significant excess (over chance

expectations) of associations between markers in signaling genes in

the Toll pathway and induction of signaling genes in the Toll

pathway (P = 1.32610213) and the JAK/STAT pathway

(P = 3.05610214); we also observe an excess of significant

associations between markers in signaling genes in the Imd

pathway and induction of signaling genes in the Imd pathway

(P = 0.00159) and the Toll pathway (P = 0.0292), although the

latter is not significant after Bonferroni correction.

For the Sm-induced sample, we see a similar pattern. There is a

significant excess of significant associations between markers in

signaling genes in the Toll pathway and induction of signaling

genes in the Toll pathway (P = 1.32610213), and to a lesser extent

induction of signaling genes in the Imd pathway (P = 0.0341) and

Table 4. Significant genotype-expression associations follow network structure.

Ef-induced Sm-induced

Upstream Functional Class Downstream Functional Class Odds Ratio P-value Odds Ratio P-value

Signaling Effectors 1.939 0.0001 1.625 0.0056

Recognition Effectors 1.337 0.2188 1.637 0.0631

Recognition Signaling 1.566 0.0258 1.706 0.0084

Odds ratio represents the proportion of significant associations between upstream SNPs and downstream transcription relative to the proportion of significant
associations between downstream SNPs and upstream transcription.
doi:10.1371/journal.pgen.1000797.t004
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the JAK/STAT pathway (0.0496), although the latter two P-values

do not survive a Bonferroni correction. Markers in signaling genes

in the Imd pathway are significantly more likely than expected by

chance to be associated with induction of signaling genes in the

Imd pathway (P = 0.0219) and the JAK/STAT pathway

(P = 0.00102) after infection with S. marcescens.

Because the numbers of markers in signaling genes represent a

relatively limited sample, some caution should be used in

interpreting these results. Nonetheless, these data suggest that, in

addition to self-regulation of both the Toll and Imd signaling

pathways by components of the pathway, there is some crosstalk

between the Toll, Imd, and JAK/STAT pathways, although there

seems to be relatively little crosstalk between either of the Toll or

Imd pathways and the JNK pathway, at least at the time point we

examined (8 hours after infection). Given genetic variation for flux

through the pathway, these patterns of autoregulation and cross-

regulation may have the effect of amplifying the phenotypic

consequences of minor genetic variants.

Quantitative trait transcripts
Considerable recent interest has focused on identifying not just

genetic markers that associate with quantitative variation in

phenotypes, but also transcripts whose abundance correlates with

phenotypes of interest [5,10,27]. These attempts have had

mixed success, with some studies failing to find any significant

correlations between transcript abundance and phenotype

[e.g., 10] and others finding some evidence for significant

associations [e.g., 5].

Here, we used a simple regression of the induction of immune-

related transcripts against either E. faecalis bacterial load (for Ef-

induced sample), S. marcescens bacterial load (for Sm-induced

sample), or overall bacterial load (as measured by the first principal

component from all four bacterial load measures) to attempt to

detect expression-phenotype associations. In this analysis, induc-

tion correlates with bacterial load for very few transcripts. Only

the induction of Attacin C and Drosocin after E. faecalis infection

correlate with E. faecalis bacterial load at a false discovery rate of

10%. Induction levels after S. marcescens infection do not appear to

correlate with S. marcescens load for any transcripts, although

uninfected expression level of pole hole (D-Raf) associates with S.

marcescens load at a FDR of 0.0035, the most significant

transcriptional association in our dataset (Figure 4). Uninfected

transcriptional levels of six genes (CG30088, phl, Thor, Keap1, Dif,

IM1) significantly associate with a principal component measuring

overall immune competence and/or general vigor, at an FDR of

,10%. Interestingly, pole hole is necessary for the proliferation or

survival of circulating hemocytes in D. melanogaster [28,29]

suggesting that flies with lower levels of phl transcription may

have fewer hemocytes and will be less able to resist infection.

Our analysis suggests that naturally occurring variation in

expression level of individual genes, measured as either induction

after infection or as absolute expression in uninfected flies, is a

weak predictor of bacterial load phenotypes. This result suggests

that, unlike complete or nearly complete knockdowns of single

genes, which can have dramatic effects on bacterial load, the

differences in expression of immune genes among lines that is

observed in natural populations has relatively subtle consequences.

