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Abstract

Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant
in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they
play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive
approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show
that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought.
Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex
(MTBC), but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the
M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via
horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus,
suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M.
smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the
largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that
four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by
macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is
transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis.
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Introduction

Toxin-antitoxin (TA) systems are ubiquitous in prokaryotic

genomes and have been proposed to play a role in several

important cellular functions [1]. These systems typically consist of

a two-gene operon encoding a toxic protein that targets an

essential cellular function and an antitoxin that binds to and

inhibits the toxin. Regulation of toxin activity is achieved through

differential stability of the stable toxin and the unstable antitoxin

[2]. In most cases, the antitoxin also acts as a transcriptional

autorepressor of the operon, such that degradation of the antitoxin

results in transcriptional induction of the TA genes. Most of what

we know about TA systems has come from the pioneering work in

E. coli, though their role in bacterial physiology is still

controversial. Some of the genome-encoded systems are activated

in response to environmental stress, resulting in cell stasis from

which these cells can recover under more favorable growth

conditions [2,3]. In contrast, it has also been reported that the

MazEF TA system participates in programmed cell death [3–6].

Importantly, the HipBA TA system has been implicated in the

formation of persister cells, a subpopulation of bacteria that exhibit

antibiotic tolerance in an otherwise susceptible population [7,8]

and may thus contribute to the long treatment times required to

cure some infections. Because TA systems were discovered as

plasmid stability elements, it has also been proposed that genomic

TA loci may similarly stabilize or help to ensure the maintenance

of genes encoded nearby in the genome [1,9,10]. Finally, it has

also been postulated that these systems are simply selfish genetic

elements that function only to maintain their own existence in a

genome [1,11]. Although these studies have provided a wealth of

information regarding the function of TA systems in E. coli, their

role in the physiology of other microbes remains largely

unexplored.

The most common mechanism of TA system toxicity is

mediated through mRNA cleavage, resulting in translation

inhibition [2,12,13]. Two well-characterized TA system families

of E. coli, MazEF and RelBE, have been shown to act via this

mechanism and cleave specific three-nucleotide sequences

[14,15]. The toxins of the largest family of TA systems in M.

tuberculosis, VapBC, contain PIN domains, a motif thought to be

associated with ribonuclease function [16] and have been shown

to block translation via mRNA cleavage [17–19]. Transient
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activation of these mRNases may allow the bacteria to adapt to

stress not only by inhibiting replication, but also by degrading

existing transcripts, allowing a rapid change in the metabolic

program of the bacteria.

Given that a TA system is required for the formation of

persisters in E. coli, it has been speculated that the TA systems of

M. tuberculosis may govern cell division decisions during infection

[10]. In the majority of individuals infected with M. tuberculosis, the

bacteria initially grow and then establish a latent, asymptomatic

infection that can persist for decades with the potential to

reactivate later in life [20,21]. These persistent bacteria are

thought to adopt a slowly or non-replicating state in response to

environmental stresses encountered in the host [22,23], yet the

mechanisms by which this non-replicating state is achieved are

unknown. Because the majority of current antimicrobials require

bacterial growth to exert their killing action, these non-replicating

persistent bacteria are thought to comprise an important

subpopulation of bacteria that is refractory to antibiotic therapy

[24]. A similar antibiotic-tolerant state is elicited by TA system

activation in other bacteria [25], suggesting that TA systems may

contribute to the long duration of antibiotic therapy required to

cure tuberculosis.

The most extensively studied culture condition to induce cell

stasis in M. tuberculosis is hypoxia [26–28]. Gradual oxygen

depletion in culture results in significant changes in metabolism

and gene expression, leading to a non-replicative persistent (NRP)

state [26]. Because bacteria experience an effectively hypoxic

environment in vivo as a result of reduced oxygen availability and

exposure to nitric oxide (NO), it is thought that hypoxia-induced

NRP is similar to the in vivo state [21,26,29,30]. Additionally, these

two conditions result in a significant overlap in gene expression as

they both induce the dormancy regulon, a set of genes under the

control of the transcription factor DosR [26,31]. Bacilli grown

under hypoxia exhibit a tolerance to antimicrobial therapy [26].

Given that hypoxia results in a state of cell stasis and the formation

of antibiotic-tolerant persisters, TA systems are prime candidates

for mediating this transition both in vitro and in vivo.

Recent bioinformatics studies revealed that the M. tuberculosis

genome encodes numerous TA system homologs and many PIN

domain-containing proteins, far more than any other intracellular

pathogen [16,32–34]. Although these studies suggested that there

has been a significant expansion of TA systems in M. tuberculosis,

these analyses may have missed distantly related homologs and

novel families of TA systems and thus the total number of TA

systems in M. tuberculosis may be even greater. Additionally, how

the M. tuberculosis genome evolved to acquire and maintain these

TA systems during its evolution is unclear. To date, there has not

been a comprehensive comparative analysis to determine whether

the M. tuberculosis TA systems have been selectively maintained in

the pathogens of this genus. TA systems are often associated with

mobile genetic elements and are thus commonly acquired by

horizontal gene transfer [16,32], yet only three of the M. tuberculosis

TA systems have been definitively assigned to a known genomic

island [35,36]. Although the evolutionary history of these genes is

uncertain, the vast number of TA systems in M. tuberculosis evokes

the question of whether the expansion of TA systems in M.

tuberculosis plays an important role in the physiology of the bacteria.

A subset of the putative M. tuberculosis TA genes have been

partially characterized but our knowledge of the full complement

of TA systems thus far is very fragmented [12,13,37–39].

Therefore, a comprehensive and systematic analysis is needed to

provide a foundation on which to investigate the role of this

interesting gene family in M. tuberculosis biology. Although recent

bioinformatic analyses have expanded the number of putative TA

systems encoded in the M. tuberculosis genome [16,32,33], the key

questions of how many of these genes encode functional TA

systems and which of these systems are important in M. tuberculosis

biology have not been addressed.

Here we report the results of a comprehensive strategy to

identify and examine the putative TA systems encoded in the M.

tuberculosis genome. Our approach revealed many more putative

TA loci than previously appreciated. Expression of each of these

systems in M. smegmatis, a fast-growing relative of M. tuberculosis,

revealed a subset that encodes bona fide TA systems. Importantly,

we identified three novel systems that were not previously

recognized and bear no similarity to known TA genes, and thus

may represent new families of TA systems. Additionally, by

performing comparative genomic analysis across the mycobacte-

rial genus, we made the striking discovery that the vast majority of

these systems are conserved only in the MTBC and are absent

from mycobacteria outside this complex, including closely-related

pathogenic species. The acquisition and expansion of TA systems

likely occurred coincident with or after speciation of the MTBC

from the last common ancestor, suggesting an important role for

these genes in M. tuberculosis evolution. We demonstrate that toxins

with homology to RNases inhibit translation and have RNase

activity in vitro, while a novel toxin likely functions via a different

mechanism. Finally, we show that subsets of these genes are

upregulated during hypoxia or macrophage infection, providing

strong evidence that these systems are activated during specific

stresses likely encountered in the host.

Results

The genome of Mycobacterium tuberculosis encodes
several TA system homologs, as well as novel TA systems

To broadly search the M. tuberculosis genome for putative TA

systems, we reasoned that a combination of approaches would be

more powerful than a single strategy. To this end, we utilized three

complementary approaches that took advantage of different

characteristics of known TA systems. First, we performed PSI-

Author Summary

Tuberculosis (TB) continues to be a major global health
problem, causing 2 million deaths every year. A hallmark of
TB pathogenesis is that the bacilli can enter into a slow or
non-growing state in response to the host immune
system. Because these persistent bacteria are resistant to
antibiotic treatment, efforts to eliminate TB from the
human population must include therapies to target
dormant organisms as they can eventually resume
replication to cause active disease. How Mycobacterium
tuberculosis, the causative agent of TB, alters its replication
dynamics in response to host cues is not understood.
Toxin-antitoxin (TA) systems, which may control persis-
tence in other bacteria, are massively expanded in M.
tuberculosis, suggesting that they are important for TB
pathogenesis. Surprisingly, the vast majority of these
numerous TA systems are conserved only in pathogenic
mycobacteria, suggesting their acquisition was important
in M. tuberculosis evolution. Of the 88 putative TA systems
identified, we show that 30 are functional in mycobacteria.
A subset of these systems is activated upon exposure to
stresses encountered during infection, indicating that
specific TA systems are involved in adapting to environ-
mental cues in the host. These genes are promising
candidates for the development of novel therapies to
target persistent bacteria.

