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Abstract

For gene products that must be present in cells at defined concentrations, expression levels must be tightly controlled to
ensure robustness against environmental, genetic, and developmental noise. By studying the regulation of the
concentration-sensitive Drosophila melanogaster Hox gene Ultrabithorax (Ubx), we found that Ubx enhancer activities
respond to both increases in Ubx levels and genetic background. Large, transient increases in Ubx levels are capable of
silencing all enhancer input into Ubx transcription, resulting in the complete silencing of this gene. Small increases in Ubx
levels, brought about by duplications of the Ubx locus, cause sporadic silencing of subsets of Ubx enhancers. Ubx enhancer
silencing can also be induced by outcrossing laboratory stocks to D. melanogaster strains established from wild flies from
around the world. These results suggest that enhancer activities are not rigidly determined, but instead are sensitive to
genetic background. Together, these findings suggest that enhancer silencing may be used to maintain gene product levels
within the correct range in response to natural genetic variation.
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Introduction

The transcriptional control of gene expression in eukaryotes is

governed by cis-regulatory elements, also known as enhancers, that

integrate cell-type and temporal information by binding combina-

tions of transcription factors. Genes that exhibit complex expression

patterns are typically controlled by multiple cis-regulatory elements,

some of which have overlapping, partially redundant activities

[1,2,3,4]. Current estimates suggest that from 10 to 80% of the non-

coding DNA of higher eukaryotes is devoted to gene regulation

[5,6,7], raising the question of how all of this regulatory information

is integrated to generate accurate and stereotyped patterns of gene

expression in space and time. A third dimension of gene regulation

is quantity, which is especially relevant for genes that must be

expressed within a narrow range of levels. One possible solution is

that enhancers are precisely tuned to generate the appropriate level

of transcription that is required in each cell. However, the precision

that this type of mechanism demands seems difficult to achieve and

especially vulnerable to genetic, environmental, and developmental

noise. An alternative solution is that feedback or other regulatory

mechanisms exist that modulate enhancer activities in response to

the levels of gene product. Although feedback autoregulation is a

well-known motif in transcriptional networks [8], mechanisms that

might be used to tune expression levels are not well understood.

This problem is particularly challenging for genes that have

multiple, partially redundant regulatory inputs.

We have begun to study this problem in the fruit fly, Drosophila

melanogaster, by analyzing the mechanisms that control the expression

of the Hox gene Ultrabithorax (Ubx) in the haltere–a dorsal appendage

on the third thoracic segment (T3) that helps the fly balance during

flight [9]. Although Ubx protein is detected in all cells of the

developing haltere imaginal disc, its pattern of expression is not

uniform [10] (Figure 1A). Subsets of the complex regulatory input

into the Ubx locus can be monitored by examining the expression

patterns of Ubx enhancer traps, which exhibit different, overlapping

subsets of the Ubx expression pattern (Figure 1). Ubx-Gal4lac1, for

example, (monitored with UAS-GFP) is expressed uniformly through-

out the anterior (A) compartment of the haltere disc, but only in the

distal portion of the posterior (P) compartment (Figure 1B). In

contrast, Ubx-Gal4LDN is expressed in distal regions (in both the A and

P compartments) but is not expressed proximally (Figure 1D).

Results/Discussion

Ubx negative autoregulation
Somewhat paradoxically, transient ectopic expression of Ubx,

induced either by heat shock or Gal4-mediated expression,

resulted in Ubx loss-of-function transfomations that can be

visualized both in the adult (as haltere to wing transformations;

[11]) and in 3rd instar haltere imaginal discs (as groups of cells that

showed a reduction or complete loss of Ubx protein) [12]
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(Figure 2). Thus, a transient pulse of high Ubx protein levels can

lead to the complete and heritable silencing of all Ubx expression,

implying that Ubx is being silenced by its own gene product.

Transient pulses of ectopic Ubx also resulted in the stable

silencing of Ubx enhancer traps, including Ubx-Gal4lac1, Ubx-

Gal4M1, Ubx-Gal4LDN, and Ubx-lacZ166 (Figure 2 and Table S1).

When the absence of Ubx protein was observed, these cells also

had no enhancer trap expression (Figure 2). However, in many

cases enhancer trap silencing was observed in cells that had

normal Ubx protein levels (Figure 2). In these cases we suggest that

only the enhancers captured by the enhancer trap were silenced,

and that other, partially redundant, enhancers in the Ubx locus

remained active, resulting in an apparently normal pattern of Ubx

expression. We also find, consistent with previous results [12], that

the patches of Ubx-silenced cells in the haltere are clonal events

and that the Polycomb system of epigenetic regulators is required

for silencing (Figure S1 and Figure S2).