However, given the structure of the immune network, this

observation may not be surprising. The immune system is a

highly co-regulated system, in which small changes in expression

of upstream components can be amplified among downstream

genes, and multiple feedback loops provide for some measure of

self-regulation of the system. Furthermore, correlated transcription

of many effectors could indicate that the overall extent to which

the immune system (in whole or in part) is transcriptionally

activated after infection is more biologically relevant than variable

levels of activation of any one gene. In order to test this hypothesis,

we considered whether principal components obtained from the

correlation matrix among transcriptional profiles of subsets of

genes predict phenotype. As an added advantage, the method of

principal components reduces the dimensionality of large datasets,

improving power.

Principal component analysis
Our initial hypothesis is that the most important transcriptional

determinant of phenotype is the extent to which effector proteins are

induced after infection. To measure this, we initially constructed a

set of principal components (PCs) from the 61 genes in our dataset

with a known or putative ‘‘effector’’ function. These include

antimicrobial peptides, components of the phenoloxidase cascade,

lysozymes, putative iron-sequestration proteins, and some less-well-

characterized genes such as the Turandots. For both the Sm-

induced dataset and the Ef-induced dataset, the variance explained

by the first principal component is substantially higher than the

variance explained by any other, and so we have focused on the first

PC when looking for correlations with phenotypes.

This first PC estimated from the effector genes in the Ef-induced

sample is significantly positively correlated with E. faecalis bacterial

load (Figure 5A; b= 74.8, F1,28 = 7.309, P = 0.01153), explaining

just over 20% of the variance among lines in resistance to E. faecalis

(r2 = 0. 207). This PC is dominated by negative loadings of several

antimicrobial peptide genes (Mtk, DptB, AttC, Drs) and genes

encoding several uncharacterized peptides known to be induced

by infection (IM23, IM10, TotM, IM2, IM4, IM1). The full set of

loadings is available as Table S5. Thus, this analysis suggests that

genetic lines that induce antimicrobial peptides (and potentially

related peptides) more strongly (i.e., have a lower PC1) sustain a

lower bacterial load and thus are better able to resist infection.

We also examined the Sm-induced sample using a similar

procedure. However, we do not see any correlation between the

Figure 4. Expression of pole hole correlates with S. marcescens
bacterial load. Normalized expression of pole hole in uninfected flies
plotted against bacterial load 28 hours after infection with S.
marcescens. See Methods for details.
doi:10.1371/journal.pgen.1000797.g004
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first PC from the effector genes in the Sm-induced sample and S.

marcescens bacterial load (b = 7.819, F1,28 = 0.2491, P = 0.6216),

despite the fact that the Sm-induced PC is quite similar to the Ef-

induced PC in terms of loadings. Serratia marcescens is resistant to the

antimicrobial effects of Cecropins [30], Drosocins, and Defensins

[31] suggesting that this bacterium may be particularly resistant to

Drosophila antimicrobial defenses and providing a plausible

hypothesis for the lack of effect of variation in effector gene

Figure 5. GenotypeRgene expressionRphenotype associations between PGRPSD_494 allele, Ef-induced expression of effectors,
and E. faecalis bacterial load. (A) First principal component from the expression of effectors in the Ef-induced sample, plotted against bacterial
load 28 hours after E. faecalis infection. (B) Box plot of the first principle component from the expression of effectors in the Ef-induced sample for the
two allelic states at the PGRPSD_494 marker. (C) Box plot of bacterial load 28 hours after E. faecalis infection for the two allelic states at the
PGRPSD_494 marker.
doi:10.1371/journal.pgen.1000797.g005
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induction on variation in bacterial load. The resistance of S.

marcescens to antimicrobial peptides may also explain the

disproportionate effect of expression level of the hematopoetic

gene pole hole on resistance to S. marcescens infections, as cellular

immunity may be the main mechanism of D. melanogaster resistance

to S. marcescens.

Genetic associations with PC1
A major challenge of quantitative genetics in Drosophila has been

to link genetic polymorphisms to phenotypes via differences in

expression. In this study, we have shown correlations between

transcript abundance and phenotype, as well as correlations

between genotype and phenotype. To look for genotype-

expression-phenotype correlations, we focused on the E. faecalis

bacterial load phenotype and the Ef-induced expression sample,

and asked whether any of the SNPs that have nominally significant

correlations with bacterial load are also correlated with the effector

induction PC1. Of the eight SNPs with at least nominal

associations between genotype and phenotype (P,0.05), we find

that one of them, PGRPSD_494, is also statistically associated with

effector induction PC1 (Figure 5B; b = 0.0235, F1,27 = 11.4,

P = 0.002237), explaining nearly 30% of the variance in this

principal component (r2 = 0.297).

