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Abstract

The abundance and identity of functional variation segregating in natural populations is paramount to dissecting the
molecular basis of quantitative traits as well as human genetic diseases. Genome sequencing of multiple organisms of the
same species provides an efficient means of cataloging rearrangements, insertion, or deletion polymorphisms (InDels) and
single-nucleotide polymorphisms (SNPs). While inbreeding depression and heterosis imply that a substantial amount of
polymorphism is deleterious, distinguishing deleterious from neutral polymorphism remains a significant challenge. To
identify deleterious and neutral DNA sequence variation within Saccharomyces cerevisiae, we sequenced the genome of a
vineyard and oak tree strain and compared them to a reference genome. Among these three strains, 6% of the genome is
variable, mostly attributable to variation in genome content that results from large InDels. Out of the 88,000 polymorphisms
identified, 93% are SNPs and a small but significant fraction can be attributed to recent interspecific introgression and
ectopic gene conversion. In comparison to the reference genome, there is substantial evidence for functional variation in
gene content and structure that results from large InDels, frame-shifts, and polymorphic start and stop codons. Comparison
of polymorphism to divergence reveals scant evidence for positive selection but an abundance of evidence for deleterious
SNPs. We estimate that 12% of coding and 7% of noncoding SNPs are deleterious. Based on divergence among 11 yeast
species, we identified 1,666 nonsynonymous SNPs that disrupt conserved amino acids and 1,863 noncoding SNPs that
disrupt conserved noncoding motifs. The deleterious coding SNPs include those known to affect quantitative traits, and a
subset of the deleterious noncoding SNPs occurs in the promoters of genes that show allele-specific expression, implying
that some cis-regulatory SNPs are deleterious. Our results show that the genome sequences of both closely and distantly
related species provide a means of identifying deleterious polymorphisms that disrupt functionally conserved coding and
noncoding sequences.

Citation: Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, et al. (2008) A Catalog of Neutral and Deleterious Polymorphism in Yeast. PLoS Genet 4(8):
e1000183. doi:10.1371/journal.pgen.1000183

Editor: Jonathan K. Pritchard, University of Chicago, United States of America

Received March 6, 2008; Accepted July 30, 2008; Published August 29, 2008

Copyright: � 2008 Doniger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a pilot-scale sequencing grant to JCF from the Washington University’s Genome and Sequencing Center. SWD was
supported by an NSF predoctoral fellowship DGE-0202737 and an NHGRI training grant T32 HG000045, HSK was supported by a Kauffman Life Science
Entrepreneurship Fellowship, DC was supported by an undergraduate education grant from HHMI. MW was supported by a summer outreach research program
funded by the Genome and Sequencing Center. DS was supported by an NIH training Grant, T32 GM007067.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jfay@genetics.wustl.edu

Introduction

DNA sequence polymorphism makes a major contribution to

phenotypic variation and provides a mean by which natural

selection can lead to microevolutionary change and divergence

between species. Since the first methods were developed to

systematically survey DNA polymorphism within species and

divergence between species [1], there has been a long-standing

effort to identify and characterize this variation. Currently,

genome sequences have been generated for a wide range of

species and comparative genomic methods have identified coding

and noncoding sequences that are functionally conserved across

distantly related species [2–7], and characterized the phylogenetic

distribution of these sequences, which is not always constant [8–

13]. Recently, more closely related genomes have been sequenced

in order to identify and characterize DNA polymorphism and

divergence within functional and nonfunctional sequences [14–

18]. Although the focus on differences between closely related

species poses new challenges to comparative genomics methods,

such as accounting for alignment and sequencing error, the main

challenge lies in distinguishing polymorphisms with phenotypic

and fitness consequences from those that are inconsequential.