To obtain initial mechanistic insights into Ubx autoregulatory

silencing, we carried out experiments that suggest it requires specific

DNA binding by Ubx. For these experiments, we monitored the

ability of chimeric Hox proteins to induce haltere-to-wing

transformations when expressed via the vg-Gal4 driver. Although

the more anterior Hox protein Antennapedia (Antp) was unable to

induce Ubx silencing, transient overexpression of Antp-Ubx

chimeric proteins revealed that the Ubx homeodomain and

adjacent C-terminal sequences were both necessary and together

sufficient to induce robust Ubx silencing (Figure 3). These findings

suggest that Ubx protein, and not Ubx mRNA, is responsible for the

induction of silencing. Further, as both the homeodomain and

adjacent sequences are implicated in Ubx specificity and DNA

binding [13,14,15], these results suggest that Ubx triggers silencing

Figure 1. Ubx enhancer traps. (A) Haltere disc stained for Ubx protein. Note the higher levels in the center of the disc and in the P compartment
(arrow). (B–G) Patterns of Ubx enhancer trap expression in wild type haltere discs. The Gal4 inserts were monitored using a UAS-GFP transgene. (H)
Map of the Ubx locus showing the location of the Ubx enhancer traps as described previously [28,29,30].
doi:10.1371/journal.pgen.1000633.g001

Author Summary

Gene expression is generally governed by cis-regulatory
elements, also called enhancers. For genes whose expres-
sion levels must be tightly controlled, enhancer activities
must be tightly regulated. In this work, we show that
enhancers that control the expression of the Hox gene
Ultrabithorax (Ubx) in Drosophila are regulated by a
negative autoregulatory feedback mechanism. Negative
autoregulation can be triggered by less than a two-fold
increase in Ubx levels or by varying the genetic back-
ground. Together, these data reveal that enhancer
activities are not always hardwired, but instead may be
sensitive to genetic and environmental variation and, in
some cases, to the amount of gene product they regulate.
The finding that enhancers are sensitive to genetic
background suggests that the regulation of gene expres-
sion is more plastic than previously thought and has
important implications for how transcription is controlled
in vivo.

Enhancer Silencing at Ubx
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by binding to Ubx-specific cis-regulatory elements. Consistently, the

Hox protein Abdominal-A (Abd-A), which is very similar to Ubx in

both domains, also induced Ubx silencing when transiently

expressed during haltere development (Figure 3).

Ubx enhancer silencing triggered by additional copies of
the Ubx+ gene

We next tested whether more subtle increases in Ubx levels

could also induce silencing. For these experiments, we monitored

the expression of Ubx lacZ or Gal4 enhancer traps in flies that had

extra copies of the wild type Ubx locus. Ubx-Gal4lac1 and Ubx-

Gal4LDN were silenced in groups of haltere cells of 3x Ubx+ and 4x

Ubx+ flies (100% of 4x Ubx+ haltere discs had at least one group of

silenced cells) (Figure 4A–4D; Table S1). In these haltere discs,

probably because the flies had multiple copies of Ubx+, the pattern

of Ubx protein was invariably wild type (Figure 4A, 4B, 4D).

Interestingly, the amount of silencing induced by 4 copies of Ubx

was significantly decreased when one of these copies encoded a

non-functional Ubx protein (the Ubx9–22 allele; data not shown).

This result supports the idea that Ubx protein, not Ubx mRNA, is

Figure 2. Ubx enhancer silencing in response to hs-Ubx. (A) Wild type haltere disc stained for Ubx protein. Note the higher levels in the distal
region. (B) Haltere disc in which an HA-tagged Ubx protein was expressed via the vg-Gal4 driver, which is transiently expressed in all haltere cells. The
disc was stained for HA (green) and Ubx (red). At this stage, the vg-Gal4 driver is active along the dorso-ventral boundary (strong green and yellow
stain). Groups of cells that do not stain for Ubx (arrow) are observed. (C) Adult haltere from a vg.Ubx fly showing a transformation from haltere to
wing. Both wing margin (arrow) and wing blade (arrowhead) tissue is observed. (D,E) Ubx-Gal4M1 (D) and Ubx-Gal4lac1 (E) haltere discs that were given
a transient pulse of Ubx expression by heat shock during the 2nd instar, stained for GFP (green, to monitor enhancer trap activities) and Ubx (red).
Some cells no longer express the enhancer traps and Ubx (arrows). Some cells no longer express the enhancer traps, but still express Ubx
(arrowheads). (F) Wild type Ubx-Gal4LDN haltere disc stained for GFP (green, to monitor the enhancer trap) and Ubx (red). (G) A Ubx-Gal4LDN haltere
disc that was given a transient pulse of Ubx expression by heat shock during the 2nd instar, stained for Ubx (red) and GFP (green, to monitor the
enhancer trap). Silencing of both Ubx and the enhancer trap are observed (arrows). Surrounding the Ubx silenced cells, some cells have reduced Ubx
levels but still express the enhancer trap.
doi:10.1371/journal.pgen.1000633.g002
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the inducer of silencing in response to extra copies of the Ubx

locus.