The PGRPSD_494 marker is a C/T polymorphism located

approximately 500 bp upstream of the transcriptional start site of

PGRP-SD. The T allele is associated with both a higher bacterial

load after infection (Ef loadT-C = 0.6741; P = 0.02) and with lower

induction of antimicrobial peptides (higher PC1; Figure 5C).

PGRP-SD has been shown to have a role in the recognition of some

Gram-positive bacteria, including E. faecalis [32], and our data

suggest that naturally occurring variation in PGRP-SD may in fact

mediate the strength of the transcriptional response to infection,

and thus the ability of the fly to resist infection. This site does not

appear to be significantly associated with induction or naı̈ve

expression of PGRP-SD in our data, but as mentioned previously it

is associated with induction levels of 73 of the 329 immune genes

we assayed. No other SNP in our dataset is associated with

induction levels of more than 14 genes, and most are associated

with induction levels of fewer than 10 genes.

Functional differentiation of PGRP-SD alleles
In order to test whether there is differential activation of either

the Toll or the imd signaling pathway in lines carrying alternate

alleles of PGRP-SD, we selected 7 random lines carrying the T

allele and 7 random lines carrying the C allele at the

PGRPSD_494 marker for further study. We infected these 14

lines with E. faecalis (as described in the Methods) and then, at five

time points post-infection, assayed expression of two antimicrobial

peptides that are commonly used as read-outs for the two major

immune signaling pathways in Drosophila: DptA for the Imd

pathway, and Drs for the Toll pathway. We find that there is a

significant time by allele interaction for Drs expression (Table 5),

but not DptA expression (data not shown), suggesting that the

dynamics of Toll pathway activation are significantly different

depending on which PGRP-SD allele a given fly line carries.

Specifically, we find that lines carrying the PGRPSD_494 ‘C’

allele sustain Toll pathway activation at higher levels that those

carrying the PGRPSD_494 ‘T’ allele (Figure 6), consistent with the

observation that fly lines carrying the ‘C’ allele both have higher

expression of effectors (measured by the effector PC1 described

above) and sustain lower bacterial loads. Taken together, these

results suggest that allelic state at PGRP-SD has a significant

impact on downstream transcript abundance via modulation of

Toll pathway activation dynamics, which in turn leads to

observable differences in immune phenotypes.

Discussion

The pursuit of an understanding of underlying determinants of

phenotypic variation in Drosophila has a long history [33]. More

recently, the availability of high-throughput gene expression

microarrays has generated interest in correlating variation in

transcript abundance across genetic lines with differences in

phenotypes [5–7,10,11]. However, datasets that include both

genotype information and transcriptional variation have been rare

[but see 10,34]. In this paper, we have focused on attempting to

predict immunocompetence in D. melanogaster from SNPs in

candidate genes and transcript abundance, guided by the known

structure of the innate immune network [1].

The strong context dependence of association test results leads

us to focus on trends across functional classes of genes instead of

individual statistical associations between markers and bacterial

load phenotypes. We take advantage of the replication of our

Figure 6. Normalized expression of Drs after infection with E.
faecalis. Each of the two sampled alleles of PGRP-SD are plotted
separately. There is a significant time by allele interaction (P = 0.01072,
see Table 5 for details). Lines show the fitted model for each allele.
doi:10.1371/journal.pgen.1000797.g006

Table 5. Fixed-effect terms of the linear model of Drs
expression.

Term Estimate MCMC mean P-value

(Intercept) +1.01187 +1.01195 0.00001

Time +1.43119 +1.43512 0.00001

Time2 21.07752 21.07685 0.00002

PGRP-SD allele 20.02859 20.02811 0.41114

Time * PGRP-SD allele 20.93596 20.94389 0.01072

Time2 * PGRP-SD allele 20.33789 20.34431 0.34616

Polynomial terms are orthogonal polynomials calculated using the R function
poly(); p-values are estimated by MCMC (100,000 samples) using the R function
pvals.fnc(). Significant terms are in bold.
doi:10.1371/journal.pgen.1000797.t005
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experiment across four different bacterial strains, as well as

patterns of nominally significant associations within genes, to

increase confidence in our associations. We identify two loci, both

encoding proteins involved in bacterial recognition, that appear to

harbor genetic variation that is consistently associated with

differences in bacterial load phenotypes.

