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Kronenberg7, Thomas Meitinger8,9, Hans-Werner Mewes 3,10, H.-Erich Wichmann1,2, Klaus M.

Weinberger11, Jerzy Adamski 5,6, Thomas Illig1, Karsten Suhre3,4*

1 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, 2 Institute of Medical Informatics,

Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany, 3 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German

Research Center for Environmental Health, Neuherberg, Germany, 4 Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany, 5 Institute of

Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, 6 Institute of

Experimental Genetics, Life and Food Science Center Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany, 7 Division of Genetic

Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria, 8 Institute of Human Genetics,

Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, 9 Institute of Human Genetics, Klinikum rechts der Isar,

Technische Universität München, Munich, Germany, 10 Department of Genome-Oriented Bioinformatics, Life and Food Science Center Weihenstephan, Technische

Universität München, Freising-Weihenstephan, Germany, 11 Biocrates Life Sciences AG, Innsbruck, Austria

Abstract

The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in
a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants
that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display
much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide
access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this
hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the
quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations
of frequent single nucleotide polymorphisms (SNPs) with considerable differences in the metabolic homeostasis of the
human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy
for enzymatic activity, up to 28% of the variance can be explained (p-values 10216 to 10221). We identified four genetic
variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD) where the corresponding metabolic phenotype
(metabotype) clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that
common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This
may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic
characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the
response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.
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Introduction

Recent genome-wide association (GWA) studies have identified

a number of genetic polymorphisms that convey an increased risk

for developing diabetes, coronary artery disease, rheumatoid

arthritis, and other common diseases [1–4]. However, by only

associating genotypes with clinical outcomes, little can be inferred

on the disease-causing mechanisms themselves. Moreover, the

effect size of genetic associations with clinical phenotypes is often

small. Therefore, large populations need to be screened in order to

obtain sufficient statistical power for the identification of new

disease-causing genetic variants, as recent genome wide associa-

tion studies with up to 18,000 participants have demonstrated [5–

7]. Metabolomics, which is the rapidly evolving field of measuring

all endogenous metabolites in a cell or body fluid [8–16], may

contribute to solving this problem. Biochemical measurements of

particular intermediate phenotypes on a continuous scale can be

expected to provide more details on potentially affected pathways
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and to be more directly related to the etiology of the disease

(Figure 1). It thereby provides a functional readout of the

physiological state of the human body. Genetic variants that

associate with changes in the homeostasis of key lipids,

carbohydrates or amino acids are not only expected to display

much larger effect sizes due to their direct involvement in

metabolite conversion modification, but may also provide access to

the underlying molecular disease-causing mechanisms.

To test this hypothesis, we quantified the concentrations of a

comprehensive set of naturally occurring organic compounds from

different metabolite classes in blood serum samples from

participants of the KORA F3 GWA study [17–19], and tested

all genotyped common genetic polymorphisms for association with

metabolite concentrations as quantitative traits. We show that if

the function of the associated gene is known, then the biochemical

characteristics of the affected metabolites can support this

association and provide information to identify the underlying

biological processes. Furthermore, whenever a pair of metabolites

is related to the direct substrates and products of an enzymatic

conversion, respectively, the ratio between their concentrations

can be used as an approximation of the enzymatic activity. We

thereby show that the variance in the dataset can be drastically

reduced by using these ratios, which increases the power of the

GWA study and reduces the corresponding p-values of association

by several orders of magnitude. Replication of a newly found

association in an independent population is the gold standard of all

GWA studies. By using metabolite concentrations as proxies for

clinical parameters, such as blood cholesterol levels, some of our

associations represent replications of previous associations with

such parameters.

Results

Based on our experience from previous metabolomics studies [20],

we chose a targeted quantitative metabolomics platform based on

electrospray ionization (ESI) tandem mass spectrometry (MS/MS) to

determine the fasting serum concentrations of up to 363 endogenous

metabolites, including nine sugar molecules, seven biogenic amines,

seven prostaglandins, 29 acylcarnitines, 18 amino acids, 85

sphingolipids, and 208 glycerophospholipids (metabolite naming

conventions are defined in the Material and Methods section; a full

list of all measured metabolites is available as supplementary

material). Data for 201 of these metabolites was obtained for more

than 95% of the samples. We conducted a genome-wide association

study with these metabolic traits in a group of 284 randomly selected

population-based male individuals between 55 and 79 years from the

KORA F3 study [18]. Single nucleotide polymorphisms were

determined previously on a genome-wide scale for this population

using the Affymetrix GeneChip Human Mapping 500K Array Set

[17,19]. To avoid false positive effects from associations based on

small numbers, we limited our analysis to SNPs in which at least 5%

of the population is homozygous for the minor allele. The

corresponding minor allele frequencies are .18.2%. The resulting

p-values of association for all metabolites when using an additive

genetic model are presented in Figure 2. After correction for testing

multiple loci and multiple metabolic traits, we estimated a

conservative genome-wide level of significance of at least

1.3361029. None of the associations that we found attained that

level when considering isolated metabolic traits. However, the best

SNPs rs9309413 (p = 1.9561029; Table S3) 21 kb upstream of the

PLEK gene and rs1148259 (p = 3.0461029; Table S5) in the 39UTR

of ANKRD30A were only slightly above genome-wide significance.

This is notable because, in contrast to most previous GWA studies, in

which association with few and mostly independent phenotypes was

tested, a GWA study with metabolomics tests multiple and

functionally related outcomes. Moreover, we will show in the

following that signals of genome-wide significant levels (p-values

between 10216 and 10221) can be attained when ratios between

metabolite concentrations are used, and that some of our associations

can also be considered as true positives on biological grounds.

A Prototype of a Genetically Determined Metabotype:
FADS1

We started our analysis by considering polymorphisms in

functionally well characterized enzymes that are among the top

ranking association signals in our GWA study (Tables 1 and S1).