A number of approaches have been developed to identify and

characterize DNA polymorphism or divergence with positive or

negative effects on fitness. Applications of these approaches have

revealed that many aspects of DNA polymorphism and divergence

can be explained by mutation and genetic drift, consistent with the

neutral theory of molecular evolution [19]. Yet, two general

observations indicate that adaptive changes within genomes are

common. First, a reduction in levels of polymorphism in regions of
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low recombination is indicative of selective sweeps of advanta-

geous alleles through a population and has been observed in a

number of species [20–25]. Second, an excess of fixed differences

relative to that expected based on polymorphism data is indicative

of positive selection and has been observed for both coding and

noncoding regions of the genome [26–30]. Although some

methods are capable of identifying individual sites under positive

selection [31–33], most statistical tests of neutrality only result in

the identification of regions of the genome or genes that have been

under selection. Thus, low resolution limits the ability of most

methods to identify the molecular changes under positive selection

and the phenotypic effects of these changes.

There is abundant evidence that deleterious mutations also make

a significant contribution to phenotypic variation and DNA

polymorphism [34,35]. In diploid organisms, the pervasive effects

of deleterious mutations are revealed by the decline in fitness as a

function of inbreeding and an increase in fitness when outcrossed

[34]. Based on the increase in child mortality and morbidity with

inbreeding, it has been estimated that each human carries recessive

deleterious mutations that if homozygous would result in premature

death [36]. In Drosophila melanogaster, wild-caught flies carry

deleterious mutations that result in a 60% average reduction in

viability and an estimated 97% reduction in net fitness when made

homozygous [37,38]. Although many lethal or severely detrimental

mutations are rare, persisting for 50–100 generations [39,40], more

weakly deleterious mutations may reach appreciable frequencies.

For example, the frequency of null enzyme alleles is estimated to be

just over 1023 in flies [41] pine trees [42] and humans [43].

There are a number of estimates of the fraction of DNA

polymorphism that is deleterious. Compared to the frequency

distribution of allozymes expected from population genetic theory,

there is a vast excess of low frequency alleles in both Drosophila and

humans [44,45]. This cannot be explained by a recent increase in

population size, indicating that a substantial fraction, 20–40%, of

nonsynonymous SNPs are deleterious [28,46]. Methods based on

conservation across species and protein structure have resulted in

similar findings, leading to the estimate that each human carries

on the order of 103 deleterious nonsynonymous SNPs [46–50].

Despite the observation that 15–80% of sequences conserved

between species are noncoding [51], the abundance of deleterious

noncoding SNPs is not as well characterized.

Distinguishing deleterious SNPs from those that are neutral is a

necessary but difficult step in identifying the molecular basis of

quantitative traits and many diseases. Current methods based on

protein structure and protein conservation across species show

high false positive rates, 10–30% [48]. While additional structural

and conservation data may improve the power of the methods,

they are only applicable to predicting deleterious SNPs in protein

coding sequences. Comparative genomics methods can identify

sequences under purifying selection regardless of their function.

However, distinguishing neutral and deleterious SNPs within

conserved sequences requires single-base resolution of functional

constraint and an inordinate number of genome sequences at an

appropriate phylogenetic distance [52]. Single-base resolution of

functional constraint may be attained by combining information

from adjacent sites to both define the function of the sequence and

predict whether a SNP disrupts that function. For example,

previous work has shown that there is sufficient divergence among

S. cerevisiae and two of its closest relatives to identify individual

instances of conserved transcription factor binding sites [53].

Currently, with numerous fungal genomes to define constrained

sequences and with numerous models of transcription factor

binding sites [54,55], genome-wide predictions of deleterious

coding and noncoding SNPs is feasible.

As an initial investigation into cataloging whole-genome DNA

polymorphism in S. cerevisiae and identifying the subset of variation

with functional consequences, we sequenced the genome of two

strains: M22, a strain isolated from a vineyard in Italy, and

YPS163, a strain isolated from an oak tree in the United States of

America [56]. We systematically cataloged sequence variation

between these two strains and S288C, a laboratory strain for

which there is a complete reference genome sequence, and

compare this polymorphism to divergence from S. paradoxus, the

closest known relative of S. cerevisiae. Combining both population

genetics and comparative genomics methods, we find abundant

evidence for deleterious coding and noncoding SNPs and we

resolve a significant fraction of these differences to single

polymorphic sites. Our results imply that comparative genomics

can identify polymorphisms that underlie quantitative traits and

human diseases.