Ubx-Gal4M1 and Ubx-lacZlac1 responded differently to 4x Ubx+:

instead of being silenced in clones, these enhancer traps were no

longer expressed in proximal regions of the haltere disc, but distal

expression remained unchanged (Figure 4E, 4F). For Ubx-lacZ166,

the levels were strongly reduced in 4x Ubx+ flies compared to 2x

Ubx+ flies (Table S1). Note, however, that Ubx-lacZ166 can be

completely silenced in clones in response to hs-Ubx (Figure S3 and

Table S1). Finally, the expression of Ubx-Gal4M3 did not change in

the presence of four copies of the Ubx+ locus (Figure 4G and Table

S1). Taken together, these results allow us to make three important

conclusions. First, silencing is occurring at the level of Ubx

enhancers, not entire Ubx alleles, because different Ubx enhancer

traps respond in different ways. Second, silencing can be triggered

by the presence of only one or two additional Ubx+ loci, suggesting

that less than doubling Ubx levels is sufficient to silence some

enhancers. Third, although all Ubx enhancers can be silenced by

high Ubx levels, lower Ubx levels result in a range of responses

that depend on which enhancer trap, and therefore which subset

of Ubx enhancers, is being monitored. Thus, we conclude that

different Ubx enhancers are sensitive to different levels of Ubx

protein. We also generated flies to monitor two different enhancer

trap insertions into the Ubx locus (Ubx-lacZ166 and Ubx-Gal4lac1) at

the same time. When silencing was triggered by heat shock-

induced Ubx, we observed silencing of both enhancer traps, but at

different frequencies: Ubx-Gal4lac1 was silenced to a greater extent

than Ubx-lacZ166 (Figure S3). This finding provides additional

support for the idea that individual enhancer traps, and thus

different subsets of Ubx enhancers, respond differently to the same

increase in Ubx levels.

Haltere size and Ubx levels are buffered in response to
increased Ubx+ copy number

The above results show that epigenetic autoregulatory

silencing of Ubx enhancers occurs in response to elevated Ubx

levels. Interestingly, increasing the dose of Ubx+ results in smaller

halteres [16], but this size change does not scale linearly with the

number of Ubx+ genes. Haltere size is similar to wild type in flies

with 3x Ubx+ or 4x Ubx+, while in flies with 6 copies of Ubx+,

haltere size is greatly reduced (Figure 5A and Figure S4A). These

results suggest that haltere size is buffered against increasing

doses of the Ubx+ gene. A similar buffering can be observed when

Ubx protein levels are quantified in haltere discs from animals

with different numbers of Ubx+ genes. When one copy of Ubx is

inactivated (1x Ubx+), Ubx protein levels are nearly halved

(Figure S4A). However, when the Ubx+ complement is doubled

(4x Ubx+) or tripled (6x Ubx+) only 39% and 60% increases in

Ubx protein levels were detected, respectively (Figure S4A). The

less-than-expected increases in Ubx levels seen in Ubx duplica-

tions is not because they fail to express wild type levels, as they are

sufficient to fully rescue a Ubx null mutation, both phenotypically

[17,18] and with respect to Ubx protein levels (data not shown).

Together with the results described above, we suggest that the

buffering of Ubx levels and haltere size is due, at least in part, to

the epigenetic silencing of Ubx enhancers in response to higher

than normal doses of Ubx+.

Ubx enhancer silencing induced by genetic variation
In wild type animals, we hypothesized that enhancer silencing

may be used to ensure uniform Ubx levels in response to naturally

occurring genetic variation in the cis- and trans-regulation of Ubx

expression. We tested this idea by out-crossing our laboratory Ubx-

Gal4lac1 flies to 32 D. melanogaster strains established from wild

Figure 3. Ubx Silencing requires the Ubx homeodomain and C-
terminus. (A) Wild type haltere. (B) vg-Gal4 UAS-Ubx halteres show
haltere to wing transformations due to Ubx silencing. (C) vg-Gal4 UAS-
Antp halteres fail to produce any haltere to wing transformations. (D)
vg-Gal4 UAS-AbdA halteres show haltere to wing transformations that
are indistinguishable from those seen with UAS-Ubx. AbdA and Ubx
have very similar homeodomains and also share the UbdA motif in the
C-terminus, consistent with these domains playing a critical role in
silencing. (E) vg-Gal4 UAS-AUA (Antp N-terminus, Ubx homeodomain,
Antp C-terminus) halteres show no transformation to wing in 8/10
samples and mild transformations in 2/10 samples. (F) vg-Gal4 UAS-AAU
(Antp N-terminus, Antp homeodomain, Ubx C-terminus) halteres show
no haltere to wing transformations. (G) vg-Gal4 UAS-UU* (Ubx N-
terminus, Ubx homeodomain, deletion of the C-terminus) halteres show
no haltere to wing transformations. (H) vg-Gal4 UAS-AUU (Antp N-
terminus, Ubx homeodomain, Ubx C-terminus) halteres show haltere to
wing transformations indistinguishable from those seen with UAS-Ubx.
doi:10.1371/journal.pgen.1000633.g003

Enhancer Silencing at Ubx
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populations around the world. In our lab stock, less than 5% of

haltere discs showed any evidence of Ubx-Gal4lac1 silencing.