One of the these loci contains the closely linked genes GNBP1

and GNBP2. Several SNPs representing a single major haplotype

are associated with differences in bacterial load after infection with

both S. marcescens and P. rettgeri. It is somewhat unexpected to

suggest a role for variation at GNBP1 in resistance against Gram-

negative bacteria, as GNBP1 has only been shown to be involved

recognizing Gram-positive bacteria and activating the Toll

signaling pathway [35,36]. However, the major haplotype spans

both genes, making it impossible to determine the causal variant,

and no definitive role for GNBP2 is known. Notably, however, the

statistical support for an association between variation at this locus

and bacterial load after P. rettgeri infection is particularly strong,

and is significant even after strictly controlling family-wise error

rates. The second of these loci encodes PGRP-LC, the major

receptor in the Imd pathway [12,37–39]. Three SNPs at this locus

are associated with differences in bacterial load after infection with

S. marcescens, E. faecalis, and L. lactis. The observation that variation

in the Imd pathway, canonically thought to be principally involved

in resistance to Gram-negative bacteria, appears to associate with

differences in bacterial load after infection with Gram-positive

bacteria suggests that the innate immune network is dynamic with

extensive feedback, co-activation and crosstalk, consistent with

previous work demonstrating synergistic activation of the immune

response by the Toll and Imd pathways in combination [40]. This

pattern is further demonstrated by the pattern of associations

between genotype and gene expression: there are significantly

more associations than expected by chance between SNPs in both

the Toll and Imd pathways and signaling genes outside those

pathways (particularly in the JAK/STAT pathway).

This study, combined with previous candidate-gene-based

association studies between immunocompetence and polymor-

phisms on the second chromosome [2,3], allows us to infer general

patterns about the genetic architecture of immunocompetence in

Drosophila. Most of the significant associations between SNPs and

phenotype that we observe in this study are in genes encoding

recognition proteins, primarily PGRPs and GNBPs, suggesting that

variation in upstream components of the signaling network has

substantial phenotypic consequences. Strikingly, we find a near-

complete lack of significant associations, even without correcting

for multiple tests, in antimicrobial peptides. In this study and in the

previous studies, we genotyped 204 markers covering every known

antimicrobial peptide in D. melanogaster. Only a single marker

(CecC_1660), a noncoding SNP downstream of CecC, has a

nominal P-value less than 0.05, and even that marker is unlikely to

be a true association, as the association neither survives multiple

test correction nor is observed in multiple experiments. Taken

together, these studies provide convincing evidence that any

functional effect of genetic variation in D. melanogaster AMP genes is

far too small to be observed in experiments such as these. This

observation supports the previous inference from genetic evidence

that Drosophila AMPs are at least partially functionally redundant

[41].

A different picture is painted when considering the effect of

variation across lines in overall transcript abundance. Here, the

total induction of effector genes (primarily AMPs and other

induced peptides such as the Turandots) appears to correlate with

bacterial load, at least after E. faecalis infection. Together, these

observations suggest that while cis-acting variation in individual

AMPs may be of little consequence overall for resistance to

bacterial infection in D. melanogaster, the combined output of AMPs

after infection is a critical determinant of resistance. Thus, genetic

polymorphisms that influence expression of many downstream

components of the pathway can potentially have large effects on

resistance phenotypes, as appears to be the case for the

PGRPSD_494 marker. We additionally note that in both the

present and in our previous studies, SNP associations in candidate

genes have failed to explain the entirety of the observed genetic

variance. This indicates genetic variation for immunocompetence

that maps to genes outside our candidate list, or to more complex

(epistatic) interactions among genes.

The combination of genetic polymorphism, bacterial load

phenotypes, and transcript abundance thus allows us to propose

a model of the genetic architecture of immunocompetence

informed by the structure of the innate immune network. Genetic

variation in genes encoding proteins at the top of the network

(such as recognition proteins) can be amplified by the pathway (as

demonstrated by the association between variation at PGRP-SD

and the Ef-induced effector PC1), leading to more significant

associations with phenotype. However, genetic variation in genes

encoding proteins at the bottom of the network, such as AMPs, has

relatively little effect, as changes in any single effector protein do

not seem to cause large enough effects on phenotype to be

detectable in experiments of the scale we have performed. Since

there appears to be relatively little feedback between SNPs in

effector proteins and transcription of upstream genes (as

demonstrated by the dearth of associations between effector SNPs

and signaling gene transcripts), these effector SNPs probably have

relatively little impact in trans. Overall, then, it is polymorphisms in

upstream genes, and especially recognition genes, that lead to

variation in abundance of effectors, and ultimately to fitness

differences among lines (to the extent that resistance to infection

correlates with overall fitness), while single mutations in antimi-

crobial peptides are likely to be of relatively little consequence.