Results

Genome Sequencing, Assembly, and Alignment
Two natural isolates of S. cerevisiae, M22 and YPS163, were

sequenced by whole-genome shotgun and assembled using PCAP

[57]. Forty thousand reads generated two-fold coverage of the

genome and assemblies of 12 Mbp including gaps (Table 1).

Excluding gaps, each assembly consisted of 10.7 Mbp of DNA,

88% of the size of the reference nuclear genome, S288C

(Saccharomyces Genome Database).

To identify DNA sequence polymorphism, we separately

aligned the M22 and YPS163 assemblies to the S288C reference

genome (see Text S1). Excluding gaps, the alignments include

11.4 Mbp of S288C sequence, 94% of the nuclear S288C genome.

After combining the pairwise alignments, 8.3 Mbp of the

alignments contain data from all three strains (Table 2).

Genome Rearrangements
To identify any rearrangements between M22, YPS163 and the

S288C reference genome, we mapped paired reads to the

reference genome. Inversions or translocations should result in

read-pairs inconsistent with the reference genome sequence. After

removing single inconsistent read-pairs, which could be the result

of chimeric clones, we found 5 inconsistent pairs in YPS163 that

Author Summary

DNA sequence variation makes an important contribution
to most traits that vary in natural populations. However,
mapping mutations that underlie a trait of interest is a
significant challenge. Genome sequencing of multiple
organisms provides a complete list of DNA sequence
differences responsible for any trait that differs among the
organisms. Yet, distinguishing those DNA sequence
variants that contribute to a trait from all other variants
is not easy. Here, we sequence the genomes of two strains
of yeast and, through comparisons with a reference
genome, we catalog multiple types of DNA sequence
variation among the three strains. Using a variety of
comparative genomics methods, we show that a substan-
tial fraction of DNA sequence variations has deleterious
effects on fitness. Finally, we show that a subset of
deleterious mutations is associated with changes in gene
expression levels. Our results imply that comparative
genomics methods will be a valuable approach to
identifying DNA sequence changes underlying numerous
traits of interest.

Deleterious Polymorphism in Yeast
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map to a single break and 11 inconsistent pairs in M22 that map to

three breakpoints (Text S1 and Table S1). One of these

rearrangements is a known reciprocal translocation between

chromosome VIII and XVI that causes an increase in sulfite

resistance in wine strains due to the creation of a new promoter for

the sulfite membrane pump, SSU1 [58,59]. The other rearrange-

ments all involve subtelomeric translocations and are not likely

reciprocal since inconsistent read-pairs span breakpoints in only

one direction. By PCR, we confirmed the reciprocal translocation

in M22. We were unable to generate diagnostic PCR products for

the other putative rearrangements due to the uncertainty in the

breakpoints and repetitive sequences.

DNA Polymorphism and Sequencing Errors
More than 88 thousand polymorphisms were identified within

the combined genome alignments (Table 2). 93% of the

polymorphisms are single nucleotide polymorphisms (SNPs) and

7% are insertion/deletion polymorphisms (InDels). However, out

of 5.9% of bases found to differ among the three strains, 5.0% are

the result of large (.100 bp) InDels and unaligned sequences

(Table 3). Seventy-five of the large InDels, covering ,2% of the

alignments, are the result of transposable elements present in

S288C but absent in M22 and/or YPS163 (Table S2).

Using a Phred quality score cutoff of 20 [60], a total of 393

SNPs and 2226 InDels are expected to be errors in the M22 and

YPS163 assemblies. Using a quality score cutoff of 40, a total of 52

sequencing errors are expected in the two assemblies. However,

5,590 fewer SNPs passed this more stringent cutoff. For SNPs, a

Phred quality ctuoff of 20 was used for most of the analysis and a

cutoff of 40 was used for analysis of individual SNPs, e.g.

distinguishing deleterious and neutral SNPs. To eliminate InDel

errors, InDels were required to have Phred quality scores of 40 or

more within two bp of the InDel and Phred quality scores of 50 or

more within mononucleotide repeats.