However, when outcrossed to wild D. melanogaster strains, we

frequently observed silencing of Ubx-Gal4lac1 in haltere discs of the

F1 generations (Figure 5 and Table S2). Although the frequency of

silencing varied between wild stocks, it was consistent for each wild

stock in a statistically significant manner (Figure 6). Of the 32

stocks crossed to Ubx-Gal4lac1, 14 resulted in no detectable silencing

in the F1 generation, 6 showed weak silencing in the F1

generation, and 12 showed strong silencing in the F1 generation

Figure 4. Ubx enhnacer trap silencing in response to increasing Ubx+ dose. (A) Ubx-Gal4lac1 is silenced in groups of cells by 4 copies of the
Ubx+ locus (arrows), but Ubx protein levels are normal. (B) Ubx-Gal4lac1 is silenced in groups of cells by 3 copies of the Ubx+ locus (arrows), but Ubx
protein levels are normal. (C) Wild type haltere expression pattern of Ubx-Gal4LDN. (D) Ubx-Gal4LDN is partially silenced by 4 copies of the Ubx+ locus.
(E–G) Wild type haltere expression patterns of Ubx-lacZlac1 (E), Ubx-Gal4M1 (F), and Ubx-Gal4M3 (G). (H–J) Ubx-lacZlac1 (H) and Ubx-Gal4M1 (I), but not
Ubx-Gal4M3 (J), are partially silenced by 4 copies of Ubx+. Note that for Ubx-lacZlac1 and Ubx-Gal4M1, silencing does not occur in random clones, but
instead is manifest by a loss of expression in proximal regions of the disc (arrows).
doi:10.1371/journal.pgen.1000633.g004

Enhancer Silencing at Ubx
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Figure 5. Ubx enhancer silencing in response to natural genetic variation. (A) Halteres decrease in size with increasing Ubx+ copy number.
UbxDf(109)/+(1xUbx+); Wild Type (2xUbx+); Dp(P5)/+(3xUbx+); Dp(P10)2x/+(4xUbx+); Dp(P10)2x/+; Dp(P5)/Dp(P5) (6xUbx+). (B–U) All images show
haltere discs stained for enhancer trap expression. (B–Q) Ubx-Gal4lac1 driven UAS-GFP reporter expression in the lab stock (B) and outcrossed to
various wild type stocks (C–Q). Stocks beginning with ‘‘NC2’’ were collected in North Carolina. Other wild type stocks were obtained from the
Bloomington Stock Center. See Table S1 and Table S2 for a complete summary of these results. (C–H) Outcrossing to these stocks does not cause Ubx-
Gal4lac1 silencing. (I–L) Outcrossing to these wild type stocks causes mild to moderate Ubx-Gal4lac1 silencing. (M–Q) Outcrossing to these wild type
stocks causes moderate to strong Ubx-Gal4lac1 silencing. (R,S) Ubx-Gal4LDN in the lab background (R) and in F1 progeny when crossed to Tw2 (S).
Strong clonal silencing is observed. (T,U) Ubx-Gal4M1 in the lab background (T) and in F1 progeny when crossed to NC2-76 (U). Loss of proximal
expression (arrows) is observed.
doi:10.1371/journal.pgen.1000633.g005
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(Figure 5 and Table S2). Because the amount of silencing can, in

some cases, approach 100% (e.g. Tw2 F1), while 4x Ubx+ resulted

in ,20–30% silencing (Figure 6), we suggest that differences

beyond Ubx levels contribute to silencing in these F1 outcrosses.

Genetic variation may, for example, result in differences in the

levels or activities of the trans-regulators of Ubx. Silencing was also

observed when Ubx-lacZlac1 and Ubx-Gal4LDN were outcrossed to

wild populations, demonstrating that this effect is not limited to

Ubx-Gal4lac1 (Figure 5R–5U and Table S1). Despite the silencing of

Ubx enhancer traps, the pattern and levels of Ubx protein were

similar in the wild stocks, our laboratory stocks, and in their F1

progeny (Figure S4B). We ruled out that the lack of enhancer trap

expression in these outcrosses was due to a failure to initiate

expression by carrying out a lineage tracing experiment, which

demonstrates that Ubx-Gal4lac1 was expressed prior to silencing (see

Materials and Methods). We also ruled out that transposon

instability (e.g. hybrid dysgenesis [19]) was responsible for the loss

of enhancer trap expression using several criteria (see Materials

and Methods). Most importantly, silencing occurred at the same

frequency when the male or female parent was from the wild (non-

laboratory) stock and the amount of enhancer trap DNA,

measured by qPCR, was unchanged between the parental and

F2 generations. Further, silencing of enhancer traps in other genes,

including Distalless-Gal4, homothorax-lacZ, and teashirt-lacZ was not

observed by crossing these insertions to the same wild strains (data

not shown).