This view of the evolutionary and fitness consequences of

mutations in different components of the immune response is

consistent with what is known about the evolutionary history of

immune system genes in Drosophila. Population genetic and

molecular evolutionary studies have suggested little evidence for

adaptive evolution in antimicrobial peptides [42–44], which might

be expected given the lack of evidence for fitness consequences

attributable to segregating variation in these genes reported in this

study and others [2,3]. In contrast, we see significant evidence for

adaptive evolution in upstream components of the immune system

[42,43,45]; it is these genes that appear to harbor the population

variation with the largest consequences for individual fitness. By

combining expression data, genetic data, and knowledge of

network structure, we can gain a much better understanding of

the phenotypic consequences of genetic variation than any one

component could provide alone.

Methods

Drosophila lines and bacterial stocks
We evaluated ninety-four lines of D. melanogaster for resistance to

infection against each of four different bacteria. These lines are

originally derived from a natural collection of wild-caught D.

melanogaster from State College, PA by Anthony Fiumera. Each line

in the panel is homozygous for an individual third chromosome

isolated from the natural population and substituted into a

common genetic background. The construction of these lines is

described in more detail in Fiumera et al. [46]. The third

chromosome is the largest D. melanogaster chromosome, containing
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about 44% of the euchromatic genome, including genes encoding

proteins from all major functional classes of the immune system,

and thus represents the most natural chromosome on which to

focus our study. The D. melanogaster lines in this study were

challenged with each of four different bacteria, two Gram-positive

and two Gram-negative. The Gram-positive bacteria used are the

E. faecalis and L. lactis strains described in Lazzaro et al. [2]. The

Gram-negative bacteria used are the S. marcescens strain described

in Lazzaro et al. [2], and Providencia rettgeri [47].

Survey sequencing and genotyping
We ascertained markers to be genotyped by sequencing the

complete coding region and 1–2 kb upstream of 25 candidate loci

(listed in Table 3) from 8 lines. We selected loci to represent genes

encoding relatively well-characterized proteins that encompass a

range of immune functions. While using a candidate gene

approach necessarily means that we will not sample every

polymorphism that may be associated with phenotypic differences

among lines, our primary goal of capturing sufficient polymor-

phism to test hypotheses about the role of network structure

mediating genotype-phenotype associations is well served by such

an approach. We assembled sequencing reads into contigs using

Sequencher and manually identified SNPs and indels to assay in

the full panel of 94 lines. We used three different methods for

genotyping our panel of lines. Approximately half of the markers

were genotyped using SNPlex (Applied Biosystems, Foster City,

CA) and the remaining markers were genotyped using pyrose-

quencing assays, SNPstream (Beckman Coulter, Fullerton, CA), or

fRLFP [48]. A small number of markers were genotyped with both

SNPlex and pyrosequencing; for the rare cases where the genotype

call disagreed, we used the SNPlex call. After genotyping, SNPs

were filtered to produce a set of 137 usable markers (136 SNPs and

1 indel): markers with a minor allele frequency ,0.05 were

dropped, and only one marker (chosen at random) was kept from

any pair with LD (measured by r2).0.90. Annotation information

for each SNP, including the genotyping method used to assay each

SNP in the 94 lines, are presented as Table S6. Filtered genotype

calls for each line are presented in Table S7. Linkage

disequilibrium between each pair of genotypes is provided in

Table S8.

Bacterial infections
We infected the 94 D. melanogaster lines in a complete-block

design, with each line infected on each of three different days. On

each day, each line was infected by one of 3 to 5 infectors at

random, and a different infector infected each line on each day.