Strain-Specific Polymorphisms
SNPs and InDels were classified into strain-specific variants for

all cases where there were data from all three strains (Table S3).

For both SNPs and InDels, YPS163 carries half of the strain-

specific variants, M22 carries a third and the remainder are

present in S288C. The large number of YPS163-specific alleles

does not appear to be randomly distributed across the genome

(Figure 1); in some regions, there are very few differences between

M22 and S288C such that most variation is YPS163-specific.

Similar mosaic patterns of variation were observed in whole-

genome genotyping data and may be related to the hybrid origin

of the S288C laboratory strain [61,62].

Introgression with S. paradoxus
Using a sliding window of synonymous site diversity, the region

with the highest rate of polymorphism (16.2%) occurs on

chromosome IV (Figure 1). The high rate of diversity is not

limited to a single gene. Six genes show a rate greater than 3.2%,

the cutoff for the top 1% of windows: ARO3 (4.6%), EHD3 (4.8%),

KRS1 (15.1%), ENA5 (16.4%), ENA2 (3.9%), and ENA1 (3.5%).

The maximum likelihood tree of EHD3 shows that all strains

except YPS163 group with S. paradoxus (Figure 2). The difference

between the gene tree and the species’ known phylogenetic

relationship, in which S. paradoxus is always an outgroup to strains

of S. cerevisiae, indicates a recent transfer of the S. paradoxus EHD3

allele into the common ancestor of most but not all strains of S.

cerevisiae.

To examine the frequency of recent introgression between

species and identify which genes have been introgressed across the

genome, we used a phylogenetic analysis to examine genes

showing high ratios of polymorphism within S. cerevisiae to

divergence between S. cerevisiae and S. paradoxus. Out of 50 genes

Table 1. Sequence data and assembly.

Strain Sequences Contigs Supercontigs Assembly (Mbp)

Reads Q20 Bases Coverage Number N50 Number N50 Bases Coverage

M22 38,241 25,256,487 2.09236 4,481 2,479 1,695 14,234 10.7 12.1

YPS163 40,823 28,698,836 2.37754 3,752 3,067 1,072 19,581 10.7 11.9

Q20 bases are those with a Phred quality score of 20 or more. Coverage is the number of Q20 bases divided by the S288C nuclear genome size of 12.1 Mbp. N50 is
median length in bp.
doi:10.1371/journal.pgen.1000183.t001

Table 2. Sequences, SNPs and InDels within the combined
alignments.

Alignment Sites
Polymorphic
sites

Bases InDels Gaps SNPs InDels

M22-S288C 1,367,559 71,913 1,703,911 5,621 499

YPS163-S288C 1,703,911 57,860 1,367,559 10,773 423

M22-YPS163-S288C 8,317,567 127,834 698,048 65,647 5,477

Total 11,389,037 257,607 3,769,518 82,041 6,399

SNPs have quality scores of 20 or more. Indels have quality scores of 40 or more
within 2 bp of the indel and 50 or more for mononucleotide repeats.
doi:10.1371/journal.pgen.1000183.t002

Table 3. Summary of polymorphism data.

Category Number of sites Size (kb) Coverage

Absent in S288C 29 71 0.6%

Absent in M22 and YPS163 27 261 2.3%

Large InDels (.100 bp) 119 238 2.1%

Small InDels (,100 bp) 6,280 21 0.2%

SNPs 82,042 82 0.7%

All 88,497 11,389 5.91%

The coverage is calculated using the 11.4 Mbp of aligned sequences.
Sequences absent in M22 and YPS163 are based on shared gaps greater than
5 kb. Sequences absent in S288C are based on M22 and YPS163 sequence that
match other yeast strains but not S288C.
doi:10.1371/journal.pgen.1000183.t003
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examined, 12 showed some phylogenetic evidence and 17 showed

strong evidence of recent introgression (Text S1 and Dataset S1).

