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Abstract

In several species, including rodents and fish, it has been shown that the Major Histocompatibility Complex (MHC)
influences mating preferences and, in some cases, that this may be mediated by preferences based on body odour. In
humans, the picture has been less clear. Several studies have reported a tendency for humans to prefer MHC-dissimilar
mates, a sexual selection that would favour the production of MHC-heterozygous offspring, who would be more resistant to
pathogens, but these results are unsupported by other studies. Here, we report analyses of genome-wide genotype data
(from the HapMap II dataset) and HLA types in African and European American couples to test whether humans tend to
choose MHC-dissimilar mates. In order to distinguish MHC-specific effects from genome-wide effects, the pattern of
similarity in the MHC region is compared to the pattern in the rest of the genome. African spouses show no significant
pattern of similarity/dissimilarity across the MHC region (relatedness coefficient, R = 0.015, p = 0.23), whereas across the
genome, they are more similar than random pairs of individuals (genome-wide R = 0.00185, p,1023). We discuss several
explanations for these observations, including demographic effects. On the other hand, the sampled European American
couples are significantly more MHC-dissimilar than random pairs of individuals (R = 20.043, p = 0.015), and this pattern of
dissimilarity is extreme when compared to the rest of the genome, both globally (genome-wide R = 20.00016, p = 0.739)
and when broken into windows having the same length and recombination rate as the MHC (only nine genomic regions
exhibit a higher level of genetic dissimilarity between spouses than does the MHC). This study thus supports the hypothesis
that the MHC influences mate choice in some human populations.
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Introduction

In vertebrates, several studies have revealed that highly

polymorphic genes within the Major Histocompatibility Complex

(MHC) may have a role in mate choice. In particular, it has been

shown that MHC genes influence individual body odor in mice and

rats [1–7] and that mice prefer MHC-dissimilar mates e.g. [8–11],

and [12] for a review. Evidence for MHC-disassortative mating was

also found in sand lizards [13]. Studies in fish (and in particular

Arctic charr) have shown their ability to discriminate the odors of

similar and dissimilar MHC siblings [14], and shown that salmon

prefer MHC dissimilar mates [15] while female sticklebacks choose

a mate in order to complement their own set of MHC genes and to

optimize the number of different alleles in their offspring [16].

Complex MHC-based mate choice was also observed in birds

[17,18]. The MHC is the most important part of the genome with

respect to immunity [19] and such MHC-based mate choice could

increase or optimize the number of non-self antigens that future

offspring can recognize and thus increase their resistance to

pathogens [12,20,21]. It could also have contributed to the

extraordinary polymorphism observed at MHC loci [20].

On the other hand, in humans, the role of the MHC in mate

choice is very controversial. Ober et al studied classical HLA types

for 400 couples from the Hutterite community and found

significantly fewer HLA matches between husbands and wives

than expected when taking into account the social structure of

Hutterites [22]. On the other hand, no evidence of MHC-based

mate choice was found in a study of 200 couples from South

Amerindian tribes [23]. In a less direct way, other studies have

focused on odor preferences: in ‘‘sweaty T-shirts experiments’’, in

which females were asked to smell T-shirts worn by different

males, it was shown that females significantly prefer the odor of T-

shirts worn by MHC-dissimilar males, although such preference

was not found among females taking the contraceptive pill [24,25].

However, in another sweaty T-shirts experiment, in which males

where chosen from a different ethnicity from the females and

females were not aware of the nature of the smell (contrary to the

two previous studies), females significantly preferred the odor of

males having a small number of HLA alleles matching their

paternal inherited alleles than the odor of males having fewer

matches [26]. Although it has not been established that odor

preference is a key factor in mate choice, such studies support the

hypothesis that humans are able to discriminate MHC types of

potential mates through odor cues and that humans may use such

information when choosing a mate. However, the lack of

congruence between these studies means that there is still

uncertainty as to whether MHC variation influences mate choice

in humans, and to what extent. The availability of genetic

variation data at genomic scales now allows careful assessment of

this question. Crucially, it allows us to distinguish MHC-specific

effects from genome-wide effects.