Toxin-Antitoxin Systems of M. tuberculosis
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BLAST searches of the M. tuberculosis genome using the toxin and

antitoxin protein sequences from each of eight major TA system

families: CcdBA, HigBA, HipBA, MazEF, ParDE, RelBE,

VapBC, and Doc/PhD (Table S1). When possible, we used

sequences from both distantly-related organisms (Gram-negative)

and more closely-related organisms (Gram-positive, high-GC) to

search for homologs. Second, we expanded this list to include PIN

domain-containing proteins and toxin-antitoxin systems identified

in previous analyses [16]. Finally, we used a sequence-independent

approach to identify pairs of adjacent genes encoded in the M.

tuberculosis genome that bear no homology to known TA systems

but share a similar genomic organization [40]. This method,

similar to an approach used to identify novel TA systems in E. coli,

included constraints on size, orientation, and spacing of putative

TA pairs. Candidate genes from all three methods were filtered

using four criteria for the genomic organization of TA systems: 1)

the putative toxin and antitoxin genes were adjacent to one

another, 2) the two putative genes were separated by fewer than

150 bp, likely comprising an operon, 3) neither gene encoded a

protein larger than 150 amino acids, and 4) the upstream gene

(putative antitoxin) was smaller than the downstream gene

(putative toxin). The last criterion was disregarded for cases in

which there were small differences in size provided that both the

putative toxin and antitoxin had conserved protein domains

associated with their proposed function. Additionally, we made an

exception in the case of the lone HigBA homolog, as the

orientation of the toxin and antitoxin are reversed in this system

[32].

In total, we generated a list of 88 putative TA systems in M.

tuberculosis (Figure 1A and Table S1). Our list includes 62 gene

pairs that were identified by homology. In cases for which the

putative toxins and antitoxins belonged to different TA families,

the TA system homology was assigned based on the homology of

the toxin gene (Table S1). Toxins that contain PIN domains are

most closely related to the VapBC family and thus we have

classified TA systems with toxins containing these domains as part

of the VapBC family (Figure 2, Table S2, and Table S3). We

identified an additional 26 putative systems that share no sequence

similarity to known TA genes and thus may represent novel

systems (Figure 1A and Table S2). Two other groups have

incorporated homology-independent methods in addition to

traditional homology-dependent searches to aid in the compre-

hensive identification of TA systems in prokaryotic genomes

[33,41]. Similar to the methods used here, Sevin and Barloy-

Hubler utilized a sequence-independent approach that relies on

the characteristic size, gene organization and spacing of known

TA systems to develop an automated, web-based tool termed

RASTA-Bacteria. Makarova, et al. used a novel approach that

identifies pairs of genes that are significantly non-uniformly

distributed in prokaryotic genomes. Comparison of our results

with those of the above studies revealed that our methods

identified a large number (23–28) of putative new TA systems,

largely of the novel class, not identified in either the Makarova

study nor deemed significant by RASTA-Bacteria (Figure S1).

TA system expansion is unique to the species of the
MTBC

To better define when in evolutionary history TA module

expansion occurred, we examined both published and unpub-

lished genome sequences spanning the genus Mycobacterium for

orthologs and homologs of the known and newly identified TA

systems present in M. tuberculosis. We included the draft genomes of

several members of the MTBC, including M. canetti, which is the

deepest diverging lineage of this group [42], as well as the genomes

Figure 1. Identification and testing of putative TA systems. (A) Three approaches were used to identify putative TA systems. These are
indicated as BLAST (Non-PIN; homologs found through BLAST analysis that do not contain PIN domains), PIN Domain (PIN domain-containing
proteins), and Genome Org. Only (novel and not homologous to known TA systems). (B) M. smegmatis cultures with putative toxins or putative toxin-
antitoxin pairs under the control of the inducible acetamidase promoter were serially diluted and plated on solid media with (right panel) or without
(left panel) 0.2% acetamide. (C) Summary of toxin and antitoxin testing results: not tested (unable to PCR or clone gene products), not toxic (no toxin
activity was detected), toxic only (toxicity was not relieved by the putative antitoxin), or a TA system (toxic activity relieved by antitoxin). (D)
Functional TA systems were identified as novel, PIN domain-containing proteins, or homologs found by BLAST (non-PIN domain-containing proteins).
Genes found by BLAST were further subdivided by the TA system family to which they belong.
doi:10.1371/journal.pgen.1000767.g001

Toxin-Antitoxin Systems of M. tuberculosis
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of M. marinum and M. kansasii, which are the most closely related

mycobacterial species that lie outside the MTBC [35,43]. Finally,

completed genomes of rapidly growing environmental mycobac-

teria and the slow growing pathogens M. leprae, M. ulcerans and M.

avium were included. We used reciprocal best BLAST hit and

genomic context analyses [44] to identify orthologs and homologs

of the toxin portion of 65 of the 84 putative M. tuberculosis TA

systems described above. For all top BLAST hits, we then

determined whether an associated antitoxin was encoded nearby

in the genome. 23 putative toxin genes identified by genomic

organization were excluded from this analysis as we found no

supporting evidence based on either homology or over-expression

experiments (see below) that they encoded functional toxins.

Analysis of the MTBC identified orthologs of nearly every TA

system in each of the genomes analyzed (Figure 2 and Table S3).

All of the TA systems were conserved in M. microti, and only one

toxin, Rv2653c, which is encoded on a prophage, was absent in M.

bovis and M. africanum. Six toxin genes appeared to be absent in M.

canetti, including the prophage-encoded toxin Rv2653c. Analysis of

the surrounding genomic sequences, however, revealed that

sequences homologous to three of these genes, Rv0624, Rv0627

and Rv1102c, were present in the M. canetti genome but had been

disrupted by genomic rearrangements, including the insertion of

transposon-like sequences (data not shown). The last two toxins

absent from the M. canetti genome, Rv0299 and Rv0301, are

encoded on a genomic island in M. tuberculosis that has previously

been shown to be absent in several M. canetti strains (Table 1).

These results suggest that the vast majority of TA systems were

present in the progenitor of the MTBC. The finding that a small

number of TA genes have been lost in M. canetti is consistent with

its assignment as the deepest branching member of the MTBC

lineage [42].

BLASTP analysis identified putative toxins in several mycobac-

terial genomes outside of the MTBC (Figure 2 and Table S3). In

most cases, however, the surrounding genomic regions did not

demonstrate conservation of gene content and order with the M.

tuberculosis genome, suggesting that these related TA systems were

acquired independently in each bacterial species rather than

having evolved from a common ancestral acquisition event.

Alternatively, because TA systems are often associated with mobile

genetic elements, these systems may have been present in a

common ancestor and subsequently moved in the genome as each

species diverged. Three of the five TA systems (coding and

pseudogenes) identified in M. leprae and two of the 12 TA systems

found in the M. kansasii genome are in regions with similar gene

content and order to that of M. tuberculosis, arguing that they

evolved from a common ancestral acquisition event. Intriguingly,

the only TA module encoded in all genomes analyzed was the

novel TA system Rv0909-Rv0910, identified in the homology-

independent search.

Strikingly, all but two of the TA systems present in M. tuberculosis

are absent in the closely related pathogen M. marinum. Closer

analysis of these revealed that the antitoxin gene for one of them,

Rv3181c, contains two point mutations resulting a significantly

truncated, and likely nonfunctional, protein (data not shown). This

lack of conservation of TA systems was surprising given that M.

marinum is thought to be the closest genetic relative of M. tuberculosis

outside of the MTBC [35,45]. These findings strongly support the

idea that TA gene expansion occurred after the MTBC and M.

marinum diverged from their last common ancestor, and suggests

that these systems play an important role in the unique biology of

the MTBC. In support of this idea and consistent with the known

origins of TA systems in other bacteria, we discovered that many

of the M. tuberculosis TA systems are encoded in locations in the

Figure 2. TA system conservation across the genus Mycobacte-
rium. Phylogenetic tree based on 16S rDNA sequences showing
conservation of TA systems. The tree was constructed using Neighbor-
joining inference method and nodes supported by bootstrap val-
ues.70% (1,000 replicates) are shown. Nocardia farcinica (Nfa) was
used as the outgroup. TA systems are arranged according to family
(vapBC, mazEF, relBE, parDE, higBA, and novel); for details see Table S6.
Orange represents orthologs (BLAST best reciprocal hits displaying
synteny), yellow: BLAST best reciprocal hits residing in different
genomic contexts (homologs), blue: pseudogenes residing in similar
genomic context, green: pseudogenes residing in different genomic
contexts, and black indicates no hits were detected by BLAST.
Abbreviations: Nfa Nocardia farcinica; Mab Mycobacterium abscessus;
Mgi Mycobacterium gilvum; Msm Mycobacterium smegmatis; Mva
Mycobacterium vanbaalenii; Mjl Mycobacterium sp. JLS; Mmc Mycobac-
terium sp. MCS; Mkm Mycobacterium sp. KMS; Mle Mycobacterium
leprae; Mka Mycobacterium kansasii; Mpa Mycobacterium avium str. k10;
Mav Mycobacterium avium 104; Mul Mycobacterium ulcerans; Mma
Mycobacterium marinum; Mtu Mycobacterium tuberculosis; Mmi Myco-
bacterium microti; Mbo Mycobacterium bovis; Maf M. africanum; Mca
Mycobacterium canetti.
doi:10.1371/journal.pgen.1000767.g002
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genome that were previously identified as regions of horizontal

gene transfer [35,46]. By cross referencing the list of TA systems

identified here with previously defined genomic islands [35,46], we

discovered that 24 (37%) of these systems are located in these

regions (Table 1). It has been proposed that the acquisition of

foreign DNA sequences via horizontal gene transfer was a defining

event in the speciation of the MTBC [42,46,47]. The large

number of TA systems that were acquired during this large influx

of heterologous DNA, and subsequently maintained, lends support

to the idea that these genes are integral to the biology of the

MTBC.