Polymorphisms Caused by Ectopic Gene Conversion
Ectopic gene conversion has been found to occur among Ty

elements [63], telomeric Y’ elements [64] and a substantial

number of duplicate genes [3,65,66]. Consistent with the effects of

ectopic gene conversion, repetitive sequences show elevated rates

of polymorphism but not divergence relative to synonymous sites

(Table S4). To determine whether some polymorphisms are the

result of ectopic gene conversion, the sequences flanking each SNP

were compared to each other and to the rest of the genome. A

total of 3816 SNPs reside within 25 bp of sequence that are

repeated at least once in the genome. In 474 instances, the flanking

sequences not only matched another sequence in the genome, but

the same SNP was identified at that other position, making

misassembly or misalignment unlikely. Of the 474 multicopy

SNPs, 125 matched repeated sequences at a single locus, including

the highly polymorphic genes MUC1 (43 SNPs) and NUM1 (30

SNPs). The remaining 349 cases involve SNPs within repeats

found at two or more loci, including transposable elements (89),

noncoding regions (62), telomeres (28) and a number of multigene

families (Dataset S1).

A Paucity of Evidence for Positive Selection
Comparison of polymorphism to divergence in Drosophila and

other species has revealed pervasive evidence for positive selection.

First, levels of polymorphisms are correlated with recombination

but not divergence [20–25]. Second, the McDonald-Kreitman test

[67] has shown elevated rates of nonsynonymous divergence

across the genome [26–30].

To examine the correlation between neutral polymorphism and

the rate of recombination, synonymous site diversity was measured

in windows of 1000 synonymous sites with a step size of 500 sites.

Based on 4527 regions with an average size of 4.5 kb, we found a

weak but significant correlation between recombination and levels

of polymorphism (P,1023, Kendall’s tau = 0.035, [68]).

Application of a McDonald-Kreitman style test to coding and

noncoding regions revealed abundant evidence for negative

selection against deleterious polymorphisms but no evidence for

positive selection driving divergence between species. The ratio of

nonsynonymous to synonymous polymorphism is significantly

higher than that of divergence (likelihood ratio test, P,16102299,

Table 4). Similarly, the ratio of polymorphism in conserved versus

unconserved noncoding sites is significantly higher than that of

divergence (likelihood ratio test, P,1610221, Table 4).

To test whether individual coding or noncoding regions have

evolved under positive selection, we applied the same McDonald-

Kreitman style test to 3834 coding and 1899 noncoding regions

that contain four or more polymorphic sites. Within coding

regions, 148 genes are significant (likelihood ratio test, P,0.01,

uncorrected for multiple tests, Dataset S1). Yet, only four of the

significant genes show evidence for positive rather than negative

selection. Within noncoding regions, 31 regions are significant

(likelihood ratio test, P,0.01, uncorrected for multiple tests,

Dataset S1) and only six show evidence of positive selection.
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Figure 1. Variation in levels of heterozygosity across chromosome IV. Sliding windows of heterozygosity were obtained using 1000
synonymous sites and a step size of 500 sites for comparison of S288C and M22 (red), S288C and YPS163 (green), and M22 and YPS163 (blue). The
highly polymorphic ENA locus is labeled by a black bar.
doi:10.1371/journal.pgen.1000183.g001
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Figure 2. Maximum likelihood phylogeny of EHD3 shows
introgression of S. paradoxus into some strains of S. cerevisiae.
EHD3 homologs are from S. paradoxus (Spar), S. mikatae (Smik), S.
bayanus (Sbay), and two other strains of S. cerevisiae, RM11 and YJM789.
All nodes above S. paradoxus show 100% bootstrap support.
doi:10.1371/journal.pgen.1000183.g002
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A Large Number of Deleterious Polymorphisms
The genome-wide McDonald-Kreitman style tests imply that a