We postulate that silencing induced in these outcrosses may be

due to an incompatibility between the trans-acting factors (largely

derived from the wild stocks) and cis-regulatory elements (linked to

the monitored Ubx locus of the laboratory stock) controlling Ubx

expression. In support of this idea, when Ubx-Gal4lac1 was further

introgressed into weakly or strongly silencing wild stocks, which

effectively increases the genetic complement from the wild strain

background, an increase in the severity of silencing was observed

when compared to the F1 generation (Figure 6 and Figure S5). We

also never observed the complete absence of Ubx protein or

haltere-to-wing transformations in any of these outcrosses, arguing

that only a subset of enhancer inputs into Ubx is silenced in

response to genetic variation. Consistently, individual enhancer

traps responded differently when crossed to the same wild strains

(Table S1).

Together, these results demonstrate that Ubx enhancer

silencing is triggered when Ubx is present at higher than normal

levels. When Ubx concentration is especially high (when Ubx is

ectopically expressed via Gal4 or heat-shock promoters) all

enhancer input into Ubx can be silenced, resulting in the

complete absence of Ubx expression and haltere-to-wing

transformations. Although such high levels of Ubx are not

physiological, we also find that Ubx enhancer silencing can be

triggered by additional copies of Ubx+, which in principle results

in less than double the amount of Ubx protein. In this case, we

find that the expression of some Ubx enhancer traps is clonally

silenced (e.g. Ubx-Gal4lac1), while the expression of other

enhancer traps (e.g. Ubx-lacZ166) is reduced. Thus, different

Ubx enhancers are differentially sensitive to negative autoregu-

lation; some are shut off by relatively low Ubx levels, while others

require high Ubx levels to be silenced.

Enhancer silencing and natural genetic variation
Most remarkably, we found that enhancer silencing can occur

simply by varying the genetic background. In Drosophila melanoga-

ster, due in part to its large population size, the frequency of DNA

polymorphisms between individuals in the wild is estimated to be

as high as 1 in 100 basepairs [20]. Due to these polymorphisms, we

imagine that different strains of D. melanogaster, when kept in

isolation from each other, may have subtly different ways of

regulating Ubx. These may be due to strain-specific differences in

the Ubx cis-regulatory elements, in the trans regulators of Ubx

expression, or both. Consistent with this idea, it is of interest that

gene expression levels, when assayed across entire genomes, show

a lot of variability in natural populations [21,22,23,24,25].

Although we find that the final Ubx expression pattern and levels

are very similar between lab and wild D. melanogaster strains, when

two strains are bred together genetic differences may result in

fluctuations in the initial Ubx levels. The silencing system

described here may function to compensate for these fluctuations

and thus ensure that the correct Ubx levels are produced

throughout the haltere.

Plasticity of enhancer activities
In the crosses to wild D. melanogaster strains, we found that the

expression of genetically marked Ubx alleles varied tremendously,

depending on the genetic background. Extrapolating from these

results suggests that there is a lot of previously undetected

variability in enhancer activities at the Ubx locus in wild files that

would not have been detected using traditional assays. Thus, these

results challenge the standard view that a given transcriptional

enhancer integrates the same inputs and produces the same

Figure 6. Quantification of silencing. Each point records the %
silencing of the Ubx-Gal4lac1 enhancer trap for a single haltere disc. %
silencing is defined as the amount of non-stained tissue relative to wild
type controls measured in parallel (see Materials and Methods for
details). Unless otherwise indicated, all measurements were of haltere
discs from F1 animals grown under non-crowded conditions produced
by crossing our laboratory Ubx-Gal4lac1 stock to the indicated genetic
backgrounds (46 Ubx, orange circles; NC2-80, black triangles; NC2-76,
pink diamonds; Ber2, green squares; Tw2, blue triangles; Harwich, tan
circles). Silencing was measured in two independent sets of crosses,
separated in time by two weeks, and are graphed in neighboring
columns. The thick black bars correspond to averages and the thinner
bars show the standard error of the mean. For each cross, a minimum of
10 haltere discs, from 10 different animals, were scored. An analysis of
variance (ANOVA) shows that the differences among the five wild type
genotypes (NC2-80, NC2-76, Ber2, Tw2 and Harwich) in % silencing
were highly significant (t ratio = 9.4, p = 0.0007) with 83% of the
variance among lines, and no differences between replicates. Also
graphed is the % silencing measured in 10 independent haltere discs
resulting from the continued introgression (F3 generations) of Ubx-
Gal4lac1 into the NC2-80 background (black circles) and into the NC2-76
background (pink circles). The average % silencing increased in the F3
generations compared to the F1 generations.
doi:10.1371/journal.pgen.1000633.g006
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outputs, regardless of genetic background. Instead, due to natural

genetic variation, the activity of a particular enhancer may vary

widely between individuals in wild populations. Additionally, our

results show that the activity of an enhancer can even vary among

the cells within its expression domain (e.g. the haltere) in a single

individual. We suggest that plasticity in enhancer activities is

essential to compensate for genetic and perhaps environmental

variation. Moreover, given that many genes may have multiple,

partially redundant enhancers, enhancer silencing may be essential

to buffer gene expression levels so that they remain within a

narrow, biologically tolerable range. On the other hand, small

differences in enhancer activities in flies in the wild may serve as a

potential source of phenotypic variation that can be acted upon by

natural selection. Since population genetic theory predicts that

selection differentials of a small fraction of a percent are seen in

natural populations with the effective population size of Drosophila

[20], it is plausible that this variation is functionally significant,

perhaps through a subtle influence of haltere morphology on flight

performance.