SNP rs174548, one of several SNPs that lie in a linkage

disequilibrium block containing the FADS1 gene was strongly

associated (up to p = 4.5261028) with a number of glyceropho-

spholipid concentrations (Figure 3 and Table 2). This SNP

explains up to 10% of the observed variance of certain

glycerophospholipids. The FADS1 gene codes for the fatty acid

delta-5 desaturase, a key enzyme in the metabolism of long-chain

polyunsaturated omega-3 and omega-6 fatty acids (for a schematic

illustration of this pathway see Figure S1). The minor allele variant

of this SNP (MAF 27.5%) results in a reduced efficiency of the fatty

acid delta-5 desaturase reaction, a fact that can be inferred from

the following observations [21,22]: the concentrations of numer-

ous phosphatidylcholines (PC aa C34:4, PC aa C36:4, PC aa

C36:5, PC aa C38:4, PC aa C38:5, PC aa C38:6, PC aa C40:4,

PC aa C40:5; metabolite abbreviations are explained in the

material and methods section), plasmalogen/plasmenogen phos-

phatidylcholines (PC ae C36:4, PC ae C38:4, PC ae C38:5, PC ae

C38:6, PC ae C40:5), and the phosphatidylinositol PI aa C38:4

with four and more double bonds in their polyunsaturated fatty

acid (PUFA) side chains are lowest in individuals that carry the

minor allele of rs174548. In particular, the concentrations of the

direct product of FADS1, arachidonic acid as well as those of its

lyso-phosphatidylcholine derivative (PC a C20:4) are found to be

significantly reduced with increasing copy number of the minor

allele. On the other hand, concentrations of glycerophospholipids

Author Summary

This paper reports what is, to the best of our knowledge,
the first genome-wide association (GWA) study with
metabolic traits as phenotypic traits. By simultaneous
measurements of single nucleotide polymorphisms (SNPs)
and serum concentrations of endogenous organic com-
pounds in a human population, we identify genetically
determined variants in metabolic phenotype (metabotype)
that exhibit large effect sizes. Four of these polymorphisms
are located in genes coding for well-characterized
enzymes of the lipid metabolism. We find that individuals
with different genotypes in these genes have significantly
different metabolic capacities with respect to the synthesis
of some polyunsaturated fatty acids, the beta-oxidation of
short- and medium-chain fatty acids, and the breakdown
of triglycerides. In this approach, the concept of the
‘‘genetically determined metabotype’’ as an intermediate
phenotype is central, as it becomes a measurable quantity
in the framework of GWA studies with metabolomics. The
investigation of the genetically determined metabotypes
in their biochemical context might help to better
understand the pathogenesis of common diseases and
gene–environment interactions. These findings could
result in a step towards personalized health care and
nutrition based on a combination of genotyping and
metabolic characterization.

A Genome-Wide Association Study with Metabolomics
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with three and less double bonds in their PUFA side chains show a

positive association with the FADS1 genotype. These metabolites

include the phosphatidylcholines PC aa C34:2 and PC aa C36:2,

the plasmalogen/plasmenogen phosphatidylcholines PC ae C34:2

and PC ae C36:2, the phosphatidylethanolamines PE aa C34:2

and PE aa C36:2, and the phosphatidylinositol PI aa C36:2. The

negative association of the sphingomyelin concentrations (SM

C22:2, SM C24:2, SM C28:4) can be interpreted as being a result

of a changed homeostatis of phosphatidylcholins, since sphingo-

myelin can be produced from phosphatidylcholine by the action of

the sphingomyelin synthase. Similarly, the negative association of

the lyso-phosphatidylethanolamin PE a C10:0 can be considered a

consequence of the overall changed balance in glyceropho-

spholipid metabolism, since this metabolite can be produced from

different phosphatidylethanolamines by abstraction of an arachi-

donic acid moiety. In summary, we can conclude that the direction

of all those associations can be explained by a modification in the

efficiency of the fatty acid delta-5 desaturase reaction.

Furthermore, an association of this locus with arachidonic acid

and other polyunsaturated fatty acid concentrations has been

reported previously in two independent experiments [23,24]. This

case thus constitutes a full replication of this association in a third

and independent population, which validates our approach.

Ratios of Metabolite Concentrations Increase the Power
of Association

We have previously shown that analyzing ratios of metabolite

concentrations may strongly reduce the variation in the dataset

when a pair of metabolites is closely connected to the direct

substrates and products of a given enzymatic reaction [20]. When

Figure 1. Schematic illustration of the role of intermediate phenotypes (IPs), such as metabolic traits, demonstrated at the
examples of two genes that code for major enzymes of the long-chain fatty acid metabolism (FADS1 and LIPC). We show that new
information on the functional basis of the observed associations can be inferred from the biochemical properties of the affected metabolites.
Moreover, both genes were previously reported to be associated with common clinical phenotypes, FADS1 in an extent which would not attract
immediate attention for follow-up in a genome-wide context. Since several genes and pathways are involved in the development of a clinical
endpoint, the IP focuses on one pathway (e.g., cholesterol or a given metabotype) which is already known to be involved in the clinical endpoint (e.g.
coronary artery disease (CAD)). It is much easier to identify the genes which are associated with the IP since the associations of genetic variation with
the IP is much stronger than with the clinical endpoint. Environmental factors interact at different levels with the IPs and thereby add to the variability
in the system. The closer the IP is related to the genetic polymorphism, the stronger the association is expected to be. In our case the association
reflects enzymatic activity of FADS1 and LIPC which results in very strong effect sizes of the genetically determined metabotype.
doi:10.1371/journal.pgen.1000282.g001

A Genome-Wide Association Study with Metabolomics
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a tested SNP impacts the efficiency of such a metabolic reaction,

using concentration ratios leads to drastically decreased variance,

and, consequentially, strongly decreased p-values of associations.

Such a dependency not only provides rational evidence for a

positive association, but also points to potentially affected

metabolic pathways, as we demonstrate here for the example of

the FADS1 case. We find that by using metabolite concentration

ratios, the p-value of the association with the polymorphism in the

FADS1 gene decreases by up to fourteen orders of magnitude

(Table 3). Eicosatrienoyl-CoA (C20:3) and arachidonyl-CoA

(C20:4) are the direct substrate and product of the delta-5

desaturase reaction, which is catalyzed by FADS1. Synthesis of

these metabolites to a glycerol 3-phosphate, and further addition

of a palmitoyl-moiety (C16:0), followed by a dephosphorylation

step and the addition of a phosphocholin moiety, leads to the

formation of the glycerol-phosphatidylcholins PC aa C36:3 and

PC aa C36:4, respectively (for a schematic view of the

phosphatidylcholine biosynthesis at the example of PC aa C36:4

see Figure S1). PC aa C36:3 and PC aa C36:4 can thus be

considered as modified substrates and products of the delta-5

desaturase reaction. If the catalytic activity (or the protein

abundance) of FADS1 is reduced by a polymorphism in its gene

(or in a regulatory element), more eicosatrienoyl-CoA (C20:3) and

less arachidonyl-CoA (C20:4) is available for the synthesis of those

glycerophospholipids that contain these fatty acids. This translates

for example into increased PC aa C36:3 concentrations and

reduced PC aa C36:4 concentrations. Thus, the ratio between the

concentrations of the product-substrate pairs of the delta-5

desaturase reaction, such as [PC aa C36:4]/[ PC aa C36:3]

(Figure 4A), will be a strong indicator for the efficiency of the

FADS1 reaction. As reported in Table 3, glycerophospholipids

with three double bonds do not associate with the FADS1

polymorphism (p-values ranging from 0.92 to 0.077), whereas

the corresponding glycerophospholipids with four double bonds

generally display strong associations (most p-values ranging from

1023 to 1028). When considering the ratios between concentra-

tions of matched metabolite pairs, the association with the

polymorphism in the FADS1 gene increases by up to fourteen

orders of magnitude (p-values below 10221). This effect is observed

not only for one, but for a number of different glycerophospholipid

species (PC, PE, PI, incl. plasmalogen/plasmenogen phospholip-

ids) which are thus very likely composed of an arachidonyl-moiety

(C20:4) and either a palmitoyl- (C16:0) or a stearoyl-moiety

(C18:0), respectively (except for lyso-phosphatidylcholin PC a

C20:4, which is formed from a single arachinodyl-moiety). The

strongest effect size is observed for phosphatidylcholine diacyl

C36:4 (PC aa C36:4) to phosphatidylcholine diacyl C36:3 (PC aa

C36:3) ratio (p = 2.4610222). These metabolites are major

constituents of the cell membrane [25 and references therein].