Typically 2-3 replicates per line per sex were obtained on each

day, for a total of 12–18 replicate data points for each D.

melanogaster line. The entire experiment was repeated indepen-

dently for each bacterial challenge. Flies were artificially infected

by septic pinprick as described previously [2,3]. Briefly, we pierced

the thoraces of individual D. melanogaster aged 3–5 days post-

eclosion with a 0.1-mm dissecting pin (Fine Science Tools, Foster

City, CA) coated in liquid culture (OD600 = 1.060.2) of the

bacterium of interest, delivering an average of 46103 bacteria to

each fly. Drosophila were maintained at 22u–24uC on a rich

dextrose medium for the duration of the experiment. To measure

bacterial load, we homogenized same-sex trios of flies 28 hours

post-infection in 500 ml of sterile LB and then quantitatively plated

the homogenates on standard LB agar plays using robotic spiral

platers manufactured by Spiral Biotech (Bethesda, MD) and Don

Whitley Scientific (Fredrick, MD). We incubated the plates

overnight at 37uC and then estimated the concentration of viable

bacteria in each homogenate using the colony counting systems

associated with each plater. Prior to plating, we diluted

homogenates of L. lactis 1000-fold, homogenates of P. rettgeri 100-

fold, and homogenates of E. faecalis 10-fold, all in sterile LB, in

order to correct for anticipated high bacterial loads. Our estimates

of bacterial load per fly were transformed to correct for these

dilutions before analysis. Mean bacterial load sustained by each

line against each of the four bacteria is presented in Figure 1 and

Table S7.

For some analyses, we generated a principal component from

bacteria load line means after infection by each of the four bacteria

using the prcomp() function in R. This principal component is

positively correlated with load after infection with all four bacteria,

suggesting it represents a common measure of immunocompe-

tence across bacteria. However, it is also likely that this principal

component captures some aspects of general vigor.

A number of recent studies have suggested that bacterial load

sustained after infection and survival to infections are not strongly

correlated in Drosophila melanogaster, suggesting that survival may be

mediated in part by tolerance to bacterial loads [49–51]. In this

study, we focus on resistance, as defined by bacterial load sustained

28 hours after artificial infection. Although knowledge of the

molecular mechanisms that determine tolerance is increasing [52],

there is not yet sufficient understanding of the underlying

mechanistic basis for tolerance phenotypes to allow fruitful

candidate gene association studies or to develop models based

on network structure and functional attributes of candidate genes.

BeadChip design
We selected 329 immune genes for inclusion on the custom

Illumina BeadChips based on a number of criteria, including

evidence for transcriptional regulation by infection in previous

microarray experiments, genetic or molecular evidence for a role

in immunity, and homology to known immune proteins in D.

melanogaster or other organisms. The remaining 384 non-immune

genes were selected either as controls or for other experimental

reasons. Each gene is represented by two different probes, each of

which is represented by an average of 30 beads on the array,

giving an extremely high degree of technical replication. Given the

number of samples assayed (as described below), we determined

that genome-wide expression approaches were not practical;

however, since numerous previous studies in D. melanogaster have

identified a robust set of immune-regulated transcripts [15,20,53]

we believe that a targeted expression approach represented by

custom Illumina BeadChips captures the vast majority of genes

whose expression is regulated by infection.

Expression infections
We selected a total of 30 lines for our expression analysis, biased

towards the upper and lower tails of the phenotypic distribution.

Males of each line were either infected with S. marcescens with E.

faecalis, as described above, or left uninfected, and then frozen

8 hours after treatment. We chose to use an 8-hour post-infection

timepoint as a compromise between earlier time points, where the

transcriptional response to wounding could be confounding, and

later time points that risked missing transcriptional events that

would be relevant to bacterial load at 28 hours after infection. We

extracted total RNA using Trizol (Invitrogen Corp., Carlsbad, CA)

following standard protocols, then made cDNA and amplified

RNA samples following the BeadChip protocol.

BeadChip hybridizations and data normalization
RNA samples were hybridized to BeadChips following standard

protocols and scanned. After scanning, we normalized the data

using the qspline method in the beadarray package for R. Mean
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probability of detection and signal intensity of control genes were

used as hybridization quality control: for samples that failed to pass

quality control checks, cDNA synthesis, RNA amplification, and

hybridization were repeated from the original RNA extractions.

Normalized induction after E. faecalis and S. marcescens infection

(where induction is measured as log2 signal intensity for the

infected sample minus log2 signal intensity for the uninfected

sample), as well as unnormalized expression data from all

treatments (Ef-infected, Sm-infected, Naı̈ve) are presented as

Dataset S1 and Dataset S2, respectively.