Materials and Methods

Genetic variation experiments
The NC2 stocks were obtained from Greg Gibson (N.C. State

University); all other wild stocks were obtained from the

Bloomington Stock Center (Table S2).

To show that the lack of expression in these outcrosses was not

due to a failure to initiate enhancer trap expression in the wild

backgrounds, we carried out a lineage tracing experiment. The

genotype of the stock was: Ubx-Gal4lac1 UAS-flp; actin.stop.GFP.

The combination of UAS-flp and actin.stop.GFP records the

history (i.e. marks the lineage) of Gal4 expression. When

outcrossed to wild backgrounds, GFP expression was not silenced

(in contrast to when the direct UAS-GFP readout was monitored).

Together, these results suggest that Ubx-Gal4lac1 was initially

activated but then silenced.

Hybrid dysgenesis was ruled out as a reason for loss of

expression from P transposons by the following tests: 1) silencing

occurs equally well, regardless of the direction the cross was set up,

2) silencing occurs equally well at 18u and 25uC (while hybrid

dysgenesis is suppressed at 18uC), 3) silencing was not observed for

some other transposon insertions (inside or outside of the Ubx

locus) when crossed to the same wild stocks, 4) the miniwhite gene

associated with the P element insertions did not lead to a

variegated eye phenotype as would be expected for somatic

transposon excision, and 5) quantitative PCR analysis confirmed

that the amount of transposon DNA was the same in the parent

(unsilenced) and F2 (silenced) generations. Finally, enhancer trap

expression can be recovered when back-crossed into the

laboratory stock background.

Quantification of Ubx protein levels
To measure Ubx protein levels in different genetic back-

grounds, we stained haltere discs obtained from uncrowded yw

(2x Ubx+), yw;If/Cyo;TM2/TM6B (1x Ubx+), yw;If/Cyo;DpP5/

TM6B (3x Ubx+), yw;DpP10x2/CyoGFP;MKRS/TM6B (4x Ubx+),

yw; DpP10x2/CyoGFP;DpP5/DpP5 (6x Ubx+),Hikone-R, Berlin-K,

NC2-76, NC2-80, yw x NC2-76 F1s, Tw2, yw x Tw2 F1s, Florida-9,

Reids-2, and Harwich wandering larvae with anti-Ubx (FP3.38) and

a fluorescent secondary antibody. Stainings and confocal

imaging were done identically and in parallel for $8 haltere

discs from each genotype. The pixel intensities in identically sized

regions of the distal anterior compartments were measured using

Adobe Photoshop. This region was quantified because it is a

relatively large area that expresses Ubx at uniform levels and

gives rise to the main body of the haltere (the same portion

measured in Figure 5A and Figure S4A). Similar trends were

observed when average pixel intensities for the entire distal

haltere were measured. The average intensities for each wild

population differed by no more than 16%, suggesting that final

Ubx levels are very similar despite differences in genetic

background and silencing.

Quantification of Ubx reporter silencing
To quantify the extent of silencing of the Ubx-Gal4lac1 reporter

in response to Ubx+ copy number and outcrosses to wild

populations, third instar haltere discs were dissected from

wandering larvae of yw122; DpP10x2/CyoGFP; Ubx-Gal4lac1UAS-

GFP/TM6B (4xUbx+), and the GFP positive, F1 progeny of yw122;

If/Cyo; Ubx-Gal4lac1UAS-GFP/TM6B crossed with NC2-80, NC2-

76, Ber-2, Tw-2, and Harwich. GFP positive F3 progeny of yw122;

If/Cyo; Ubx-Gal4lac1UAS-GFP/TM6B crossed with NC2-80 and

NC2-76 were also dissected. For the outcrosses, we always used

females from the wild populations. Haltere discs were fixed,

mounted, and imaged for GFP and DAPI on a confocal

microscope. Images were made binary in ImageJ. The GFP

expressing area relative to the total disc area was measured for

each disc, and this value was subtracted from the average GFP

expressing area (relative to total disc size) of yw122; If/Cyo; Ubx-

Gal4lac1UAS-GFP/TM6B haltere discs to yield a ‘% silencing’ value

for each disc.

Heat-shock induced Ubx overexpression
Larvae bearing the hs-UbxIa22 transgene [26] were heat-

shocked at 37uC for 15–20 minutes 3 or 4 days after egg laying.

Larvae were dissected at least 48 hours after heat shock to allow

for total dissipation of exogenous Ubx. hs-UbxIa22 larvae that were

not heat shocked showed no Ubx silencing. Neutral clones were

induced using the same heat shock regime in flies of the genotype

yw hsflp; FRT 42D Ub-GFP/FRT 42D; hs-UbxIa22/+.