Here, 28.6% of the total variance in the population can be

explained by this SNP (Table 3 and Figure 4A). If the molecular

function of FADS1 had not been already known, the association

between the SNP and the different glycerophospholipid concen-

trations per se would have allowed to deduce its enzymatic activity

of inserting a fourth double bond into long-chain fatty acids.

Association with Medical Phenotypes
Having shown that this polymorphism in the FADS1 gene

strongly influences the serum glycerophospholipid homeostasis, we

investigated the effect of this variation on biochemical variables

related to medical outcomes. As glycerophospholipids play a major

role in cholesterol metabolism, we hypothesized that the FADS1

polymorphism should have a detectable effect on the correspond-

ing serum parameters when looking at a sufficiently large

population. This is indeed the case. Two recent GWA studies

with up to 18,000 participants [5,6] report p-values of association

for SNP rs174548 with serum low-density lipoprotein (LDL)

cholesterol, high-density lipoprotein (HDL) cholesterol and total

cholesterol levels that range between 1.8961024 and 6.0761025

(Table 1). These associations have not been included into the list of

potential candidates for replication in those studies, as their p-

values taken alone were not sufficiently small in the context of a

‘‘classical’’ GWA study. Our association of SNP rs174548 with

different glycerophospholipids can be viewed as an indirect

replication of the association of FADS1 with HDL, LDL and total

cholesterol levels in an independent population. Furthermore, we

can now hypothesize that the observed change in cholesterol levels

induced by this SNP is functionally related to the availability of

polyunsaturated long-chain fatty acids with four and more double

bonds and its impact on the homeostasis of different glyceropho-

spholipids. This case shows that a combination of a GWA study

using metabolomic phenotypic traits with data from previous

GWA studies can make it possible to identify promising new

candidate SNPs associated to known phenotypes of medical

relevance, and to gain new insight into the functional background

of these associations.

A Second Genetically Determined Metabotype that
Associates with Medical Phenotype: LIPC

We therefore screened in a further step our strongest

associations for overlap with associations in three recent large

GWA studies, including serum lipid parameters well known to be

involved in cardiovascular diseases as well as seven major common

disease phenotypes [5–7]. Following this strategy, we identified a

series of SNPs in which the biochemical properties of the

associated metabolites support the previously reported associations

with their clinical outcomes (Tables 1 and S1; Datasets S1 and S2).

Figure 2. P-values of association assuming an additive genetic
model, superposing the results obtained from all genome-wide
tested metabolic traits. Chromosomal location is indicated by
different colors on the x-axis, negative logarithmic p-values are reported
on the y-axis. The top ranking SNPs together with the closest gene and
the most significant associating metabolite(s) are indicated. A complete
list of all associations with p,1026 is provided in Table S1, together
with significant associations from previous GWA studies with medical
phenotypes. Metabolite abbreviations are explained in the material and
methods section and a full list of all measured metabolites is provided
as supplementary data.
doi:10.1371/journal.pgen.1000282.g002

A Genome-Wide Association Study with Metabolomics

PLoS Genetics | www.plosgenetics.org 4 November 2008 | Volume 4 | Issue 11 | e1000282



One example is SNP rs4775041, which is also in the list of our top

ranking associations. This SNP is located in a linkage disequilib-

rium block containing the gene coding for LIPC, a key enzyme of

the long-chain fatty acid metabolism. This polymorphism

associates with the concentrations of numerous glyceropho-

sphatidylcholines, glycerophosphatidylethanolamines and sphin-

gomyelins (up to p = 9.6661028; Figure 3 and Table S2). For

instance, homozygotes carrying the minor allele have on average

70% higher concentrations of the phosphatidylethanolamine

diacyl C38:6 (PE aa C38:6) than homozygotes for the major

allele. The molecular function of LIPC is to break-down

triglycerides to diacyl- and monoacylglycerols and fatty acids,

which makes this association functionally plausible. In previous

GWA studies this locus was reported to be associated with HDL

cholesterol (p = 2.8061029, 3.061025, 2.061023, and 7.061023)

and triglyceride levels (p = 7.3061025) [5,6,17,26].

Our results thus not only replicate the association of LIPC with

HDL cholesterol and triglyceride levels in an independent

population, but, similar to the FADS1 case, they provide new

insights into the underlying biochemical mechanism of this

Table 1. Genetically determined metabotypes with the strongest signal of association.

Gene PLEK PARK2 ANKRD30A FADS1 LIPC

Position relative to gene 21 kb upstream intron 39UTR intron 49 kb upstream

rs number rs9309413 rs992037 rs1148259 (rs1200826) rs174548 rs4775041

Chromosome 2 6 10 11 15

Chromosomal position 68,482,423 161,971,847 37,548,456 61,327,924 56,461,987

Minor allele frequency 45.2% 34.7% 42.2% 27.5% 28.0%

Best metabolic trait Sphingomyelin SM
C14:0

Lysine Sphingomyelin SM(OH,
COOH) C18:2

Phosphatidylcholine
PC aa C36:4

Phosphatidylethanolamine
PE aa C38:6

P-value of best metabolic trait 1.9561029 1.2061027 3.0461029 4.5261028 9.6661028