Inducible expression in M. smegmatis identifies many
functional TA systems

To begin to understand the functions and biological roles of the

numerous TA systems of M. tuberculosis, we first sought to

determine the number of putative TA systems that encode

functional toxins. We used the inducible acetamidase promoter

to conditionally express 78 of the putative toxin genes we identified

in M. smegmatis. We were unable to clone and express 10 putative

genes, likely due to differences between our strain (Erdman) and

the published sequence of H37Rv. Toxicity was assessed by

plating 10-fold dilutions of cultures on solid media in the presence

or absence of inducer. Genes encoding a toxic protein product,

such as Rv0301 and Rv2829c, inhibited growth of cultures on plates

with inducer, but did not affect growth of bacteria on plates

without inducer (Figure 1B). This method identified a total of 32

genes that resulted in toxicity when expressed, while the remainder

of the genes tested did not inhibit growth under inducing or non-

inducing conditions (Table S2). Since many genes can be toxic to

cells when over-expressed, it was important to show that

expression of the cognate antitoxins of these genes could relieve

the toxic activity. Therefore, for each gene that was toxic, we then

co-expressed the toxin and antitoxin, under the control of the

same inducible promoter, to determine if it allowed cell growth in

the presence of inducer (Figure 1B). Toxic proteins that were

Table 1. Inferred genomic islands encoding TA systems and associated genes.

Genomic Island TA systems encoded Associated genes implicated in virulence or stress adaptation

Rv0057-Rv0080a Rv0064A-0065 (vapBC1) None

Rv0298-Rv0303b Rv0298-0299 None

Rv0300-0301 (vapBC2)

Rv0595c-Rv0614b Rv0595c-0596c (vapBC4) None

Rv0598c-0599c (vapBC27)

Rv0608-0609 (vapBC28)

Rv0656c-Rv0666b Rv0656c-0657c (vapBC6) Rv0666c

Rv0659c-0660c (mazEF2)

Rv0661c-0662c (vapBC7)

Rv0664-0665 (vapBC8)

Rv0739-Rv0750b Rv0748-0749 (vapBC31) None

Rv1397c-Rv1398cb Rv1397c-1398c (vapBC10) None

Rv1942-Rv2028a Rv1942c-1943c (mazEF5) mce3 operond

(Rv1988-Rv1991c)b Rv1955-1956 (higBA) otsB1e

Rv1959c-1960c (parDE1) dosT and dormancy regulon member fdxAf

Rv1962A-1962c (vapBC35)

Rv1982A-Rv1982c (vapBC36)

Rv1991A-1991c (mazEF6)

Rv2009-2010 (vapBC15)

Rv2100-2108a Rv2103c-2104c (vapBC37)

Rv2491-Rv2494b Rv2493-2494 (vapBC38)

Rv2801c-Rv2824cb Rv2801c-2802c (mazEF9) Direct repeat (DR) locus; phage resistanceg

(Rv2802-2830)a Rv2808c, Rv2813c

Rv2871-Rv2872b Rv2871-2872 (vapBC43)

Rv3320c-Rv3324ca Rv3320c-3321c (vapBC44) Molybdopterin locus IIh

a [35].
b [46].
c [57].
d [61].
e [62].
f [63].
g [64].
h [65].
TA systems encoded in previously described genomic islands. Genomic islands identified by parametric or combined parametric and phylogenetic methods [35,46]
were examined for the presence of the TA systems identified in this work.
doi:10.1371/journal.pgen.1000767.t001
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inactivated by their putative antitoxins, as in the case of Rv0300-

0301 and Rv2829c-2830c, were then considered functional TA

systems. For two of the RelBE homologs, Rv1246c and Rv2866, we

were unable to obtain transformants in M. smegmatis. This result is

most likely due to low levels of expression from the acetamidase

promoter in the absence of inducer. For these toxins, antitoxin

activity was assessed by the ability to obtain transformants with the

vector containing both the toxin and the antitoxin.

In total, we discovered 30 pairs of genes in the M. tuberculosis

genome that function as toxin-antitoxin genes in M. smegmatis

(Figure 1C and 1D). The majority of the TA systems we identified

came from those found by BLAST and PIN-domain containing

proteins. Indeed, nearly half of the putative systems identified by

these methods are functional TA systems. However, of the genes

found by our homology-independent search, a much lower

percentage of genes were subsequently found to be functional

TA systems. This is not surprising, given that the majority of these

genes are not predicted to have protein domains associated with

toxin or antitoxin activity. While this method was less efficient, the

three novel TA systems identified (Rv0298-0299, Rv0909-0910,

and Rv2653c-2654c) are of particular interest. Although Rv0299

appears to be distantly related to MazF, neither Rv0910 nor

Rv2653c bear any homology to known TA systems, nor to one

another, raising the possibility that they may function by novel

mechanisms of toxicity (Figure 1D).

Comparative genomic analysis reveals a novel, conserved
TA system

Strikingly, Rv0910 was the only toxin present in all genomes

analyzed and, in all cases, orthologs of the putative antitoxin

Rv0909 were also present nearby (Figure 3A). In contrast to many

of the other TA systems identified, this operon is not encoded in a

genomic island, and its position in the genome is relatively

conserved throughout the genus (Figure 3A and Table 1). These

findings suggest that the Rv0909-Rv0910 system may play a

conserved role in the physiology of this otherwise diverse group of

bacteria.

To determine whether this novel, conserved putative TA system

acts as a TA system in other mycobacteria, we cloned the Rv0909-

0910 orthologs MSMEG_5635-5634 from M. smegmatis. We

assessed the ability of MSEMG_5634 to inhibit cell growth as

well as the ability of MSEMG_5635 to rescue growth inhibition as

described above. Plating cells expressing toxin alone on media

containing inducer led to growth inhibition that was ameliorated

when the cognate antitoxin was co-expressed with the toxin

(Figure 3B). These results show that a second member of this novel

TA family functions as a TA pair, supporting the idea that

Rv0909-0910 represents the founding member of a new TA

family.

VapB antitoxins show specificity for their cognate VapC
toxins

The VapBC family comprises, by far, the largest family of TA

systems in M. tuberculosis. Given that there are a large number of

these related genes, we wanted to determine the potential for

cross-talk between VapB antitoxins and VapC toxins. Specifically,

we wanted to determine if VapB antitoxins can inactivate non-

cognate VapC toxins, resulting in the inhibition of toxicity. To

address this question we expressed four heterologous VapB and

VapC proteins, under the control of separate inducible promoters,

and assessed growth in the presence and absence of both inducers.

Remarkably, although these are related proteins, our results show

that these antitoxins are only able to inhibit their cognate toxins

(Figure 4). Although we analyzed only a subset of the VapBC

family, this data strongly suggests that VapB antitoxins are highly

specific for their associated toxins. Given these results, we conclude

that cross-talk is similarly unlikely to occur in vivo.

VapC homologs inhibit translation and have RNase
activity in vitro

Many toxins of TA systems function as RNases and result in

translation inhibition when activated [14,48]. In particular, PIN

domain-containing proteins, including some VapC homologs,

have been shown to have RNase function [17–19,49]. We

expressed the VapC homolog Rv0301 in M. smegmatis and

monitored bulk translation via incorporation of 35S-methionine

over a six hour time course. As shown in Figure 5A, Rv0301

expression led to inhibition of translation, an effect that was

reversed by co-expression of its antitoxin, Rv0300. The effect on

protein synthesis preceded the inhibition of growth caused by this

toxin (Figure 5B). Likewise, expression of three other VapC

homologs (Rv1561, and Rv2829c, Rv3408) also inhibited

translation (Figure 5A). As a control, addition of hygromycin, an

antibiotic that targets protein synthesis, inhibited incorporation of
35S-methionine (Figure 5A) and growth (Figure 5B), as early as one

hour after addition to the media. The modest difference in the

kinetics of translation inhibition between toxin induction and

addition of antibiotics is likely due to time required for

transcription and synthesis of the toxin.