significant fraction of polymorphism is deleterious and will not

contribute to divergence. To estimate the number and frequency

of deleterious nonsynonymous SNPs, we estimated the number of

neutral nonsynonymous SNPs from the ratio of nonsynonymous to

synonymous divergence between species for those alignments

containing sequence data from all three strains [46]. The observed

relative to the expected number of nonsynonymous SNPs implies

that over all three strains, 36% of nonsynonymous SNPs (12% of

all coding SNPs) are deleterious (Table 5). Similarly, the observed

relative to expected number of polymorphisms in conserved

noncoding sequences implies that 19% of noncoding SNPs in

conserved regions (7% of all noncoding SNPs) are deleterious. The

relative frequency of deleterious coding and noncoding SNPs is

similar. Of the nearly 7000 SNPs inferred to be deleterious, 21%

lie in noncoding sequences and 23% of sites in the genome

alignments are noncoding.

The estimated frequency of deleterious SNPs differs between

strains. Because there is only a single unrooted tree for the three

strains, each bi-allelic SNP can be assigned to a single lineage and

strain-specific substitution rates can be estimated. Although most

SNPs occur on the YPS163 lineage, YPS163 contains the smallest

proportion of deleterious SNPs in both coding and noncoding

sequences (Table 5). The proportion of nonsynonymous SNPs that

are deleterious is significantly lower in YPS163 compared to either

M22 or S288C (Fisher’s exact test, P,1610242). The frequency of

deleterious SNPs in M22 and S288C are not significantly different

from one another. In contrast, the proportion of conserved

noncoding SNPs that are deleterious is greater in M22 compared

to either YPS163 or S288C (Fisher’s exact test, P,0.001), the later

two not being significantly different from one another.

Distinguishing Deleterious from Neutral SNPs
Sequence conservation provides a mean of identifying func-

tionally constrained sequences and deleterious SNPs that disrupt

these sequences. However, distinguishing deleterious from neutral

SNPs requires single-base resolution of functional constraint and

thus a large set of distantly related species. To identify deleterious

SNPs within coding and noncoding sequences, we examined

conservation across distantly related fungi.

Starting with the genomes most closely related to S. cerevisiae, we

selected four sensu strictu Saccharomyces species, S. paradoxus, S.

mikatae, S. kudriavzevii, and S. bayanus, and six other hemiascomyetes

species, Candida glabrata, S. castelli, S. kluyveri, Kluyveromyces lactis,

Ashbya gossypii, and Candida albicans. Using alignments from 2046

genes, we found a median synonymous substitution rate of 18

substitutions per site. At this distance, single bases may still show

identity across species by chance, but conservation of multiple

sites, such as a single codon or transcription factor binding site,

should be exceedingly rare.

To generate an alignment for each coding and noncoding SNP,

we used BLAST to search for homologous sequences within

100 bp of each SNP in each species. Relative to coding sequences,

far fewer homologous noncoding sequences were identified

(Figure 3). For coding sequences, 4,324 out of 15,454 (28%)

high-quality, Phred quality score of 40 or more, nonsynonymous

SNPs lie in sequences conserved in at least two other species

outside of the sensu strictu Saccharomyces species. In contrast, only 813

out of 30,333 (2.7%) high-quality, noncoding SNPs met the same

criteria.

Given a set of protein coding alignments, the SIFT algorithm

uses the type of amino acid substitution in combination with

average conservation across an alignment to determine whether a

nonsynonymous SNP is deleterious [49]. SIFT predicted 970

(22%) of the nonsynonymous SNPs affect the function of the

protein (SIFT score,0.05). However, it is difficult to estimate the

error rate since SIFT scores depend on the average level of

conservation within a protein, which differs for each protein and

Table 4. Relative rates of polymorphism and divergence
within coding and noncoding sequences.