Explained variance 12.0% 9.5% 11.7% 10.1% 9.7%

Traits in GWAS

HDL cholesterola 0.035 - - 1.8961024 2.8061029

LDL cholesterola - - - - -

Triglyceridesa - - - 0.0014 7.3061025

2 h glucoseb - - - - -

2 h insulinb - - - - -

Apolipoprotein-I, APOA-1b - - 2.4461024 0.032 2.7561024

Apolipoprotein-II, APOA-2b - - 0.033 0.0055 0.0032

Apolipoprotein B, APOBb - - - - -

Total cholesterolb - - 0.043 1.4861024 0.055

Fasting glucoseb - - - - -

Fasting insulinb - - - - -

HDL cholesterolb - - - 0.037 0.0049

fasting insulin, HOMAb - - - - -

Insulinogenic indexb - - - - 0.016

LDL cholesterolb - - 0.058 6.0761025 -

Triglycerides/HDLb 0.010 - - 0.051 0.025

Triglyceridesb - - - 0.028 0.0071

Bipolar disorderc - - - 0.048 0.046

Coronary artery diseasec - - - 0.021 -

Crohn’s diseasec - - - 0.027 -

Hypertensionc - - - - -

Rheumatoid arthritisc 0.031 - - - 0.059

Type 1 diabetes mellitusc - - - - -

Type 2 diabetes mellitusc - - - - 0.061

Reported are the SNP identifier (rs number), chromosome, chromosomal position, the minor allele frequency (MAF), the metabolic trait with the lowest p-value of
association (test against the null-hypothesis of no association), and percentage of the variance explained by the additive genetic model. Association results for
metabolic traits with p,0.05 are provided in Tables 2, S2, S3, S4, and S5. Data for all 363 metabolic traits are available as supporting online data (Datasets S1 and S2). P-
values of association from previous GWA studies for the same SNP (neighboring SNP rs1200826 for ANKRD30A) are reported for the following traits: (a) HDL cholesterol,
LDL cholesterol, triglycerides are from the publication of Willer et al. [6]; (b) 2 h glucose, 2 h insulin, apolipoproteins A-I, A-II, B, total cholesterol, fasting glucose, fasting
insulin, HOMA insulin resistance, insulinogenic index are from the Diabetes Genetics Initiative (DGI) study [5]; (c) bipolar disorder, coronary artery disease, Crohn’s
disease, hypertension, rheumatoid arthritis, type 1 and type 2 diabetes mellitus are from the WTCCC study [7]. Associations with p-values larger than 0.1 are indicated by
a ‘-’.
doi:10.1371/journal.pgen.1000282.t001

A Genome-Wide Association Study with Metabolomics
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association by identifying the involved lipid metabolites. Here we

find phosphatidylethanolamines as the most strongly affected

metabolites, prompting further research on their role in the

cholesterol pathway. For instance, one may speculate that the

substrate specificity of LIPC is affected by this genetic polymor-

phism. Interestingly, SNP rs4775041 also weakly associates with

type 2 diabetes (p = 0.061), bipolar disorder (p = 0.048) and

rheumatoid arthritis (p = 0.059), and this in a third, independent

population [7]. These associations are not significant on a genome-

wide scale. However, the associations of this polymorphism with

phospholipids reported here, as well as its associations with blood

cholesterol levels in independent studies suggests that this genetic

variant may indeed be causally related to these diseases, albeit

further studies in larger populations will be needed to test this

hypothesis. In any case, this example indicates how metabolic

traits may serve as intermediate phenotypes to identify potential

links between genetic variance and complex diseases (see Figure 1).

Further Examples: PARK2 and PLEK
It is noteworthy that we could identify and validate two

associations (FADS1 and LIPC) with major genetically determined

metabotypes (concentrations of metabolites and concentration

ratios) among the five strongest associations in our GWA study

despite the moderate number of participants in this study. We

attribute this fact to the unexpectedly large effect sizes in

combination with small variances of the genotype-metabotype

associations. As it is evident that a number of the other top ranking

candidate associations provide information relevant for causal

genotype/phenotype associations, we report these results as

supplementary material to serve as a resource for further research

(Table S1 and Datasets S1 and S2). To give some illustrative

examples, a polymorphism in the PARK2 gene (rs992037; also

among the five strongest associations) alters the concentrations of

several amino acids. Some of these amino acids are directly

connected to the urea cycle (Table S6). PARK2 codes for parkin, a

ubiquitin ligase for which a loss-of-function mutation has been

reported to result in Parkinson’s disease [27]. When using ratios

between metabolite concentrations we observed up to three orders

of magnitude smaller p-values (Table S6). This suggests that this

polymorphism impacts some metabolic pathway that involves

glutamate on the one hand and a number of other amino acids

(except lysine) on the other hand. Thus, the metabolic footprint of

this association is that of an amino acid interconversion, which is

supported by the functional role of PARK2 as a ubiquitin ligase in

the protein degradation pathway. Another example for a

biologically plausible association is SNP rs9309413, which lies

21 kb upstream of PLEK. This SNP has the lowest p-value of

association in this study (p = 1.9561029). The PLEK gene codes

Figure 3. Boxplots of the metabolite concentrations of five top ranking associations as a function of genotype. They show the
differentiation of the population that is induced by these genetically determined metabotypes (0 = major allele homozygote, 1 = heterozygote,
2 = minor allele homozygote). Boxes extend from 1st quartile (Q1) to 3rd quartile (Q3); median is indicated as a horizontal line; whiskers are drawn to
the observation that is closest to, but not more than, a distance of 1.5(Q3-Q1) from the end of the box. Observations that are more distant than this
are shown individually on the plot. The number of individuals in each group is given below the boxes. P-values for these associations are given in
Table 1.
doi:10.1371/journal.pgen.1000282.g003
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for pleckstrin, a protein that has been proposed to facilitate

protein/lipid interactions and to affect membrane structure [28].

The polymorphism we report here impacts on a number of

sphingomyelins, which are known to play a major role in

membrane lipid structure (Table S3).

GWA with Concentration Ratios: SCAD and MCAD
Prompted by the strong increase in the association signal in the

FADS1 example by using metabolite concentration ratios, we

tested the ratios of all possible metabolite pairs for association with

any of the SNPs that have a minor allele frequency higher than

Table 2. Associations of rs174548 (FADS1) with metabolic traits.