In this study, we tested the existence of MHC-disassortative

mating in humans by directly measuring the genetic similarity at

the MHC level between spouses. These data were extracted from
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the HapMap II dataset, which includes 30 European American

couples from Utah and 30 African couples from the Yoruba

population in Nigeria [27]. Our analyses are based on HLA types

and on 9,010 Single Nucleotide Polymorphisms (SNPs) densely

distributed across the MHC. Moreover, in order to control for

genome-wide effects, we compared the pattern observed in the

MHC region to patterns assessed in the rest of the genome, using

3,214,339 SNPs.

Results

The genetic similarity at a given genetic variant for a given

couple c was measured using a relatedness coefficient R, defined as

a ratio of probabilities of identity in state R = (Qc2Qm)/(12Qm),

where Qc is the proportion of identical variants between the two

spouses and Qm is the mean proportion of identical variants in the

sample (that is, averaged over all possible pairs of individuals). This

coefficient, combined over the genetic variants in a region or

across the genome, allows an assessment of whether spouses are

more genetically similar or dissimilar than random pairs of

individuals. Significance was assessed by permuting individuals

between couples. All p-values below are two-sided. Positive values

of R indicate genetic similarity between spouses and negative

values indicate genetic dissimilarity between spouses, relative to

random mating in the sample.

Using molecular markers (average relatedness coefficients across

9,010 SNPs), we observed that on average European American

spouses were significantly more MHC-dissimilar from each other

than random pairs of individuals (R = 20.043, p = 0.015).

Moreover, the distribution of genetic relatedness coefficients

across couples shows no outliers (Figure 1), thus excluding the

possibility that this significantly negative coefficient could result

from only a few couples having extremely low genetic relatedness.

On the other hand, the MHC relatedness coefficient was positive

but not significantly so in African couples (R = 0.015, p = 0.23). In

addition, our analyses based on HLA types for 6 genes confirmed

this broad pattern: the multilocus relatedness coefficient was

marginally significantly negative in European American couples

(R = 20.062, p = 0.084) and not significantly positive in Yoruba

couples (R = 0.023, p = 0.412). (These analyses refer to the 4 digit

classification. Similar patterns were seen with 2 digit classification;

data not shown.) Using SNP data, we observed a higher mean

SNP diversity in the MHC region in the African sample (0.366)

than in the European American sample (0.349).

To control for genome-wide effects, we compared these

observations to the pattern of genetic similarity across the genome

(3,214,339 markers). Genome-wide, European American spouses

were not significantly more or less similar than random pairs of

individuals (genome-wide R = 20.00016, p = 0.739). On the other

hand, African spouses were more similar genome-wide than

random pairs of individuals (genome-wide R = 0.00185, p,1023).

To further control for genome-wide effects, we asked whether

the MHC region was unusual relative to similar regions across the

Author Summary

There has been a longstanding hypothesis that selection
may have led to mating patterns that encourage
heterozygosity at Major Histocompatibility Complex
(MHC) loci because of improved immune response to
pathogens in the offspring of such matings, and, indeed,
this has been observed in several model systems. However,
in humans, previous studies regarding the role of the MHC
in mate choice or preference, both directly in couples and
also indirectly in ‘‘sweaty T-shirts’’ experiments, have
reported conflicting results. Here, by using genome-wide
genotype data and HLA types in African and European
American couples, we test whether humans tend to
choose MHC-dissimilar mates. This approach allows us to
distinguish MHC-specific effects from genome-wide ef-
fects. In the African sample, the patterns at MHC loci is
confounded by genome-wide effects, possibly resulting
from demographic processes relating to the social
organization of this population, and no tendency to
choose MHC-dissimilar mates is detected. On the other
hand, the sampled European Americans appear to have
favoured MHC-dissimilar mates, supporting the hypothesis
that MHC influences mate choice in some human
populations. Thus, this study suggests that, in some cases,
humans may rely on biological factors, in addition to social
factors, when choosing a mate.