Given the proposed ribonuclease function associated with PIN

domains, we reasoned that a likely mechanism for translation

inhibition of the toxins tested was RNA cleavage. Indeed, in vitro

RNase activity of an M. tuberculosis VapC homolog was recently

demonstrated [49]. To test the ability of these proteins to

hydrolyze RNA, we performed in vitro RNA cleavage assays with

purified VapC proteins and the viral MS2 RNA, a substrate that

has been effectively used to detect RNase activity [13]. As shown

in Figure 5C, incubation of MS2 RNA with E. coli MazF, or with

either of two M. tuberculosis VapC homologs, Rv0301 and Rv1561,

resulted in degradation of the RNA, though Rv0301 exhibited less

potent RNase activity. The incubation of the toxins MazF and

Rv0301 with their cognate antitoxins, MazE and Rv0300,

respectively, inhibited this RNase activity (Figure 5D). As controls,

we also included MS2 RNA incubated with buffer alone, as well as

an MBP-His protein fragment, which both failed to cleave MS2

RNA (Figure 5C). These results show that M. tuberculosis VapC

homologs inhibit translation and strongly suggest that these toxins

affect translation directly via RNA cleavage.

A novel toxin inhibits growth but not translation
In contrast to our results with the VapC homologs, expression of

the novel toxin Rv0910 did not result in inhibition of translation

throughout the duration of the assay (Figure 5A). However,

expression of this toxin did inhibit cell growth, suggesting that

Rv0910 targets a cellular process other than translation

(Figure 5B). Additionally, incubation of MS2 RNA with purified

Rv0910 yielded intact MS2 RNA, consistent with this idea. The

specificity of the translation assay was verified by treating cultures

with the antibiotic ciprofloxacin, a DNA replication inhibitor.

Although the antibiotic inhibited growth (Figure 5B) and caused

DNA damage as measured by recA expression (Figure S2), it did

not affect translation over the course of the experiment (Figure 5A).

This important specificity control shows that disruption of other

macromolecular synthesis pathways does not affect translation

during this assay, and is similar to the results obtained with

expression of Rv0910. Taken together, these results strongly

suggest that Rv0909-0910 represents a novel TA system that

Toxin-Antitoxin Systems of M. tuberculosis
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inhibits cell growth via a mechanism distinct from the VapBC

family.

Subsets of TA systems are expressed in M. tuberculosis
under conditions of stress

The presence of such a large number of TA systems presents an

obvious question: What is the benefit of having so many of these

genes in one organism? We postulated that subsets of TA systems

important for M. tuberculosis biology may respond to different

cellular stresses. To test this hypothesis, we determined if any of

the functional TA systems in M. tuberculosis were transcriptionally

activated under two conditions encountered during infection. In

particular, we examined the response of TA systems under

hypoxic conditions in culture and during infection of IFN-c-

stimulated murine bone marrow-derived macrophages. To assess

TA activation, we took advantage of the fact that most antitoxins

Figure 3. Conservation of a novel TA system. (A) Genomic regions of Rv0909-Rv0910 TA module orthologs (orange) across diverse mycobacteria
showing conservation of toxin and cognate antitoxin genes as well as surrounding genomic context, as indicated by color coding of orthologs across
species. (B) M. smegmatis Rv0909-0910 orthologs encode a functional TA system. M. smegmatis cells expressing MSEMG_5634 alone or MSMEG_5634-
5635 under the control of the inducible acetamidase promoter were serially diluted and plated on solid media with (right panel) or without (left
panel) 0.2% acetamide. (A) adapted from the tree-browser function in MicrobesOnline [60].
doi:10.1371/journal.pgen.1000767.g003
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also function as transcriptional autorepressors, and thus degrada-

tion of an antitoxin results in increased transcription of its operon.

Although this increase in transcription leads to increased protein

synthesis of both the toxin and antitoxin, the unstable antitoxin is

typically selectively targeted for degradation by a protease, further

increasing transcription of the operon, while the more stable toxin

interacts with its cellular target [48]. In this manner, we are using

the increase in transcription as an indirect read-out of TA system

activation via degradation of the antitoxin, thus relieving its

transcriptional inhibitory activity.

We monitored the expression of each of the 30 functional TA

systems by quantitative PCR and obtained detectable signal for 25

TA systems during hypoxia and for 23 systems during macrophage

infection (Table S4 and Table S5). Two TA systems, Rv2009-2010

and Rv1955-1956, were induced during hypoxia (Figure 6A).

Transcription of hspX and fdxA, two genes belonging to the

dormancy regulon that are very highly induced during hypoxia,

was also induced, demonstrating that the bacteria experienced a

hypoxic environment (Figure 6A). Of the TA systems monitored

during macrophage infection, Rv1560-1561 and Rv0549c-0550c

were induced. As controls, transcription of hspX and icl were

greatly induced, consistent with previous results of the transcrip-

tional response following macrophage infection [50] (Figure 6B). It

is interesting that the two TA systems that are activated during

hypoxia are not activated during macrophage infection, given the

effectively hypoxic environment generated via nitric oxide

signaling following IFN-c stimulation of the macrophages. Indeed,

these two conditions both result in induction of the dormancy

regulon [50,51]. However, the TA genes tested here are not part

of the DosR dormancy regulon and are likely activated by

independent mechanisms. Certainly, it is possible that other TA

systems are also activated under these conditions but this was not

detectable by the methods used here. In light of these data, it

appears that TA systems are regulated independently from one

another, and expression of at least four of these TA systems is

modulated in response to different environmental stresses. This

supports our hypothesis that specific subsets of TA genes are

regulated in response to changes in the environment.

Discussion

Here we have shown that of 88 putative M. tuberculosis toxin-

antitoxin loci, 30 encode functional TA systems. The numbers of

both the putative and functional TA systems are significantly

greater than in any other organism studied thus far. Our sequence-

based searching of the M. tuberculosis genome, in conjunction with

previous bioinformatic approaches, has identified 62 TA systems

with homology to known TA systems [16,32,33]. Because

mycobacterial TA genes may have limited sequence identity with

distantly related homologs from other bacteria, there may be

additional TA systems that have yet to be discovered. Importantly,

incorporation of our sequence-independent method identified an

additional 26 loci bearing no homology to known TA genes,

allowing us to assemble one of the most comprehensive lists of

putative TA systems in M. tuberculosis to date.

It is striking that nearly all of the TA systems we identified are

well conserved among the MTBC but are largely absent from

species outside of this complex, including M. marinum. The paucity

of TA systems in M. marinum is particularly notable as the two

bacteria are highly related, sharing 3000 orthologs with an average

amino acid identity of 85% [35]. Therefore, the massive expansion

of TA systems is a distinguishing feature of the MTBC, and the

acquisition and maintenance of these genes was likely instrumental

for the evolution of M. tuberculosis. We discovered that of the 423

protein-coding genes located within these regions, 48 are TA genes

(Table 1). This frequency of TA genes (11%) is significantly higher

than that of the entire M. tuberculosis genome (4%), indicating that

there is an enrichment of TA loci in these regions. Our results,

combined with data from Becq et al. [46] and Stinear et al. [35],

lends strong support to the idea that many of the TA systems were

recently acquired via horizontal gene transfer after the divergence

between M. tuberculosis and M. marinum. It is possible, however, that

some of these genes were acquired in a common ancestor of the

slow-growing mycobacteria and subsequently lost in a subset of

extant species. In support of the latter hypothesis, M. leprae and M.

kansasii, bacteria that are thought to be more distantly related to

the MTBC, contain TA system orthologs that are clearly absent

from M. marinum (Figure 2 and Table S3). Alternatively, the

assignment of M. marinum as the closest relative of the MTBC may

be incorrect, as supported by whole-genome comparisons that

place M. kansasii as the nearest neighbor of the MTBC [43]. Given

the evidence that the vast majority of TA systems have no

counterparts in mycobacteria outside of the MTBC, the most

parsimonious explanation for their expansion is that these genes

were acquired after speciation. In addition, further amplification

of TA systems may have occurred in the MTBC via gene

duplication events.