Ubx enhancer traps and duplications
Ubx-Gal4lac1 [27]; Ubx-lacZlac1 [28]; Ubx-Gal4LDN [29]; Ubx-

Gal4M1 [29]; Ubx-lacZ166 [30]; and Ubx-Gal4M3 [29]. Although

these lines are hypomorphic mutations of the Ubx locus, this is

unlikely to contribute to our results because decreased production

of Ubx would, if anything, cause an underestimate of the amount

of silencing that occurs at the Ubx locus.

3x Ubx+ flies contain a tandem duplication of the Ubx locus

(Dp(3;3)P5).

4x Ubx+ flies contain a tandem duplication of a transpositon of

the Ubx locus onto the 2nd chromosome (Dp(3;2)P10). Further

increases in Ubx+ copy number were created by combining these

duplications [16]. Ubx9–22 expresses a non-functional Ubx protein

due to a ,1500 bp deletion that removes a splice acceptor site and

part of the Ubx homeodomain-encoding exon [31].

Before crossing to enhancer traps, Ubx duplications were

introduced into stocks containing marked chromosomes that do

not cause silencing (yw hsflp; If/cyo; Dp(P5)/Tm6B and yw hsflp;

Dp(3;2)P10x2/CyoGFP; MKRS/Tm6B).

To monitor silencing of Ubx-lacZ166 and Ubx-Gal4lac1 simulta-

neously (Figure S3), flies of the genotype, Dp(3;2)P10x2/heat shock-

Ubx; Ubx-lacZ166/Ubx-Gal4lac1 UAS-GFP were given a 15 min. heat

shock at 37uC 48 to 96 hrs after egg laying. Imaginal discs were

dissected at wandering stage and stained for Ubx, bgal, and GFP.

Silencing was not observed in flies of the same genotype without

heat shock.

Enhancer Silencing at Ubx

PLoS Genetics | www.plosgenetics.org 8 September 2009 | Volume 5 | Issue 9 | e1000633



PcG mutations
FRT101 ph504

FRT2A PcXT109

FRT42D Su(Z)2l.b8

FRT82B ScmD1

FRT42D PclD5

Of these mutations, when analyzed in loss-of-function clones, all

but Pcl resulted in repression of Ubx in the haltere (due to

derepression of more posterior Hox genes; data not shown) and

therefore could not be used to assess their role in silencing.

Other lines used
UAS-GFP Ubx-Gal4lac1/TM6B

UAS-GFP (X); Ubx-Gal4LDN/TM6B

UAS-GFP (X); Ubx-Gal4M1/TM6B

FRT 82B UbxDf(109)/TM6B

hs-UbxIa22/TM6B [26]

Ubx9–22/TM6B

vg-Gal4 UAS-GFP

vg-Gal4 UAS-GFP UAS-flp act.cd2.Gal4

UAS-UbxHA

FRT42D Ub-GFP

FRT42D Ub-GFP; hs-UbxIa22/Tm6B

FRT42D

UAS-GFP; FRT42D arm-lacZ; Ubx-Gal4Lac1

hs-Gal4

Antp-Ubx chimeras
(Previously described by [14]

UAS-Antp

UAS-AUA

UAS-UU* (* refers to a stop codon inserted immediately

following the homeodomain)

UAS-AAU

UAS-AUU

Quantitative PCR
Whole-fly genomic DNA was isolated from the lab stock

containing the Ubx-Gal4lac1 enhancer trap (yw122; If/CyoGFP; Ubx-

Gal4lac1 UAS-GFP/TM6B) and the GFP+ F2 progeny of the Ubx-

Gal4lac1 stock crossed to strains Tw2, NC2-76, and NC2-80.

Silencing was confirmed to be occurring in these crosses. The F2

progeny were generated by crossing Gal4lac1UAS-GFP F1 males to

wild population females, precluding the possibility of recombina-

tion between chromosomes of the lab and wild genotypes. Primers

were designed to amplify ,200 bp in the Gal4 and UAS transgenes

to determine their relative abundance in each genotype. A

,200 bp sequence in the 59UTR of homothorax was amplified to

normalize for different amounts of template DNA. PCR

amplification was performed in triplicate using Applied Biosystems

7300 Real Time PCR System, and SYBR Green PCR Master

Mix. Product dissociation curves were examined to ensure that

each primer set only amplified a single product. CT values and

amplification curves were consistent with an equal abundance of

the Gal4 and UAS sequences in all genotypes.

Antibody staining
Standard protocols were used with the following primary

antibodies:

Rabbit anti-b-Gal 1:10,000 (Cappel)

Mouse anti-En 1:10 (Hybridoma Bank)

Mouse anti-Ubx 1:20

Rat anti-HA 1:100

Supporting Information

Figure S1 Neutral clones respect the borders of Ubx silencing.

(A,B) Two examples of haltere discs with neutral clones (marked

by the absence of GFP) and Ubx silencing (induced by hs-Ubx). In

(A), there is no crossing between the neutral clones and Ubx-

silenced patches. In (B), although most of the neutral clones respect

the Ubx-silenced patches, there are two small exceptions (arrows).