Figure 1. Distribution of relatedness coefficients across the MHC region among couples in the two samples. A) European American
sample. B) African sample.
doi:10.1371/journal.pgen.1000184.g001
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genome with regard to its similarity/dissimilarity between spouses,

by comparing the similarity between spouses at the MHC to that

of all genomic windows having the same length as the MHC

(3.6 Mb). Strikingly, in the European American couples, only

0.4% of the windows, concentrated in 9 genomic regions (listed in

Table 1), exhibited a higher level of genetic dissimilarity between

spouses than the MHC (Figure 2). To account for the particular

linkage disequilibrium structure of the MHC and its low

recombination rate [28], we compared the MHC region to a

sub-set of windows having the same or lower recombination rate

and still found that only 0.1% of these windows had less genetic

similarity between spouses than did the MHC. In the African

sample, 9% of the windows (and 17% when matching for the

recombination rate) concentrated in 116 regions exhibited more

genetic similarity between spouses than the MHC (Figure 2).

Discussion

At the molecular level, we found that the European American

couples we studied are significantly more MHC-dissimilar than

random pairs of individuals, and that this pattern of dissimilarity is

extreme when compared to the rest of the genome, both globally

and when broken into windows having the same length and

recombination rate as the MHC. Our analyses based on HLA

types also show a signature of dissimilarity between spouses. Such

dissimilarity, observed from both molecular and serological data,

cannot be explained by demographic processes, since such effects

would affect the whole genome. On the other hand, this MHC

dissimilarity could result from pressure for disassortative mating at

the MHC level. Such a mechanism could be triggered by our

olfactory capacity for discriminating MHC-mediated odour types

[21,29]. Alternatively, this genetic dissimilarity could result from

selection of the spermatozoa by the female oocyte (post-copulatory

sexual selection), a further safeguard favouring the production of

MHC-heterozygous offspring more resistant to pathogens see [29–

31] for reviews. Indeed, all studied couples were selected for

having offspring, and the excess of dissimilarity observed could be

restricted to fertile couples, rather than couples in general.

However, further analysis showed that the offspring of these

couples were not more MHC-diverse than expected by random

selection of parental gametes (results not shown). Moreover, our

results in European American couples reinforce previous evidence

of MHC-disassortative mating among Hutterite couples [22], in

which all couples were included, regardless of whether they had a

child (C. Ober, personal communication). Like the Ober study, the

sampled couples in our study are from a cultural isolate (in our

case sampled from the Mormon community), so one might

Figure 2. Average relatedness coefficients between spouses across overlapping 3.6 Mb regions throughout the genome, plotted
against their recombination rate. The MHC is plotted in red. A) European American sample. B) African sample.
doi:10.1371/journal.pgen.1000184.g002

Table 1. Locations (in build 35 coordinates) of the nine
regions exhibiting a higher level of genetic dissimilarity
between spouses in the European American couples than the
MHC.

Chr start end

1 168300000 171900000

3 78600000 83100000

4 27300000 30900000

4 149400000 154200000

6 116400000 120000000

10 100500000 106200000

12 46800000 51000000

15 40800000 47700000

17 53700000 57600000

doi:10.1371/journal.pgen.1000184.t001
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speculate that MHC-based mate choice is stronger or easier to

detect in settings where there is less heterogeneity in other factors

which influence mate choice, but the current absence of detailed

molecular studies of mate choice in other human populations

makes this impossible to assess. The two studies in Swiss males and

females showing a significant preference of females for the odor of

MHC-dissimilar (over MHC-similar) males [24,25] implicate one

possible mechanism by which couples may implement MHC-

dependent mate choice. Taken together, these results strengthen

the hypothesis that MHC genetic variation influences mate choice

in some human populations.