It is curious that so many TA loci are present in the M.

tuberculosis genome. One possible reason for this expansion is that

genomic TA systems may function to stabilize the M. tuberculosis

chromosome, akin to the role of TA systems in stabilizing plasmids

[52]. Since toxins are typically more stable than antitoxins, TA

systems inhibit post-segregational plasmid loss because cells that do

not inherit the episome rapidly deplete the antitoxin protein,

leading to toxin activation and inhibition of growth. Indeed, there

is recent evidence that chromosomal TA systems may protect

adjacent regions of the chromosome from deletion [9]. In support

of this notion, many of the TA systems identified here are encoded

Figure 4. VapB Antitoxins are specific for their cognate VapC
toxins. M. smegmatis cultures carrying VapC toxins under control of
the inducible acetamidase promoter and VapB antitoxins under the
control of a tetracycline-inducible promoter were assessed for toxin
activity. The VapC toxin being tested is indicated on the left side and
the VapB antitoxins are indicated across the top of each set of panels.
Each set of panels includes strains tested on solid media without (top)
and with (bottom) inducers. The cognate toxin-antitoxin pair for each
set is indicated in blue.
doi:10.1371/journal.pgen.1000767.g004

Toxin-Antitoxin Systems of M. tuberculosis

PLoS Genetics | www.plosgenetics.org 8 December 2009 | Volume 5 | Issue 12 | e1000767



on genomic islands that include genes important for M. tuberculosis

virulence or physiology (Table 1). Alternatively, TA systems may

participate more directly in the physiology of M. tuberculosis by

functioning as stress response elements, as has been demonstrated

in E. coli [2,3,48,53]. There is a growing body of evidence that

some TA systems are induced during exposure to adverse

environmental conditions, such as exposure to antibiotics, allowing

cells to respond and adapt to the assault [54]. Indeed, a screen to

identify mutants in M. tuberculosis with altered growth kinetics

during transitions in carbon availability revealed numerous TA

systems identified in our analysis likely participate in growth rate

decisions [55]. In addition to responding to stress directly, the

HipBA TA system participates in generating slowly or non-

replicating persister cell subpopulations within a larger group of

growing bacteria [7]. In this way, TA systems provide resistance to

non-favorable environmental conditions as persister cells are better

able to survive the onslaughts of severe stress than are replicating

bacteria. Given the number and diversity of TA systems in M.

tuberculosis, it is possible that some serve to stabilize the genome

while others serve to provide stress resistance.

Figure 5. VapC homologs have RNase activity and inhibit translation but a novel toxin does not. (A) Cultures of M. smegmatis harboring
empty vector (pHR100) or acetamide-inducible toxin constructs were treated with 0.2% acetamide. At the indicated times, cells were labeled with of
35S-methionine at 37uC for 1 min and incorporation of radioactivity was measured. Incorporation at t = 0 was set as 100% translation. As controls, cells
were treated with 0.5 mg/ml ciprofloxacin (cip), or 25 mg/ml hygromycin (hyg). The average of three experiments is shown and error bars represent
the standard deviation. (B) Cultures of M. smegmatis were grown and induced as described above. The OD600 of each culture was measured at the
indicated times. Results are plotted as fold-increase of OD600 at each timepoint as compared to OD600 at t = 0. The average of three experiments is
shown error bars represent the standard deviation. (C) Purified toxins were incubated with MS2 RNA for 3 h at 37uC. The RNA was then purified and
electrophoresed in a 1% denaturing agarose gel. Included as controls were RNA alone (RNA), His-MBP (MBP), and E. coli MazF (MazF). (D) Purified
toxins MazF and Rv0301 were incubated with their respective GST-tagged antitoxins MazE (10 mg) and Rv0300 (5 mg) and 0.8 mg MS2 RNA for 3 h at
37uC. Reactions were electrophoresed in a 2% agarose gel.
doi:10.1371/journal.pgen.1000767.g005

Toxin-Antitoxin Systems of M. tuberculosis

PLoS Genetics | www.plosgenetics.org 9 December 2009 | Volume 5 | Issue 12 | e1000767



Of particular interest are TA systems that participate in the

biology of M. tuberculosis, either participating in stress-response or

persister formation. Our findings that four TA systems are

activated during cellular stress supports the notion that these loci

participate directly in M. tuberculosis physiology. For example, both

Rv1955-1956 and Rv2009-2010 are induced during the transition

to hypoxia (Figure 6A), suggesting they play a role in the

adaptation of M. tuberculosis to low oxygen conditions. Curiously,

both of the hypoxia-induced TA loci, Rv1955-1956 and Rv2009-

2010, are located within the same genomic island [35]. Although

these genes are not part of the ‘‘dormancy regulon’’, notable

members of this regulon, dosT and fdxA, are also in the same

genomic island. It may be that acquisition of this entire region

helped promote M. tuberculosis’ ability to respond to a hypoxic

environment. In addition to the TA genes upregulated by hypoxia,

Rv1560-Rv1561 and Rv0549c-0550c are specifically upregulated

during macrophage infection (Figure 6B), in agreement with

previous studies suggesting that these genes may be important

during infection [56,57]. Taken together, these data suggest that a

subset of TA systems is important for M. tuberculosis in vivo, perhaps

as stress-response elements.

In an attempt to identify novel classes of TA systems, we

incorporated a sequence-independent method in our bioinfor-

matics search. Importantly, this strategy revealed three novel TA

systems. One of these, Rv0909-0910, is conserved among the

diverse range of the mycobacterial species analyzed (Figure 2 and

Figure 3A), suggesting an ancient history and likely fundamental

role in mycobacterial physiology. Our results indicate that Rv0910

lacks RNase activity (Figure 5C) and thus probably functions by an

alternate mechanism than the majority of M. tuberculosis TA

systems. Interestingly, Rv0910 is most similar to the polyketide

cyclase group of the START domain superfamily of proteins [58].

Although it is not clear how a polyketide cyclase would function to

inhibit cell growth, our results demonstrate for the first time that

these two genes have toxin and antitoxin activities. It is interesting

to note that mycobacteria encode numerous polyketide synthases

and have an enormous capacity for lipid synthesis [35]. Since

many TA toxins inhibit macromolecular synthesis (translation,

DNA synthesis), it is tempting to speculate that Rv0910 may

inhibit lipid biosynthesis.

Although our approach yielded a total of 30 functional TA

systems, it is likely that there are additional TA systems in the M.

tuberculosis genome. Our search for putative systems was biased by

using characteristics of known TA systems, including constraints

on size and gene organization. Therefore, any TA system with

different features would have been excluded from our search.

Indeed, two other groups have incorporated homology-indepen-

dent methods for comprehensive discovery of TA systems in

microbial genomes and identify an additional 12–44 putative

systems in the M. tuberculosis genome, depending on the level of

scoring confidence chosen (Figure S1). We also cannot rule out the

possibility that some of the toxins that did not inhibit growth were

simply not expressed at sufficiently high levels using our system.

Additionally, although M. smegmatis and M. tuberculosis are similar,

we cannot discount the possibility that there are some species-

specific factors that may be required for the proper function of

some of the TA systems tested.

Our results differ significantly from two recent reports in which

M. tuberculosis TA systems were expressed in E. coli [12,39]. Of the

78 putative systems we tested in M. smegmatis, only 38 have been

evaluated in E. coli. Of the 30 functional TA systems we identified,

seven were not functional in E. coli and a further 40 putative

systems were not assessed. In contrast, only four systems were

uniquely toxic in E. coli. The different results obtained in these

studies may be due to the use of a distantly related host, E. coli,

rather than the more closely related species, M. smegmatis. For

example, specific factors such as transcript GC content, may

greatly influence the number of potential targets of an RNase, and

these differences are minimized by using another mycobacterial

species.

Given the huge expansion of VapBC homologs in M. tuberculosis,

it seems likely that there are many more toxins that function via

RNA cleavage than by other mechanisms. It is perplexing that one

genome would have so many genes encoding proteins that

perform the same function. One possibility is that most of these

TA systems participate solely in genome stability and thus

redundant function would not be an issue. However, all four of

the stress-responsive TA systems we identified are putative

RNAses. Therefore, another possibility is that, although they have

the same function, specific TA systems are under different

regulatory controls, such that only a subset are activated in

response to particular stresses. Having a wide variety of mRNases

under diverse regulatory mechanisms would allow the cell to adapt

to many different conditions. An alternative explanation is that the

different mRNases are actually functionally distinct. Under certain

conditions, it may be useful for the cell to express an mRNase with

a short, ubiquitous cleavage site that will target most of the existing

Figure 6. Subsets of TA systems are activated during stress. (A)
Cultures were grown in 1 liter roller bottles with a headspace ratio of
0.5 (830 ml culture) at 37uC, with slow stirring to induce NRP. At the
indicated days, cells were collected and RNA was isolated and amplified.
Gene expression was measured using qPCR. One of three similar
experiments is shown and error bars represent the standard deviation
within this experiment. (B) IFN-c stimulated bone marrow-derived
macrophages were infected with M. tuberculosis at an MOI of 10.
Bacterial RNA from intracellular bacilli was isolated and amplified. Gene
expression was measured by qPCR and normalized to 16S rRNA as an
internal control. Gene expression from in vitro grown log-phase cultures
(log) is included for comparison. One of three similar experiments is
shown and error bars represent the standard deviation within this
experiment.
doi:10.1371/journal.pgen.1000767.g006
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messages in the cell, and allow for newly transcribed messages to

be translated. This provides an efficient way to erase the previous

transcriptional profile of the bacterium, allowing the cell to

reprogram the proteome and thus rapidly change the metabolic

state of the cell during conditions of stress (Figure 7). Alternatively,

some TA systems may target only a limited number of messages

and, therefore, not inhibit bulk translation. For example, one

possible mechanism to tailor the response of the cell upon

expression of an mRNase is through the recognition site at which

mRNA cleavage occurs. Indeed, the cleavage sites for two M.

tuberculosis MazF homologs target pentad sequences, longer than

the three-residue recognition site of MazF in E. coli [13]. This may

allow the targeting of specific messages, giving rise to more subtle

changes in the metabolic state of the cell. It may be the presence of

so many mRNases that allows M. tuberculosis to regulate growth,

survival and metabolism during a wide range of environmental

stresses, including those encountered during infection. This

hypothesis is consistent with our findings that the vast majority

of TA systems are present only in the virulent mycobacteria of the

MTBC.