metabolite mean ncases p-value estimate explained variance

PC aa C36:4 399.41 284 4.52E-08 20.318 10.11%

PC a C20:4* 5.09 284 5.30E-07 20.293 8.58%

PC aa C38:4 209.05 284 4.91E-06 20.268 7.17%

PC ae C36:5* 19.14 284 1.46E-05 20.255 6.48%

SM C22:2 4.94 284 5.93E-05 20.236 5.59%

PC ae C38:4 30.12 284 1.42E-04 20.224 5.03%

PE aa C34:2 2.22 284 1.54E-04 0.223 4.98%

PC ae C38:5 32.72 284 1.80E-04 20.221 4.88%

PC aa C38:5 128.89 284 2.01E-04 20.219 4.81%

PE e (COOH) C16:3* 5.05 284 1.49E-03 0.188 3.53%

PC ae C36:4 35.16 284 1.68E-03 20.186 3.46%

PE a C10:0 4.16 284 2.34E-03 20.180 3.25%

PC aa C34:2 810.00 284 2.68E-03 0.178 3.16%

SM (COOH) C18:3 7.30 284 3.08E-03 20.175 3.07%

PC aa C34:4 3.25 284 3.25E-03 20.174 3.04%

PC aa C36:5 47.53 284 4.65E-03 20.168 2.82%

PC ae C36:2 25.33 284 5.87E-03 0.163 2.67%

PC aa C40:5 27.52 284 6.21E-03 20.162 2.63%

Arachidonic acid 4.33 283 9.04E-03 20.155 2.41%

PC ae C40:5 6.79 284 1.05E-02 20.152 2.31%

PC aa C40:4 9.53 284 1.07E-02 20.151 2.29%

SM (OH) C26:1 12.75 63 1.15E-02 20.317 10.03%

PI aa C36:2* 7.37 284 1.15E-02 0.150 2.25%

SM C24:2 16.82 221 1.20E-02 20.169 2.86%

PI aa C38:4* 27.03 284 1.21E-02 20.149 2.22%

PC aa (OH, COOH) C30:4 342.95 284 1.29E-02 0.148 2.18%

PC ae C34:2 23.44 284 2.28E-02 0.135 1.83%

SM (OH) C24:0 11.80 208 2.94E-02 20.151 2.29%

LYS 215.17 284 3.05E-02 0.129 1.65%

PA aa C20:7 197.36 284 3.20E-02 20.128 1.63%

PE aa C36:2 4.42 284 3.52E-02 0.125 1.57%

PC aa (COOH) C30:3* 10.38 215 4.00E-02 0.141 1.98%

PC ae C38:6 11.67 284 4.40E-02 20.120 1.44%

PC aa C38:6 146.59 284 4.42E-02 20.120 1.43%

C5-DC 0.11 284 4.43E-02 20.120 1.43%

SM (OH,COOH) C6:0 4.79 63 4.64E-02 0.252 6.35%

SM C28:4 5.51 284 4.73E-02 20.118 1.39%

PI a (OH, COOH) C18:2* 3.74 63 4.84E-02 0.250 6.24%

PC aa C36:2 412.59 284 4.92E-02 0.117 1.37%

Metabolites associated (p,0.05) with genotype rs174548 (FADS1) in the additive genetic model; in cases where alternative assignments of the metabolites are possible,
these are indicated by a ‘*’. Full annotations can be found in the supporting online data files. Reported are the mean concentrations (mM), standard deviation, the
number of cases for which metabolite concentrations were obtained (ncases), the p-value of the association, the regression coefficient using an additive genetic model
(estimate), and the measure of the observed variance that can be explained by the additive genetic model.
doi:10.1371/journal.pgen.1000282.t002
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Figure 4. Boxplots of the strongest associations of metabolite concentration ratios with polymorphisms in the FADS1 (A;
p = 2.4610222), SCAD (B; p = 9.3610217), and MCAD (C; p = 7.6610217) genes (see legend to Figure 3 for details). The metabolic
efficiencies of the reactions that are catalyzed by these three enzymes differ considerably between individuals of different genotype.
doi:10.1371/journal.pgen.1000282.g004

Table 3. Associations of rs174548 (FADS1) with concentrations and ratios between the concentrations of matching pairs of
glycerophospholipid species.

enumerator denominator mean ncases p-value estimate explained variance

Single metabolites (four double bonds)

PC a C20:4* 1 5.094 284 5.361027 20.293 8.58%

PC aa C34:4 1 3.249 284 3.361023 20.174 3.04%

PC aa C36:4 1 399.407 284 4.561028 20.318 10.11%

PC aa C38:4 1 209.050 284 4.961026 20.268 7.17%

PC ae C36:4 1 35.160 284 1.761023 20.186 3.46%

PC ae C38:4 1 30.117 284 1.461024 20.224 5.03%

PE aa C38:4 1 5.357 284 0.13 20.090 0.81%

PI aa C38:4* 1 27.025 284 0.012 20.149 2.22%

Single metabolites (three double bonds)

PC a C20:3* 1 2.461 208 0.86 20.013 0.02%

PC aa C34:3 1 30.751 284 0.21 0.075 0.56%

PC aa C36:3 1 250.496 284 0.56 0.035 0.12%

PC aa C38:3 1 123.002 284 0.66 20.027 0.07%

PC ae C36:3 1 19.697 284 0.17 0.081 0.66%

PC ae C38:3 1 10.641 284 0.74 0.020 0.04%

PE aa C38:3 1 1.623 132 0.92 20.009 0.01%

PI aa C38:3* 1 7.791 221 0.077 0.120 1.43%

Ratios between metabolite concentrations

PC a C20:4* PC a C20:3* 2.224 208 2.961028 20.374 13.98%

PC aa C34:4 PC aa C34:3 0.107 284 4.261027 20.295 8.72%

PC aa C36:4 PC aa C36:3 1.613 284 2.4610222 20.535 28.62%

PC aa C38:4 PC aa C38:3 1.708 284 2.1610217 20.476 22.66%

PC ae C36:4 PC ae C36:3 1.832 284 7.361028 20.313 9.81%

PC ae C38:4 PC ae C38:3 2.888 284 9.761029 20.333 11.07%

PE aa C38:4 PE aa C38:3 3.693 132 0.013 20.216 4.64%

PI aa C38:4* PI aa C38:3* 3.582 221 1.561028 20.370 13.69%

Association of SNP rs174548 (FADS1) with concentrations and ratios between the concentrations of matching pairs of glycerophospholipid species with three-
(denominator) and four-fold (enumerator) unsaturated carbon bonds in their fatty acid side chains; in cases where alternative assignments of the metabolites are
possible, these are indicated by a ‘*’; reported are the mean (mM), the number of cases for which metabolite concentrations were obtained (ncases), the p-value of the
association, the regression coefficient using an additive genetic model (estimate), and the proportion of the observed variance that can be explained by including the
genetic polymorphism in the additive genetic model.
doi:10.1371/journal.pgen.1000282.t003
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20%. We identified two new loci that are comparable to the

FADS1 example in their strength of association and also in terms

of the metabolic traits matching the genes’ function. The first

polymorphism is located in the gene coding for the short-chain

acyl-Coenzyme A dehydrogenase (SCAD; e.g. intronic SNP

rs2014355, minor allele frequency 25.1%), located on chromo-

some 12, and the second lies in the gene coding for the medium-

chain acyl-Coenzyme A dehydrogenase (MCAD; e.g. intronic

SNP rs11161510, minor allele frequency 31.2%) on chromosome

1. Coincidentally, both genes code for enzymes that initiate the

beta-oxidation of fatty acids, but they differ in the preference for

their chain lengths. The metabolite pair that associates most

strongly with rs2014355 of SCAD is the ratio between the short-

chain acylcarnitines C3 and C4 (p = 9.3610217, explained

variance 21.8%, Figure 4B) while the pair that associates most

strongly with rs11161510 of MCAD is the ratio between the

medium-chain acylcarnitines C12 and C8 (p = 7.6610217,

explained variance 21.9%, Figure 4C). Fatty acids are bound to

free carnitine for transport and beta-oxidation into the mitochon-

dria. Similar to our argumentation in the FADS1 example, we can

therefore consider the short-chain acylcarnitines as indirect

substrates and products of SCAD and the medium-chain

acylcarnitines as indirect substrates of MCAD, which matches

the biochemical function of these enzymes. From the direction of

the effect of these polymorphisms (higher concentrations of the

longer chain fatty acids ( = substrates) when compared to the

smaller chain fatty acids ( = products) implies a reduced dehydro-

genase activity) we can further deduce that in both cases minor

allele homozygotes have the lowest enzymatic turnover for these

reactions.