Our analyses of the European American sample also show that

the results based on molecular data were more significant than those

based on HLA types. Although we cannot rule out power effects in

explaining such a difference, it seems plausible, and consistent with

our data, that the biological mechanisms involved in disassortative

mating would depend on the MHC in ways that are not simply

captured by HLA types. Such biological mechanisms could possibly

result from a summation of effects over multiple genes, and not only

from the six HLA genes studied here.

On the other hand, Yoruba couples exhibited a significant

genome-wide signature of assortative mating, which is likely to result

from socio-demographic processes specific to this population. The

Yoruba are still organized in paternal lineages, which are

exogamous units [32] and C. Adebamowo, personal communica-

tion. Although we do not have specific ethnological data collected

with the Yoruba samples to explain our observations, a process in

which matrimonial exchanges between genealogically related

lineages are more frequent than matrimonial exchanges between

genealogically unrelated lineages could have left such a genome-

wide signature. On the contrary, for the MHC region, no significant

pattern of similarity/dissimilarity was observed, at either the

molecular level or the serological level. Several hypotheses can be

proposed to explain this observation: firstly, it is possible either that

the MHC is not involved in mate choice in this population, or that

social factors are relatively more important than the MHC and that

the sample size here does not allow detection of MHC effect on

mate choice. Secondly, it is possible that MHC-based mate choice is

aiming for an optimal, rather than maximal, number of MHC

alleles previous theoretical and experimental evidence for this

hypothesis are reviewed in [21]. Such a mechanism would explain

why evidence of disassortative mating was found in the European

Americans, all sampled in the Mormon community exhibiting a

relatively low SNP diversity in the MHC (0.349), as well as in the

genetically isolated Hutterite community [22], but not in Yoruba.

Indeed, the Yoruba exhibit a relatively higher SNP diversity in the

MHC (0.366) than the European American, and the optimization of

the number of HLA alleles in Yoruba may involve mating with a

not-so-MHC-dissimilar individual. This hypothesis is also consistent

with the ‘‘sweaty T-shirts’’ experiment performed between females

and males from different ethnicities (thus having a higher range of

MHC dissimilarity than males and females coming from the same

community) and showing that females prefer the odor of males with

little MHC-dissimilarity than the odor of males with more extreme

MHC-dissimilarity [26]. Finally, it is possible that in African

populations, individuals carrying pathogen-resistant alleles are

easier to identify than elsewhere, because of the higher pathogen

pressure. In such conditions, it is possible that mating preferences

for particular pathogen-resistant MHC alleles are stronger than

mating preferences for MHC-dissimilarity per se [21].

In conclusion, our study, based on a large number of molecular

markers which allow us to control for genome wide effects,

indicates a clear-cut signature of MHC-disassortative mating in a

sample of European American couples. This supports the

existence of MHC-related biological factors contributing to mate

choice in at least some human populations. On the other hand, the

Yoruba exhibit a genome-wide tendency for enhanced similarity

among couples but no significant pattern at the MHC level. This

suggests that socio-demographic factors may be more important

than biological factors for mate choice in this population, although

the existence of MHC-dependent mate choice in Yoruba, aimed at

optimizing (rather than maximizing) the number of HLA alleles in

the offspring, cannot be excluded. Our study indicates that the

relative importance of biological and social factors varies from one

population to another. It also highlights the need for the

exploration of further genome-wide data in larger sample sizes,

including ‘‘just married’’ childless couples, sampled in several

ethnically differentiated groups, in order to build a more robust

view of the biological determinants acting on mate choice in

humans.