Quantitative PCR
For quantitative PCR experiments, we sampled three replicates

of 5–7 flies from each of 14 lines (7 carrying the C allele at PGRP-

SD_494, 7 carrying the T allele, randomly selected) at five time

points: uninfected (0 hours), 3 hours post-infection (with E.

faecalis), 6 hours post-infection, 12 hours post-infection, and

24 hours post-infection. Flies were frozen in liquid nitrogen,

RNA was extracted with Trizol, first strand cDNA synthesis was

carried out, and qPCR TaqMan assays were run using standard

protocols. We measured expression of three different genes: Drs,

DptA, and Rp49. TaqMan probe and primer sequences, and

reaction conditions, are available upon request from T.B.S. Data

points with raw Rp49 CT values more than 1.5 times the

interquartile range from the median were removed to eliminate

samples with very little RNA or poor reverse transcription

efficiency. Raw 1/CT values were normalized by Rp49 expression

and values for each plate were mean-centered. Normalized

expression of either Drs (Toll pathway) or DptA (Imd pathway)

was then used as the response variable in the following second-

order linear model:

Yijk ~ Timei z Time2
i z PGRPSDj z (Timei �PGRPSDj )

z (Time2
i �PGRPSDj )z Linek ze

ð1Þ

where Y is normalized expression, Time (i = 0,3,6,12,24) is time

after infection measured in hours, and PGRPSD (j = C, T) is allele

at the PGRPSD_494 marker, and Line (k = 3F, 3E, 8A, 12E, 9D,

7C, 4C, 11F, 6E, 1C, 9E, 1E, 7D, 6H) is the genetic line and is

treated as a random effect nested within PGRPSD. Because the

response to time is not linear, we fitted a second-order model with

a linear and quadratic time term, using the poly() function in R to

estimate orthogonal polynomial terms.

Statistical analysis
In order to test for associations between genotype and

phenotype, we analyzed the following model using the package

lme4 in R 2.6.0,

Yijklmn ~ Sexi z Allelej z Linek z Dayl z Infectorm

z Platern ze

where Y is bacterial load, Sex (i = 1,2) and Allele (j = 1,2) are main

effects, and Line (k = 1,94), Day (l = 1,3), Infector (m = 1,5), and

Plater (n = 1,2) are random effects. To assess significance, we

compared the model coefficient for the Allele term to the null

distribution obtained by permuting the genotype vector assigned

to each line 5070 times and reanalyzing the data with the same

model. The permutation approach was carried out as follows: for

each row of the dataset, we have columns representing the four

bacterial load phenotypes and the 137 genetic markers. For each

permutation iteration, we randomize the phenotype vector with

respect to the genotype vector, but do not shuffle relationships

between among load phenotypes or among genetic markers. In

this way, the permutation procedure preserves the correlations

among bacterial loads and among genetic markers, but random-

izes the association between genotype and phenotype.

For each permutation, we retain the estimated model coefficient

(effect size), and the x2 statistic for the test of the alternate and null

(without an Allele term) model. Because the permutations shuffle

the full genotype vector assigned to each line, rather than

individual allele states, linkage relationships among markers are

preserved in the permuted data. We use this fact to correct for

linkage relationships among markers for many tests. Using the x2

statistics from the permutated data, we can generate null

distributions of P-values under the appropriate linkage conditions

but assuming no significant genotype-phenotype associations.

We also use the x2 statistics to estimate a combined probability

of an association between all markers in a loci and a bacterial load

phenotype. In this case, we sum the x2 statistics for each marker in

a loci for the permuted dataset, and use that distribution as a null

distribution to compare the observed sum of x2 statistics within

each gene.

For our simulations to estimate the power of our experiment, we

collapsed Day, Infector, and Plater terms into a single Exper-

imental Error term, and then simulated 10,000 replicate datasets

for each combination of Gram type (positive or negative), minor

allele frequency (0.25 or 0.5) and Allele coefficient (0 to 1 in 0.1

increments). Each simulation assumes 3 replicates per experimen-

tal treatment (n = 3), per sex (n = 2), per line (n = 94), for a total

of 18 data points per line and 1692 per simulation. This

approximates our experimental conditions, with the caveat that

the simulations assume no missing data and so will be an upper

bound on our true power. Error terms are assumed to be normally

distributed with a mean of 0 and variance equal to our estimated

variance terms from Table 1, averaged across either Gram-

positive or Gram-negative bacteria. To calculate power, we

counted the number of tests significant at a nominal a of 0.01;

significance was estimated by comparing the fit of a mixed linear

model that included Line and Experimental Error as random

effects and Allele and Sex as fixed effects to the fit of a null model

that does not include a fixed effect of Allele.