Discussion

Our data support the idea that frequent genetically determined

metabotypes play a role as discriminating cofactors in the etiology

of common multi-factorial diseases. In interactions with environ-

mental factors such as nutrition or life style, these metabotypes

may influence the susceptibility of an individual for certain

phenotypes. As an example, there is growing evidence (which has

yet to be replicated) for a link between the long-chain

polyunsaturated fatty acid metabolism and attention deficit/

hyperactivity syndrome (ADHS). An association of the same

polymorphism in the FADS1 gene that we identified here

(rs174548) has recently been reported to be associated with

ADHS [29]. Genetic variation in the FADS gene cluster has also

been shown to moderate the association between breastfeeding

and intelligence quotient (IQ), by influencing the ability to

metabolize certain fatty acids that are uniquely available in breast

milk [30]. Such effects may possibly be explained by changes in

the membrane fluidity of neuronal cells, which depends on the

degree of membrane fatty acid saturation, and consequentially

impacts the mobility of membrane-bound neuroreceptors.

The differentiation of the population into individuals with

different levels of four-fold and higher-fold unsaturated fatty acids,

as induced by the FADS1 polymorphism, is thus a prototype of a

genetically determined metabotype. LIPC, similar to the case of

FADS1, corresponds to a second prototypic example of a genetically

determined human metabotype. LIPC is indeed a factor related to

modifications in HDL cholesterol levels, and thereby a cofactor in

the etiology of HDL-related diseases, albeit a direct association to

such diseases still requires confirmation. Our results clearly

demonstrate that a GWA study with metabolomic phenotypes

provides a more functional approach to the study of human genetic

variation, increases the power of such studies, and allows for the

identification or confirmation of new associations from previous

GWA studies with clinical parameters as phenotypic traits.

Of particular interest for future research are the two

polymorphisms in the SCAD and MCAD genes. Major deficien-

cies in the corresponding enzymes are known to be associated with

severe systemic disorders and with clinical symptoms such as

hypoketotic hypoglycemia, lethargy, encephalopathy, and seizures.

Such deficiencies are nowadays systematically identified by

neonatal screening programs [31 and references therein]. In

contrast, the genetic variants that we report here show a relatively

moderate phenotypic expression, but are very frequent in the

population (minor allele frequencies .25%). One may speculate

that individuals that are homozygous for at least one of the minor

alleles of the SCAD or MCAD polymorphisms are likely to show

signs of impaired beta-oxidation. One would then expect that, for

instance in situations of prolonged starvation or physical activity,

these individuals may become more readily hypoglycemic and

may display the corresponding symptoms, such as tiredness, loss of

alertness, headache, and memory problems. It would therefore be

promising to search for associations between the SCAD/MCAD

polymorphisms and phenotypes that are related to impaired beta-

oxidation, possibly in the context of diabetes.

The identification of genetic variants that alter the homeostasis

of key metabolites in the human body will eventually lead to a

functional understanding of the genetics of complex diseases. To

achieve this goal, identifying the major genetically determined

metabotypes is mandatory. The current rapid development in the

field of metabolomics promises future access to larger metabolite

panels, larger population sizes, and metabolomics experiments

under different physiological conditions and in different body

fluids. This will allow for a more detailed probing of the human

metabolic network and its associated genetic variants. We argue

that progress towards individualized medication lies in a

combination of genotyping and metabotyping, based on evidence

provided in part by GWA studies combined with metabolomics

like the one presented here. We conclude that metabolomics

delivers its promise of providing access to functionally relevant

endpoints in the framework of GWA studies, and thereby opens

new avenues for a functional investigation of the role of gene-

environment interactions in the etiology of complex diseases.

Material and Methods

Study Population
This study is based on a previously reported genotyping effort

[17,19] whereof we report the essentials here. We recruited the

study population for the genome-wide association study from the

KORA S3 survey that is a population-based sample from the

general population. The dataset comprises individuals aged 25–74

years resident in the region of Augsburg, Southern Germany,

examined in 1994–1995. The standardized examinations applied

have been described in detail elsewhere [18 and references

therein]. We selected 1,644 subjects, who participated in a follow-

up examination of S3 (F3 500K), comprising individuals who, at

that time, were aged 35–79 years. With regard to possible effects

from population stratification it should be noted that previous

work with the KORA F3 500K dataset excluded population

stratification as the origin of an observed association with uric acid

on the basis of comparison with two other studies [19]. Moreover,

possible population stratification in KORA F3 500K was also

excluded based on an EIGENSOFT analysis performed in an

earlier independent report [32]. Also, recent experimental

assessment has found little population stratification to exist within

and across Germany [33].
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Genotyping
Genotyping for KORA F3 500K was done using the Affymetrix

500K Array Set, consisting of two chips (Sty I and Nsp I).

Hybridization of genomic DNA was done in accordance with the

manufacturer’s standard recommendations. Genotypes were

determined using the BRLMM clustering algorithm (http:

//www.affymetrix.com/support/technical/whitepapers/brlmm_

whitepaper.pdf). The genotypes were determined in batches of at

least 400 chips. For quality control purposes, we applied a

positive and a negative control DNA every 48 samples. The

overall genotyping efficiency of the GWA was 98.26%. Before

statistical analysis, we performed filtering of both conspicuous

chips and SNPs based on quality measures to ensure robustness of

association analysis. On chip level only subjects with overall

genotyping efficiencies of at least 93% for both chips and at most

one discordant call for 50 SNPs situated on both chips were

included. In addition the called gender has to agree with the

gender in the KORA study database. On SNP level from a total

of 500,568 SNPs, we excluded for the purpose of this study all

SNPs on chromosome6leaving 490,032 autosomal SNPs for the

GWA screening step. From these 187,454 SNPs (38.25%) passed

all subsequent filter criteria, and were selected for the association

analyses presented in this paper. Criteria leading to exclusion

were genotyping efficiency ,95% (N = 49,325) and genotype

frequency of the minor genotype ,5% (N = 252,405). An exact

Fisher test was used to detect deviations from Hardy Weinberg

Equilibrium, and we excluded all SNPs with p-values below 1026

(N = 848 after passing the other criteria).