Ubx- silenced patches are outlined in yellow and the neutral clones

are outlined in blue. The exceptions observed in these experiments

are likely due to multiple neutral clones that were scored as a single

clone because they fused during growth.

Found at: doi:10.1371/journal.pgen.1000633.s001 (9.78 MB TIF)

Figure S2 PcG functions are required for Ubx autoregulatory

silencing. (A) Wing disc with Pcl- clones (absence of GFP) stained

for Ubx (red) and GFP. Ubx expression is observed in pouch

clones. (B) Haltere disc with Pcl- clones (absence of GFP) stained

for Ubx (red) and GFP. Ubx expression is unaffected by the

absence of Pcl. Pcl was the only PcG gene we tested to show strong,

autonomous Ubx derepression in the wing disc, and no affect on

Ubx expression in the haltere disc; the PcG mutations Pc, Scm, ph,

and Su(Z)2 could not be used for this experiment because they

result in a loss of Ubx expression in the haltere, due to the

derepression of more posterior Hox genes in these clones (data not

shown). (C) A Ubx-Gal4lac1 haltere disc in which both silencing (by

hs-Ubx) and Pcl- clones were induced. Pcl- tissue is outlined in

yellow. Silencing of both Ubx and the enhancer trap are observed,

but not in Pcl- tissue. Note that Pcl- clones only affect Ubx

expression in the distal, ‘‘pouch’’ domain of the wing and haltere

(Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins

and heritable silencing of Drosophila Hox genes. Development

128: 993-1004).

Found at: doi:10.1371/journal.pgen.1000633.s002 (7.73 MB TIF)

Figure S3 Simultaneous monitoring of silencing for two Ubx

enhancer traps. (A,B) hs-Ubx/DpP10x2; UbxGal4lac1 UAS-GFP/

UbxlacZ166 haltere disc from animals that were not given a heat

shock (A) or were given a 15 min heat shock (B). The discs were

stained for Ubx (blue), GFP (green), and bgal (red). Individual

channels are shown as indicated. For (B), where silencing was

observed, the outlines of the silenced clones are shown as follows:

in the bgal channel (B’) the outlines of Ubx (yellow outline)

silenced clones are shown. In the GFP channel (B’) the outlines of

Ubx (yellow outline) silenced clones are shown. B’ shows the GFP

channel with the Ubx-lacZ166 (red outline) silenced clones. Note

that the extent of silencing of Ubx-Gal4lac1 is greater than that of

Ubx-lacZ166, and that Ubx-lacZ166 silencing is a subset of Ubx-

Gal4lac1 silencing.

Found at: doi:10.1371/journal.pgen.1000633.s003 (3.13 MB TIF)

Figure S4 Quantification of haltere sizes and Ubx levels. (A)

Quantifications of Ubx protein levels (blue bars) and haltere sizes

(red bars) in genotypes with differing numbers of wild type Ubx+
alleles. Both measurements are shown relative to wild type (2x

Ubx+). Note that neither measurement scales quantitatively with

increases in Ubx+ dose, illustrating that these phenotypes are

buffered. In contrast, one copy of Ubx+ shows a ,60% reduction

in Ubx protein levels and a ,50% increase in haltere size

compared to wild type (2x Ubx+). Error bars represent standard

error of the mean. (B) Quantifications of Ubx levels in 8 different

wild genetic backgrounds (Hikone-R, Berlin-K, NC2-80, NC2-76,

Tw2, Florida-9, Reids-2, and Harwich) and two F1s (yw X NC2-

76 and yw X Tw2) are all within ,16% of those measured in yw.

Moreover, this variation does not correlate with the degree of

silencing (shown in the thumbnail images below the graph). For
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comparison, halving the dose of Ubx+ decreases Ubx levels by

,40% (left-most bar). Error bars represent standard error of the

mean.

Found at: doi:10.1371/journal.pgen.1000633.s004 (0.36 MB TIF)

Figure S5 Ubx silencing increases with introgression into wild

genetic backgrounds. (A) Ubx-Gal4lac1 expression in the F1 progeny

of a cross to the Tw2 wild type line. (B) Silencing increases when

Ubx-Gal4lac1 is introgressed by backcrossing into the Tw2 line.

Shown here is a haltere disc after 2 backcrosses (the F3

generation). (C) Ubx-Gal4lac1 expression in the F1 progeny of a

cross to the NC2-80 wild type line. (D) Silencing increases when

Ubx-Gal4lac1 is introgressed by backcrossing into the NC2-80 line.

Shown here is a haltere disc after 2 backcrosses (the F3

generation).

Found at: doi:10.1371/journal.pgen.1000633.s005 (1.47 MB TIF)

Table S1 Summary of Ubx enhancer traps and their responses

to changes in Ubx levels and genetic variation

Found at: doi:10.1371/journal.pgen.1000633.s006 (0.08 MB

DOC)

Table S2 Summary of Ubx-Gal4lac1 silencing in F1 crosses to wild

stocks

Found at: doi:10.1371/journal.pgen.1000633.s007 (0.07 MB

DOC)
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