Materials and Methods

Strains and plasmids
All strains, plasmids and primers used in this study can be found

in Table S6.

Identifying putative TA systems
TA system homologs in M. tuberculosis were identified using PSI-

BLAST (NCBI) with a cut-off E-value of 1022. Iterations were

repeated until we obtained no new hits below the cut-off E-value.

The input sequences for this analysis included the toxins and

antitoxins of 8 major TA system families [32]. The origins of the

input sequences of each TA system family used for BLAST

analysis were as follows: CcdBA (F plasmid from E. coli), MazEF

(MazEF from E.coli, PemK from Rhodococcus erythropolis), Doc/Phd

(enterobacteria phage P1, Phd from Frankia alni ACN14a), RelBE

(RelBE from E. coli, PasBA from plasmid pTCF14 of Acidithioba-

cillus caldus, YoeB/YefM from E. coli), HipBA (HipBA from E. coli),

ParDE (ParDE from plasmid RK2 of E. coli), HigBA (HigBA from

plasmid Rts1 of E. coli, HigA of Xylanimonas cellulosilytica DSM

15894), VapBC (VapBC from Frankia sp., StbBC from plasmid

pDC3000B of Pseudomonas syringae). Following identification of

toxin genes we determined if an adjacent upstream gene smaller

than the putative toxin gene was present. Following identification

of antitoxin genes we determined if an adjacent downstream gene

larger than the putative toxin was present. In both cases, we

required a maximum distance of 150 bp between the putative

toxin and antitoxin. Homologs for which we were unable to find

an adjacent cognate toxin or antitoxin or in which the adjacent

gene did not meet our criteria for either size or distance between

genes were excluded. In cases where the putative toxin and

antitoxin of an adjacent pair were homologous to different TA

system families, we assigned the pair based on the homology of the

toxin gene. PIN domain-containing proteins were identified as

previously described [16]. To find novel TA pairs we searched the

M. tuberculosis genome for pairs of genes as previously described

[40]. In summary, we identified pairs of open reading frames

(ORFs) encoding hypothetical proteins in the M. tuberculosis

genome of less than 150 amino acids, were less than 150 bp

apart, and in which the upstream ORF was smaller than the

downstream ORF.

Comparative genomics study
The fully sequenced and annotated genomes were downloaded

from the NCBI database. The latest assemblies of unfinished

Figure 7. Model of stress-induced TA system activation and proteome remodeling. (A) Under normal growth conditions, the antitoxin is
bound to its cognate toxin, this complex in turn binds its own promoter, inhibiting transcription. (B) In response to stress, the antitoxin is specifically
degraded, releasing the toxin to cleaves existing transcripts. Additionally, degradation of the antitoxin results in increased transcription of the TA
system. (C) Upon stabilization of the antitoxin, the TA system is inactivated and toxin-antitoxin complex, resulting in transcriptional inhibition of its
operon. This pulse of toxin activity functionally erases the previous transcriptional profile allowing the newly stress induced messages to be
preferentially translated.
doi:10.1371/journal.pgen.1000767.g007
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genomes were downloaded from the Sanger Institute website with

permission from Dr. Julian Parkhill. or the NCBI database with

permission from Dr. Marcel Behr. We used standard BLASTP or

TBLASTX to search protein or nucleic acid databases of each

genome for homologs of the M. tuberculosis toxin proteins identified

in this study. For each toxin homolog or ortholog identified, we

determined whether an adjacent putative antitoxin was present.

Orthologs were defined as BLAST reciprocal best hits (E-

value,1026) displaying conserved synteny with other orthologs

[46]. A detailed description of the phylogenetic analysis can be

found in Text S1 and Table S3.

Assessing toxin and antitoxin activity
All putative M. tuberculosis toxin genes and toxin-antitoxin gene

pairs were inserted downstream of the inducible acetamidase

promoter in plasmid pHR100. Toxin and antitoxin activity was

assessed by growing M. smegmatis carrying the appropriate vector at

37uC on 7H10 solid media with 0.2% Tween-80, 25 mg/ml

kanamycin, and 0.2% acetamide to induce gene expression.

Growth was assessed after three days of incubation. Cross-talk

between non-cognate VapB and VapC proteins was assessed by

co-transforming M. smegmatis with the VapC toxin under the

control of the acetamidase promoter and the VapB antitoxins

under the control of the tetracycline-inducible promoter in

plasmid pUV15tetORm [59]. Toxicity was assessed by patching

colonies onto solid media in the absence (7H10 with 0.2% Tween-

80, 25 mg/ml kanamycin, 50 mg/ml hygromycin) or presence of

both inducers (7H10 with 0.2% Tween-80, 25 mg/ml kanamycin,

50 mg/ml hygromycin, 0.2% acetamide, 50 ng/ml ATc).

Translation assays
M. smegmatis cells carrying the appropriate expression vector

were grown to early log phase at 37uC in 7H9 Middlebrook media

with 25 mg/ml kanamycin. At OD600 0.3, acetamide was added to

a final concentration of 0.2% to induce gene expression. Control

cultures were treated with either 0.5 mg/ml ciprofloxacin or

25 mg/ml hygromycin. Samples of 2 ml were harvested by

centrifugation at the timepoints indicated and resuspended in

0.5 ml media containing 5 mCi of 35S-methionine. After one

minute of incorporation at 37uC, reactions were stopped by

adding 1 ml 40 mM sodium azide and immediately frozen in

liquid nitrogen. Proteins were precipitated with 10% trichloroa-

cetic acid and concentrations were determined using Micro BCA

Protein Assay Kit (Pierce). Radioactivity incorporated was assessed

via a liquid scintillation counter and normalized to protein

concentration in each sample. The radioactivity incorporated at

t = 0 for each culture was set as 100% translation and all

subsequent measurements were compared to this value.

Purification of proteins
Toxin and antitoxin proteins for the RNase assay were

expressed in E. coli BL21 (DE3) pLysS cells. The toxins were

expressed as N-terminal (His)6-MBP-TEV tagged fusions while the

antitoxins were expressed as N-terminal GST fusions. Protein

expression was induced for 3 h at 37uC with 500 mM IPTG.

Toxin proteins were purified using Talon metal affinity resin

(Clontech). The resin was washed using buffer (50 mM NaPO4,

800 mM NaCl, pH 7.1) containing imidazole at concentrations of

20, 40, and 60 mM and eluted using 250 mM imidazole.

Antitoxin protein were purified using glutathione resin, washed

with 30 column volumes of the buffer indicated above and eluted

using 15 mM reduced glutathione. Proteins were subsequently

dialyzed in buffer containing 50 mM NaCl and 25 mM Tris-HCl.

Toxin proteins were TEV-digested at a ratio of 1:25 (TEV:protein)

in buffer containing 50 mM NaCl, 2 mM Tris-HCl and 2 mM

DTT to remove the tags.

RNase activity
1.6 mg MS2 RNA (Roche) was incubated for 3 h with 1 mg of

each purified protein at 37uC in 10 mM Tris-HCl (pH 7). RNA

was purified and samples were heated to 95uC for 5 min and

placed on ice for 1 min before loading in a denaturing agarose gel

(1% agarose, 6.5% formaldehyde, 16 MOPS buffer). To assess

antitoxin activity, 1 mg of purified toxin protein was incubated

with antitoxins Rv0300-GST (5 mg) or MazF-GST (10 mg). RNA

from each reaction was electrophoresed in a 2% agarose gel under

non-denaturing conditions.

In vitro hypoxia
NRP was induced essentially as described in [27] with a larger

culture volume (830 ml) in 1 liter roller bottles to achieve a

headspace ratio of 0.5. Bacteria were pelleted and lysed at the

indicated timepoints by bead beating with 200 ml 0.1 mm zirconia

beads (Biospec) at maximum speed for 90 s in 1 ml Trizol and

total RNA was isolated via chloroform extraction and sodium

acetate precipitation as previously described. [29] Bacterial RNA

was amplified using the MessageAmp II Bacteria Prokaryotic

RNA Kit per the manufacturer’s instructions (Ambion).