Sampling
From the 1644 participants genotyped in the KORA F3 500K

study population, 284 males (55–79 years) were selected at random

for metabolic characterization. Blood samples for metabolic analysis

were collected during 2006. To avoid variation due to circadian

rhythm, blood was drawn in the morning between 8 and 10 am after

a period of overnight fasting. Material was immediately horizontal

shaken (10 min), followed by 40 min resting at 4uC to obtain

complete coagulation. The material was then centrifuged (2000 g;

4uC). Serum was aliquoted and kept for 2–4 hours at 4uC, after

which it was deep frozen to 280uC until sampling.

Metabolite Measurements
Targeted metabolite profiling by electrospray ionization (ESI)

tandem mass spectrometry (MS/MS) was performed on a fee-for-

service basis on a quantitative metabolomics platform at Biocrates

Life Sciences AG, Austria. The company had no access to genotype

or phenotype information that would have permitted any data pre-

filtering other than objective quality control for measurement

errors based on internal controls and duplicates. All metabolomics

data was used as received from Biocrates. We did not apply any

data correction, nor were any data points removed. The

experimental metabolomics measurement technique is described

in detail by patent US 2007/0004044 (accessible online at http://

www.freepatentsonline.com/20070004044.html). A summary of

the method can be found in [34–36] and a comprehensive

overview of the field and the related technologies is given in the

review paper by Wenk [10]. Briefly, a targeted profiling scheme is

used to quantitatively screen for known small molecule metabolites

using multiple reaction monitoring, neutral loss and precursor ion

scans. Quantification of the metabolites of the biological sample is

achieved by reference to appropriate internal standards. The

method has been proven to be in conformance with 21CFR (Code

of Federal Regulations) Part 11, which implies proof of

reproducibility within a given error range. It has been applied in

different academic and industrial applications [20]. Concentra-

tions of all analyzed metabolites are reported in mM (except for

prostaglandin concentrations which are reported in nM units in

the supplementary data files).

Metabolite Panel
In total, 363 different metabolites were detected. The metabo-

lomics dataset contains 18 amino acids, nine reducing mono-, di-

and oligosaccharides (abbreviated as Hn for n-hexose, dH for

desoxyhexose, UA for uronic acid, HNAc for N-acetylglucosamine,

P for Pentose, NANA for N-acetylneuraminic-acid), seven biogenic

amines, five prostaglandins, arachidonic acid (AA), docosahexae-

noic acid (DHA), free carnitine (C0), 28 acylcarnitines (Cx:y),

hydroxylacylcarnitines (C(OH)x:y), and dicarboxylacylcarnitines

(Cx:y-DC), 85 ceramides (Cer), glucosylceramides (GlcCer), differ-

ent sphingomyelins (SMx:y) and sphingomyelin-derivatives, such as

N-hydroxyldicarboacyloylsphingosyl-phosphocholine (SM(OH,-

COOH)x:y) and N-hydroxylacyloylsphingosyl-phosphocholine

(SM(OH)x:y). In addition, 208 phospholipids were detected,

including different glycero-phosphatidic acids (PA), glycero-phos-

phatidylcholines (PC), glycero-phosphatidylethanolamines (PE),

phosphatidylglycerols (PG), glycero-phosphatidylinositols (PI), gly-

cero-phosphatidylinositol-bisphosphates (PIP2), and glycero-phos-

phatidylserines (PS). Glycerophospholipids are further differentiated

with respect to the presence of ester (a) and ether (e) bonds in the

glycerol moiety, where two letters (aa = diacyl, ae = acyl-alkyl,

ee = dialkyl) denote that two glycerol positions are bound to a fatty

acid residue, while a single letter (a = acyl or e = alkyl) indicates the

presence of a single fatty acid residue. Lipid side chain composition

is abbreviated as Cx:y, where x denotes the number of carbons in the

side chain and y the number of double bonds. E.g. ‘‘PC ae C33:1’’

denotes a plasmalogen/plasmenogen phosphatidylcholine with 33

carbons in the two fatty acid side chains and a single double bond in

one of them. The precise position of the double bonds and the

distribution of the carbon atoms in different fatty acid side chains

cannot be determined with this technology. In some cases, the

mapping of metabolite names to individual masses can be

ambiguous. For example, stereo-chemical differences are not always

discernible, neither are isobaric fragments. In such cases, possible

alternative assignments are indicated.

Statistical Analysis
In the statistical analysis only SNPs with a minor allele

homozygote frequency of at least 5% were included in order to

account for the relatively small sample size of the study. The

corresponding smallest minor allele frequency (MAF) in the

analyzed dataset is 18.2%. In a first full genome-wide screen,

metabolites with less than 5% missing values were used (201

metabolite variables). Additive genetic models assuming a trend

per copy of the minor allele were used to specify the dependency of

metabolites on genotype categories in the genome wide association

study. No further adjustment was performed. The linear regression

algorithm implemented in the statistical analysis system R (http://

www.r-project.org/) was used in the genome wide association

study and SPSS for Windows (Version 15.0, Chicago: SPSS Inc.)

was used for statistical analysis on a case-by-case level. It should be

noted that the calculation of p values is based on asymptotic

assumptions, which do not apply down to extremely low levels.

Such p-values should thus be interpreted merely as indicators for

the strength of an association, but not as absolute probabilities. A

conservative estimate of a genome-wide significance level (using

the Bonferroni correction) based on a nominal level of 0.05 is

1.3361029 (0.05 / (201*187,454) ). However, such a small p-value

of an association would only be required to confirm an association
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between a SNP and a single metabolite concentration if all SNPs

and metabolites were acting independently. As explained in the

main text, in the case of a GWA study with metabolomics,

evidence from multiple metabolic traits can be combined into a

multi-factorial ‘‘metabolic story’’, where changes in metabolite

concentrations are interpreted in the context of their position on

the metabolic pathways. To document the complete story all SNPs

that associate with at least one metabolic trait, associations with a

p-value smaller than 1024 are retained for further analysis (2927

SNPs). For these cases, all other metabolic traits that also associate

with the same SNP with a p-value of association smaller than 0.01,

are reported and made available as supporting online data (30641

associations) (Datasets S1 and S2). These have been selected from

a set of 187,454 SNPs. Moreover, the metabolic measures are not

independent, and therefore if by chance one trait associates with

an SNP its correlate would also be expected to associate with that

SNP. For the top ranking associations we then carried out a linear

regression between the associating SNP (additive genetic model),

using all available (max. 363) metabolite concentrations as

quantitative traits. In addition, motivated by our previous

observation [20] that the use of ratios may lead to a strong

reduction in the overall variance and a corresponding improve-

ment in the p-values of association, we computed all possible pairs

of metabolite concentration ratios for those cases and used those

ratios as quantitative traits in a subsequent test. A strong reduction

in p-value indicates that two metabolites may be linked by a

metabolic pathway that is modified by the SNP. A conservative

estimation of the genome-wide significance level (Bonferroni

correction) when testing all metabolite pairs, based on a nominal

level of 0.05, is 6.6610212 (1.3361029/ 201). The results of these

computations are provided as supporting online data for the cases

discussed in this paper. It should be noted that we report there

some particular genetic variants down to p = 0.05.