Materials and Methods

Datasets
Two datasets were analysed in this study:

a) 3,214,339 Single Nucleotide Polymorphism (SNPs) from the

the Hapmap II dataset, typed in 30 European American

couples (60 individuals) from Utah (Centre d’Etude du

Polymorphisme Humain (CEPH) Collection) and 30 African

couples (60 individuals) from the Yoruba population, Ibadan,

Nigeria [27]. We used the phased data files and excluded

SNPs with minor allele frequency below 5%. In this dataset,

9,010 SNPs were located in the MHC region, (positions

29,700,000–33,300,000 on chromosome 6 [19], in build 35

coordinates). Sex chromosomes were not included in the

analyses.

b) A set of HLA types for 6 of the main HLA genes (three class I

genes: HLA-A, -B, -C, three class II genes: HLA-DQA, -

DQB, DRB) in 44 European American couples and 30

African couples from the same collections as above [28]. 30

out of the 44 European American couples were shared with

the HapMap II dataset, and all African couples were

common to both datasets. This dataset is available on the

following site: http://www.sanger.ac.uk/HGP/Chr6/.

Relatedness Analyses
We estimated the genetic relatedness between spouses using

SNP data and HLA type data. In all cases, the relatedness

coefficient for a given pair of spouses R was defined as

R = (Qc2Qm)/(12Qm), where Qc is the proportion of identical

variants between the two spouses and Qm is the mean proportion of

identical variants in the sample (that is, averaged over all possible

pairs of individuals) [33]. The proportion of identical variants at a

given SNP for a given pair of individuals was 0 if both individuals

were homozygous and carrying a different allele (eg 00 and 11), 1

if both individuals were homozygous and carrying the same allele

(eg 00 and 00), and 0.5 in all others cases. We also considered a

variation of this definition, with pairs of heterozygous individuals

(01 and 01) being attributed a proportion of identical variants of 1

(instead of 0.5). Both definitions gave similar results (we present

here coefficients based on the first definition). We estimated the

average genetic relatedness coefficient between spouses across the

MHC and across the whole genome. We checked that our

estimates were not affected by the heterogeneity of SNP density

and linkage patterns across the genome, by redoing our analyses

on reduced sets of approximately independent SNPs prepared

Is Mate Choice in Humans MHC-Dependent?
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using two different procedures implemented in the software

PLINK (one based on pairwise SNP r2 values and the other on the

variance inflation factor) [34]. We also computed the average

genetic relatedness coefficient between spouses for sliding windows

of 3.6 Mb across the genome (in increments of 300 Kb) having at

least 1,000 SNPs and not overlapping a centromere. In the case of

the HLA type data, we defined the proportion of identical variants

as 0 if the two individuals carried different types, 0.5 if one of their

two types was similar, and 1 in all other cases and we computed a

multi-locus relatedness coefficient between spouses based on types

for 6 HLA genes. R was summarized across the MHC region, the

genome or the six HLA genes by averaging Qc and Qm over all

SNPs or over all HLA loci (and then computing the ratio

(Qc2Qm)/(12Qm)). Using molecular data, we also computed the

mean SNP diversity (probability that two randomly chosen

chromosomes are different at a given SNP) in the MHC region

for both samples.

We removed from both datasets two European American and

three African couples, in which one of the spouses had previously

been found to be closely related (relatedness coefficient equal or

higher to 1/32, see supplementary table 15 from [35]) to another

sample (in each case, we chose at random the couple to be

excluded). The relatedness coefficients before and after these

exclusions were very similar (we present in the paper the estimates

without these couples). In the case of HLA type data, we

considered both the 4 digit and the 2 digit classification, and found

congruent relatedness coefficients (coefficients based on the 4 digit

classification only are reported in this paper). The significance of

the relatedness coefficient was assessed using a permutation

approach: the two-sided p-value is the proportion of permutations

(attributing a new wife randomly to each husband) in which the

permuted couples had the same or more extreme mean relatedness

coefficient than the real couples. 1000 permutations were

performed.
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d’Asie et d’Océanie. Paris: Larousse. pp 351–354.

33. Rousset F (2002) Inbreeding and relatedness coefficients: what do they measure?

Heredity 88: 371–380.

34. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.

35. The International HapMap Consortium (2005) A haplotype map of the human

genome. Nature 437: 1299–1320.

Is Mate Choice in Humans MHC-Dependent?

PLoS Genetics | www.plosgenetics.org 5 September 2008 | Volume 4 | Issue 9 | e1000184