Macrophage infections
Bone marrow-derived macrophages were isolated from C57BL/

6 mice and cultured for 6 d in media containing 30% L-cell

supernatant in the presence of antibiotics. Macrophages were

stimulated with recombinant mouse IFN-c at a final concentration

of 50 units/ml for 24 h prior to infection. Macrophages were

infected using DMEM containing 10% horse serum at a

multiplicity of infection of 10, incubated for 2 h, washed and

fresh medium was added. At the indicated timepoints, M.

tuberculosis RNA from inside macrophages was isolated and

amplified as previously described [50].

Quantitative PCR
M. tuberculosis and M. smegmatis from in vitro-grown log-phase

cultures were pelleted and lysed by bead beating in Trizol as

described above and total RNA was isolated [29] and used for

quantitative real-time PCR (qPCR) with the oligonucleotides

specified (Table S7). The cDNA used for qPCR was generated

with 3 mg of total RNA using the Superscript III First Strand

Synthesis for RT-PCR kit (Invitrogen). Standard curves were

generated by measuring the concentration of each message in a

reference sample of RNA pooled from all indicated conditions and

timepoints analyzed for each experiment. All values reported are

given as relative expression of each gene compared to 16S RNA

(gene/16S).

Supporting Information

Figure S1 Venn diagrams illustrating the relationships between

putative TA systems identified by three different algorithms

utilizing combined homology-dependent and independent meth-

ods for finding TA loci in microbial genomes. Only predictions of

complete TA pairs are included in this analysis and genes with

multiple predicted partners are included only once. (A) Compar-

ison between putative TA systems identified here, in Makarova,

et al. [9] and by RASTA-Bacteria [10] using a strict RASTA-

Bacteria cutoff score of .70%. (B) Comparison between putative

TA systems identified here, in Makarova, et al. [9] and by RASTA-

Bacteria [10] using a strict RASTA-Bacteria cutoff score of

Toxin-Antitoxin Systems of M. tuberculosis

PLoS Genetics | www.plosgenetics.org 12 December 2009 | Volume 5 | Issue 12 | e1000767



.55%. Gene lists and Venn diagram figures were generated using

the web-based tools Venn Diagram Generator (http://www.

pangloss.com/seidel/Protocols/venn.cgi) and Wybiral’s Venn

Diagram Generator (http://davy.wybiral.googlepages.com/venn.

html), respectively.

Found at: doi:10.1371/journal.pgen.1000767.s001 (0.28 MB TIF)

Figure S2 recA is induced after treatment with ciprofloxacin. M.

smegmatis harboring pHR100 was grown to early log phase and

treated with 0.5 mg/ml ciprofloxacin. At 0, 2, 4, and 6 h, 2 ml

aliquots were taken and RNA was harvested. The expression of

recA was measured by qPCR. Three replicates are shown.

Found at: doi:10.1371/journal.pgen.1000767.s002 (0.18 MB TIF)

Table S1 BLAST analysis to identify M. tuberculosis TA system

homologs. Toxin and antitoxin system homologs used for PSI-

BLAST analysis, M. tuberculosis BLAST hits and E-values are

shown. For each homolog identified, we determined if an adjacent

putative toxin/antitoxin was nearby and conserved domains

present in these proteins are indicated. M. tuberculosis homologs

that were significantly larger than 150 amino acids were excluded.

Found at: doi:10.1371/journal.pgen.1000767.s003 (0.03 MB

XLS)

Table S2 Results of putative TA system testing. Putative toxin

genes, along with the method of identification and toxicity results

in M. smegmatis are shown. For genes that inhibited growth, the

putative antitoxin was co-expressed. These genes were scored as

those that relieved toxicity, and are part of a functional TA system

(yes), and those that did not (no). The putative antitoxins that were

used for testing are indicated in parentheses.

Found at: doi:10.1371/journal.pgen.1000767.s004 (0.13 MB

DOC)

Table S3 Conservation of TA systems across the genus

Mycobacterium. The top BLAST hit in each organism is shown

along with conserved antitoxin (if present). Reciprocal indicates

whether the BLAST hit was the top reciprocal hit to the M.

tuberculosis query toxin and synteny indicates whether the BLAST

hit resides in a similar genomic context as the M. tuberculosis query

toxin. For all strains other than M. leprae, top BLASTP hit is shown

and top TBLASTX hit is shown for M. leprae. Putative antitoxin

sequences shaded in grey indicate truncated sequences that are

likely nonfunctional. Note that there is a possible duplication of

Rv3384c in the M. canetti genome, but because the assembly used in

this analysis is preliminary, this apparent duplication event may be

due to an error in the draft assembly.

Found at: doi:10.1371/journal.pgen.1000767.s005 (0.11 MB

XLS)

Table S4 Expression results for all genes tested during hypoxia.

Results of qPCR for each M. tuberculosis gene tested in two

experiments after induction of NRP (hypoxia). Data is expressed as

gene/16S and the standard deviation (SD) at each timepoint is

shown. Timepoints at which we were unable to detect signal for a

given gene are indicated (ND).

Found at: doi:10.1371/journal.pgen.1000767.s006 (0.12 MB

DOC)

Table S5 Expression results for all genes tested during

macrophage infection. Results of qPCR for each M. tuberculosis

gene tested in two experiments at 4 and 24 h after infection of

IFN-c-stimulated wild-type macrophages. Data is expressed as

gene/16S and the standard deviation (SD) at each timepoint is

shown.

Found at: doi:10.1371/journal.pgen.1000767.s007 (0.13 MB

DOC)

Table S6 Vectors, plasmids, and primers used in this study.

Found at: doi:10.1371/journal.pgen.1000767.s008 (0.20 MB

DOC)

Table S7 Primers used for qPCR of toxin, antitoxin, and control

genes.

Found at: doi:10.1371/journal.pgen.1000767.s009 (0.05 MB

DOC)

Text S1 Supporting methods.

Found at: doi:10.1371/journal.pgen.1000767.s010 (0.04 MB

DOC)
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We are grateful to José de la Torre and Mark Voorhies for assistance with

bioinformatics analysis. We thank Alexander Johnson and Carol Gross for

critical reading of the manuscript and Anita Sil, Hiten Madhani, and

members of the Cox Laboratory for helpful advice and discussions.

Author Contributions

Conceived and designed the experiments: HRR LEC JSC. Performed the

experiments: HRR LEC. Analyzed the data: HRR LEC JSC. Wrote the

paper: HRR LEC JSC.

References

1. Magnuson RD (2007) Hypothetical functions of toxin-antitoxin systems.

J Bacteriol 189: 6089–6092.

2. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin-antitoxin

stress response loci. Nat Rev Microbiol 3: 371–382.

3. Hazan R, Sat B, Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated

cell death is triggered by various stressful conditions. J Bacteriol 186:

3663–3669.

4. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A

linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell

death in Escherichia coli. Science 318: 652–655.

5. Amitai S, Yassin Y, Engelberg-Kulka H (2004) MazF-mediated cell death in

Escherichia coli: a point of no return. J Bacteriol 186: 8295–8300.

6. Godoy VG, Jarosz DF, Walker FL, Simmons LA, Walker GC (2006) Y-family

DNA polymerases respond to DNA damage-independent inhibition of

replication fork progression. Embo J 25: 868–879.

7. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial

persistence as a phenotypic switch. Science 305: 1622–1625.

8. Korch SB, Henderson TA, Hill TM (2003) Characterization of the hipA7 allele

of Escherichia coli and evidence that high persistence is governed by (p)ppGpp

synthesis. Mol Microbiol 50: 1199–1213.

9. Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA (2007)

Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions

in the absence of selection. Mol Microbiol 63: 1588–1605.

10. Warner DF, Mizrahi V (2006) Tuberculosis chemotherapy: the influence of

bacillary stress and damage response pathways on drug efficacy. Clin Microbiol

Rev 19: 558–570.

11. Mine N, Guglielmini J, Wilbaux M, Van Melderen L (2009) The decay of the

chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli

species. Genetics 181: 1557–1566.

12. Zhu L, Zhang Y, Teh JS, Zhang J, Connell N, et al. (2006) Characterization of

mRNA interferases from Mycobacterium tuberculosis. J Biol Chem 281:

18638–18643.

13. Zhu L, Phadtare S, Nariya H, Ouyang M, Husson RN, et al. (2008) The mRNA

interferases, MazF-mt3 and MazF-mt7 from Mycobacterium tuberculosis target

unique pentad sequences in single-stranded RNA. Mol Microbiol 69: 559–569.

14. Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, et al. (2003) MazF cleaves

cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli.

Mol Cell 12: 913–923.

15. Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, et al. (2003) The

bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal

A site. Cell 112: 131–140.

16. Arcus VL, Rainey PB, Turner SJ (2005) The PIN-domain toxin-antitoxin array

in mycobacteria. Trends Microbiol 13: 360–365.