GWA Data from Other Studies
Genome wide association data (p-values) from three recent

GWA studies was downloaded on 21 February 2008 from http://

www.broad.mit.edu/diabetes/scandinavs/metatraits.html (Broad

Institute [5]) and http://www.sph.umich.edu/csg/abecasis/public/

lipids/ (University of Michigan [6]) and on 14 March 2008 from

http://www.wtccc.org.uk/info/summary_stats.shtml (Wellcome

Trust Case Control Consortium [7]). All p-values of association of

these three GWA studies were combined with our dataset. In the

WTCCC study several methods to compute p-values of association

were used. Here we only use p-values using the additive frequentist

model on the base population (controls and suitable cases merged as

described in [7]). Data points from that study that were flagged as

having bad clustering parameters in the genotype calling were

excluded.

Supporting Information

Figure S1 Schematic view of the role of FADS1 in the synthesis

of phosphatidylcholine. Long-chain poly-unsaturated fatty acids

have to be produced from the essential fatty acid linoleic acids

(C18:2) in the omega-6 fatty acid synthesis pathway (top figure)

and from alpha-linolenic acid (C18:3) in the omega-3 fatty acid

synthesis pathway (not shown). Un- and monosaturated fatty acids

with chain lengths of up to 18 carbons, i.e. palmic acid (C16:0),

stearic acid (C18:0) and oleic acid (C18:1) can be synthesized de

novo in the human body. In the Kennedy pathway, glycerol-

phosphatidylcholins (PC) with different fatty acid side chains are

then produced from two fatty acid moieties (bottom figure). These

are linked to a glycerol 3-phosphate, followed by a dephosphor-

ylation step and the addition of a phosphocholin moiety. A very

good review of the underlying lipid metabolism can be found in

Vance (2001). Figures and pathways shown here were adapted

from the KEGG database at http://www.genome.jp/kegg/

(Kanehisa et al. 2006).

Found at: doi:10.1371/journal.pgen.1000282.s001 (0.53 MB TIF)

Table S1 List of top ranking associations. List of all associations

with a p-value of association smaller than 1026 for at least one of

the tested metabolic traits. Reported are the SNP identifier (rs

number), its chromosome (Chr.) and its chromosomal position

(Position), the minor allele frequency (MAF), and the metabolic

trait with the lowest p-value of association (test against the null-

hypothesis of no association); where an association (p,0.1) of the

same SNP has been reported in one of the recent GWA studies

(WTCCC 2007; Kathiresan et al. 2008; Willer et al. 2008), the p-

value of the strongest association is reported in the comment

column. Abbreviations are explained in the legend to Table 1.

More details and associations up to p,1024 are provided in

supporting online Dataset S1.

Found at: doi:10.1371/journal.pgen.1000282.s002 (0.08 MB

DOC)

Table S2 Associations of rs4775041 (LIPC) with metabolic

traits. Metabolites associated (p,0.05) with genotype rs4775041

(LIPC) in the additive genetic model. In cases where alternative

assignments of the metabolites are possible, these are indicated by

a ‘*’. Full annotations can be found in the supporting online data

files. Reported are the mean concentrations (mM), standard

deviation, the number of cases for which metabolite concentra-

tions were obtained (ncases), the p-value of the association, the

regression coefficient using an additive genetic model (estimate),

and the measure of the observed variance that can be explained by

the additive genetic model.

Found at: doi:10.1371/journal.pgen.1000282.s003 (0.08 MB

DOC)

Table S3 Associations of rs9309413 (PLEK) with metabolic

traits. Metabolites associated (p,0.05) with genotype rs9309413

(PLEK) in the additive genetic model (see Table S2 for legend).

Found at: doi:10.1371/journal.pgen.1000282.s004 (0.09 MB

DOC)

Table S4 Associations of rs1148259 (ANKRD30A) with meta-

bolic traits. Metabolites associated (p,0.05) with genotype

rs1148259 (ANKRD30A) in the additive genetic model (see Table

S2 for legend).

Found at: doi:10.1371/journal.pgen.1000282.s005 (0.09 MB

DOC)

Table S5 Associations of rs992037 (PARK2) with metabolic

traits. Metabolites associated (p,0.05) with genotype rs992037

(PARK2) in the additive genetic model (see Table S2 for legend).

Found at: doi:10.1371/journal.pgen.1000282.s006 (0.08 MB

DOC)

Table S6 Associations of rs992037 (PARK2) with metabolite

concentration ratios. Selected metabolite concentration ratios

associated (p,0.05) with genotype rs992037 (PARK2) in the

additive genetic model (see Table S2 for legend; ncases = 284).

The improvement of the p-value of association when using

metabolite concentration ratios is calculated based on the

following formula: min(p[C_enumerator], p[C_nominator]) /

p[C_enumerator / C_nominator], where C_ is a metabolite

concentration and p[.] the corresponding p-value of association.

Found at: doi:10.1371/journal.pgen.1000282.s007 (0.06 MB

DOC)
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Dataset S1 Association data for all associations with p,1024:

EXCEL worksheet reporting all SNPs (minor allele homozygote

frequency .5%) that associate with at least one metabolic trait

(2927 SNPs); all other metabolic traits that also associate with the

same SNP with a p-value of association smaller than 0.01 are also

reported (30641 associations), together with the corresponding p-

values from previous GWA studies (as described in the

manuscript).

Found at: doi:10.1371/journal.pgen.1000282.s008 (4.48 MB ZIP)

Dataset S2 List of all measured metabolites and their biochem-

ical classification; complete association dataset for the top ranking

cases: EXCEL worksheets comprising the regression results of all

363 metabolites against the genotypes listed in Table 1 in the

additive genetic model (sheets PLEK, ANKRD30A, LIPC,

FADS1, PARK2, SCAD, MCAD) and EXCEL worksheets

comprising the regression results of all 3636363 metabolite

concentration ratios against the genotypes listed in Table 1 in

the additive genetic model, limited to metabolite pairs with p-

values ,1024 when using metabolite concentration ratios (sheets

PLEK_ratios, ANKRD30A_ratios, LIPC_ratios, FADS1_ratios,

PARK2_ratios, SCAD_ratios, MCAD_ratios).

Found at: doi:10.1371/journal.pgen.1000282.s009 (0.40 MB ZIP)
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