In order to test for sex*marker interactions, we used a similar

approach. In this case, we compared the likelihood of the data

under the null model specified by equation (2) to likelihood of the

data under the following alternative model:

Yijklmn ~ Sexi z Allelej z (Sexi �Allelej )z Linek z Dayl

z Infectorm z Platern ze

where all terms are as described above. To assess significance, we

compared the likelihood ratio test statistic obtaining by comparing

the null and alternative models to the empirical null distribution of

likelihood ratio test statistics obtained by analyzing 1000 permuted

datasets in which the genotype vector assigned to each line was

shuffled.

To test for associations between genotype and expression, we

compared the likelihood of the data under the following linear

model:

Yij ~ Allelei z Probej ze ð4Þ

where Y is the normalized induction of a given gene (where

induction is measured as log2 normalized signal intensity for the

infected sample minus log2 normalized signal intensity for the

(2)

(3)
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control sample), Probe (j = 1,2) is a random effect representing the

two probes on the array for each gene, and Allele (i = 1,2) is the

fixed main effect of interest, to the likelihood of the data under the

null model that retains the random effect of Probe but includes

only a fixed intercept. As the number of tests is far too large for

permutations to be computationally feasible, we used the anova()

function in lme4 to assess the significance of the alternative model

using a likelihood ratio test.

In order to test for correlations between transcript abundance

and phenotype, we used two approaches. In the first approach we

tested each transcript against phenotype individually, using a

simple linear regression (with the model Load = Expression) and

assessing significance assuming the standard null distribution for

the F statistic. In the second approach, we generated principal

components from a priori subsets of transcripts, using the prcomp()

function in R, and then assessed the correlation between the first

principal component and bacterial load using a simple linear

regression.

To correct for multiple testing, we used an false-discovery-rate

(FDR) and/or Holm familywise error rate control approach, as

described in the Results section, implemented using the p.adjust()

function in R.

Supporting Information

Figure S1 Power calculations for association tests. Power is

calculated based on simulation as described in the Methods,

assuming a minor allele frequency of either 0.25 or 0.50 and using

estimates of variance components for the Gram-positive and

Gram-negative bacteria included in this study.

Found at: doi:10.1371/journal.pgen.1000797.s001 (0.74 MB EPS)

Table S1 List of all markers with tests for association with

bacterial load after infection with each of four bacteria (including

sex by marker interaction tests).

Found at: doi:10.1371/journal.pgen.1000797.s002 (0.06 MB

XLS)

Table S2 List of all gene-wise association tests.

Found at: doi:10.1371/journal.pgen.1000797.s003 (0.02 MB

XLS)

Table S3 List of all genes represented on the BeadChip arrays,

and their functional classification.

Found at: doi:10.1371/journal.pgen.1000797.s004 (0.05 MB

XLS)

Table S4 List of all genotype-expression associations significant

at a 10% false-discovery rate.

Found at: doi:10.1371/journal.pgen.1000797.s005 (0.07 MB

XLS)

Table S5 Loading for expression of E. faecalis and S. marcescens

induced effector genes onto the first principal component of

effector expression.

Found at: doi:10.1371/journal.pgen.1000797.s006 (0.02 MB

XLS)

Table S6 Annotation information for all SNPs included in this

study.

Found at: doi:10.1371/journal.pgen.1000797.s007 (0.03 MB

XLS)

Table S7 Genotypes for each line, and mean bacterial load after

infection with each bacteria for all lines.

Found at: doi:10.1371/journal.pgen.1000797.s008 (0.21 MB

XLS)

Table S8 Linkage disequilibrium for all marker pairs.

Found at: doi:10.1371/journal.pgen.1000797.s009 (0.33 MB

XLS)

Dataset S1 Normalized BeadChip expression data after infec-

tion with either Serratia marcescens or Enterococcus faecalis.

Found at: doi:10.1371/journal.pgen.1000797.s010 (1.24 MB GZ)

Dataset S2 Raw BeadChip expression data.

Found at: doi:10.1371/journal.pgen.1000797.s011 (5.96 MB GZ)
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