17. Robson J, McKenzie JL, Cursons R, Cook GM, Arcus VL (2009) The vapBC

Operon from Mycobacterium smegmatis Is An Autoregulated Toxin-Antitoxin

Module That Controls Growth via Inhibition of Translation. J Mol Biol.

Toxin-Antitoxin Systems of M. tuberculosis

PLoS Genetics | www.plosgenetics.org 13 December 2009 | Volume 5 | Issue 12 | e1000767



18. Daines DA, Wu MH, Yuan SY (2007) VapC-1 of nontypeable Haemophilus

influenzae is a ribonuclease. J Bacteriol 189: 5041–5048.
19. Winther KS, Gerdes K (2009) Ectopic production of VapCs from Enterobac-

teria inhibits translation and trans-activates YoeB mRNA interferase. Mol

Microbiol 72: 918–930.
20. Stewart GR, Robertson BD, Young DB (2003) Tuberculosis: a problem with

persistence. Nat Rev Microbiol 1: 97–105.
21. North RJ, Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22:

599–623.

22. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, et al. (2009) A
replication clock for Mycobacterium tuberculosis. Nat Med 15: 211–214.

23. Munoz-Elias EJ, Timm J, Botha T, Chan WT, Gomez JE, et al. (2005)
Replication dynamics of Mycobacterium tuberculosis in chronically infected mice.

Infect Immun 73: 546–551.
24. Gomez JE, McKinney JD (2004) M. tuberculosis persistence, latency, and drug

tolerance. Tuberculosis (Edinb) 84: 29–44.

25. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister
cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:

8172–8180.
26. Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium

tuberculosis. Annu Rev Microbiol 55: 139–163.

27. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown
of Mycobacterium tuberculosis through two stages of nonreplicating persistence.

Infect Immun 64: 2062–2069.
28. Rustad TR, Harrell MI, Liao R, Sherman DR (2008) The enduring hypoxic

response of Mycobacterium tuberculosis. PLoS ONE 3: e1502. doi:10.1371/
journal.pone.0001502.

29. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, et al.

(2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis

dormancy program. J Exp Med 198: 705–713.

30. Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, et al. (2008) Tuberculous
granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect

Immun 76: 2333–2340.

31. Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T (2004) Gene
expression profile of Mycobacterium tuberculosis in a non-replicating state.

Tuberculosis (Edinb) 84: 239–246.
32. Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-

living but lost from host-associated prokaryotes. Nucleic Acids Res 33: 966–976.
33. Makarova KS, Wolf YI, Koonin EV (2009) Comprehensive comparative-

genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress

response systems in prokaryotes. Biol Direct 4: 19.
34. Jorgensen MG, Pandey DP, Jaskolska M, Gerdes K (2009) HicA of Escherichia coli

defines a novel family of translation-independent mRNA interferases in bacteria
and archaea. J Bacteriol 191: 1191–1199.

35. Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, et al. (2008)

Insights from the complete genome sequence of Mycobacterium marinum on the
evolution of Mycobacterium tuberculosis. Genome Res 18: 729–741.

36. Jang J, Becq J, Gicquel B, Deschavanne P, Neyrolles O (2008) Horizontally
acquired genomic islands in the tubercle bacilli. Trends Microbiol 16: 303–308.

37. Korch SB, Contreras H, Clark-Curtiss JE (2008) Three Mycobacterium tuberculosis

Rel toxin:antitoxin modules inhibit mycobacterial growth and are expressed in

human-infected macrophages. J Bacteriol.

38. Carroll P, Brown AC, Hartridge AR, Parish T (2007) Expression of
Mycobacterium tuberculosis Rv1991c using an arabinose-inducible promoter

demonstrates its role as a toxin. FEMS Microbiol Lett 274: 73–82.
39. Gupta A (2009) Killing activity and rescue function of genome-wide toxin-

antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol Lett 290: 45–53.

40. Brown JM, Shaw KJ (2003) A novel family of Escherichia coli toxin-antitoxin gene
pairs. J Bacteriol 185: 6600–6608.

41. Sevin EW, Barloy-Hubler F (2007) RASTA-Bacteria: a web-based tool for
identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8: R155.

42. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, et al. (2005) Ancient

origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS
Pathog 1: e5. doi:10.1371/journal.ppat.0010005.

43. Veyrier F, Pletzer D, Turenne C, Behr MA (2009) Phylogenetic detection of
horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis.

BMC Evol Biol 9: 196.

44. Kuzniar A, van Ham RC, Pongor S, Leunissen JA (2008) The quest for

orthologs: finding the corresponding gene across genomes. Trends Genet 24:

539–551.

45. Tonjum T, Welty DB, Jantzen E, Small PL (1998) Differentiation of

Mycobacterium ulcerans, M. marinum, and M. haemophilum: mapping of their

relationships to M. tuberculosis by fatty acid profile analysis, DNA-DNA

hybridization, and 16S rRNA gene sequence analysis. J Clin Microbiol 36:

918–925.

46. Becq J, Gutierrez MC, Rosas-Magallanes V, Rauzier J, Gicquel B, et al. (2007)

Contribution of horizontally acquired genomic islands to the evolution of the

tubercle bacilli. Mol Biol Evol 24: 1861–1871.

47. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, et al. (2002) A

new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl

Acad Sci U S A 99: 3684–3689.

48. Christensen SK, Mikkelsen M, Pedersen K, Gerdes K (2001) RelE, a global

inhibitor of translation, is activated during nutritional stress. Proc Natl Acad

Sci U S A 98: 14328–14333.

49. Miallau L, Faller M, Chiang J, Arbing M, Guo F, et al. (2009) Structure and

proposed activity of a member of the VapBC family of toxin-antitoxin systems.

VapBC-5 from Mycobacterium tuberculosis. J Biol Chem 284: 276–283.

50. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, et al. (2003)

Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages:

Insights into the Phagosomal Environment. J Exp Med 198: 693–704.

51. Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, et al. (2003) Rv3133c/

dosR is a transcription factor that mediates the hypoxic response of Mycobacterium

tuberculosis. Mol Microbiol 48: 833–843.

52. Gerdes K, Rasmussen PB, Molin S (1986) Unique type of plasmid maintenance

function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci U S A

83: 3116–3120.

53. Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R (2005) Toxin-antitoxin modules as

bacterial metabolic stress managers. Trends Biochem Sci 30: 672–679.

54. Provvedi R, Boldrin F, Falciani F, Palu G, Manganelli R (2009) Global

transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology

155: 1093–1102.

55. Beste DJ, Espasa M, Bonde B, Kierzek AM, Stewart GR, et al. (2009) The

genetic requirements for fast and slow growth in mycobacteria. PLoS ONE 4:

e5349. doi:10.1371/journal.pone.0005349.

56. Dubnau E, Fontan P, Manganelli R, Soares-Appel S, Smith I (2002)

Mycobacterium tuberculosis genes induced during infection of human macrophages.

Infect Immun 70: 2787–2795.

57. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival

during infection. Proc Natl Acad Sci U S A 100: 12989–12994.

58. Iyer LM, Koonin EV, Aravind L (2001) Adaptations of the helix-grip fold for

ligand binding and catalysis in the START domain superfamily. Proteins 43:

134–144.

59. Ehrt S, Guo XV, Hickey CM, Ryou M, Monteleone M, et al. (2005) Controlling

gene expression in mycobacteria with anhydrotetracycline and Tet repressor.

Nucleic Acids Res 33: e21.

60. Alm EJ, Huang KH, Price MN, Koche RP, Keller K, et al. (2005) The

MicrobesOnline Web site for comparative genomics. Genome Res 15:

1015–1022.

61. Senaratne RH, Sidders B, Sequeira P, Saunders G, Dunphy K, et al. (2008)

Mycobacterium tuberculosis strains disrupted in mce3 and mce4 operons are

attenuated in mice. J Med Microbiol 57: 164–170.

62. Murphy HN, Stewart GR, Mischenko VV, Apt AS, Harris R, et al. (2005) The

OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis.

J Biol Chem 280: 14524–14529.

63. Rustad TR, Sherrid AM, Minch KJ, Sherman DR (2009) Hypoxia: a window

into Mycobacterium tuberculosis latency. Cell Microbiol.

64. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR–a widespread system that

provides acquired resistance against phages in bacteria and archaea. Nat Rev

Microbiol 6: 181–186.

65. MacGurn JA, Cox JS (2007) A genetic screen for Mycobacterium tuberculosis

mutants defective for phagosome maturation arrest identifies components of the

ESX-1 secretion system. Infect Immun 75: 2668–2678.

Toxin-Antitoxin Systems of M. tuberculosis

PLoS Genetics | www.plosgenetics.org 14 December 2009 | Volume 5 | Issue 12 | e1000767