Coding Noncoding

dN dS dN/dS dC dU dC/dU

Polymorphism S288C 0.0006 0.0033 0.19 0.0014 0.0023 0.62

M22 0.0010 0.0058 0.17 0.0025 0.0039 0.66

YPS163 0.0014 0.0112 0.12 0.0039 0.0066 0.60

Total 0.0030 0.0203 0.15 0.0079 0.0127 0.62

Divergence S.paradoxus 0.043 0.425 0.10 0.131 0.260 0.50

Divergence is between S288C and S. paradoxus. dN, dS, dC and dU are the rates
of substitution in nonsynonymous, synonymous, conserved, and unconserved
sites, respectively. Conserved and unconserved are defined by identity between
S. mikatae and S. bayanus. Coding sequences contain 5.736106

nonsynonymous and 1.756106 synonymous sites. Noncoding sequences
contain 1.166106 conserved and 1.126106 unconserved sites. All sites contain
alignments from all three strains.
doi:10.1371/journal.pgen.1000183.t004

Table 5. Frequency of deleterious coding and noncoding SNPs.

Strain Coding Noncoding

Total Deleterious Total Deleterious

Non Syn Number Fraction Con Uncon Number Fraction

S288C 5,522 9,936 2,662 0.48 1,886 3,146 341 0.18

M22 4,177 7,383 1,760 0.42 2,409 3,509 565 0.23

YPS163 5,679 14,110 1,081 0.19 3,698 6,066 585 0.16

All three 15,378 31,429 5,503 0.36 7,993 12,721 1,491 0.19

The alignments and data are the same as those used in Table 4. The number of deleterious SNPs is the difference between the total and neutral number of SNPs. The
number of neutral nonsynonymous SNPs is estimated by Non*dNpS/dSpN, where Non is the number of Nonsynonymous SNPs and dN, dS, pN, pS are nonsynonymous
and synonymous divergences and polymorphism, respectively. Classes are nonsynonymous (non), synonymous (syn), conserved noncoding (con), unconserved
noncoding (uncon). The deleterious fraction is the number of deleterious SNPs divided by the total number of SNPs in the class.
doi:10.1371/journal.pgen.1000183.t005
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even within a single protein. For example, when applied to SNPs

in alignments with fewer than two homologs outside of the sensu

strictu species, SIFT predicted 2,841 (26%) of nonsynonymous

SNPs affect protein function.

To incorporate phylogenetic distance into the likelihood of a

SNP being deleterious, we compared the likelihood of a set of

aligned sequences under a neutral and a conserved phylogenetic

model. Under the neutral model the rate of nonsynonymous

substitution within a codon is the same as the rate of synonymous

substitution across the genome. Under the conserved model, the

nonsynonymous rate within a codon is a fraction of the

synonymous rate. Applying a likelihood ratio test to all high-

quality SNPs in sequences with homologs in at least two species

beyond the sensu strictu Saccharomyces species, we identified 1472

SNPs that disrupt significantly conserved codons (P,0.001), 34%

of all nonsynonymous SNPs with distant homologs.

The deleterious SNPs are not randomly distributed. Out of the

1472 deleterious coding SNPs, there are many more deleterious

SNPs in S288C (618) than in M22 (457) or YPS163 (401), similar

to the overall frequency deleterious SNPs in coding sequences

(Table 5). The 1472 SNPs occur in 1080 genes, five of which have

seven or more deleterious SNPs: ADH1, CDC47, FKS1, IMD4, and

SSB1. All five of these genes have paraologs in S288C and have

percent identity that is often greater than 85%, implying that any

changes in function caused by the SNPs may be buffered by

paralogous genes. However, most deleterious SNPs are unlikely to

be buffered: only 106 (7%) of the deleterious SNPs occur within

sequences with paralogs that show greater than 85% identity

within 100 bp of the SNP.

Deleterious SNPs in Transcription Factor Binding Sites
Comparative genomics methods have been used to estimate that

34–43% of noncoding sequences are selectively constrained in

yeast [53,69]. However, less than 3% of noncoding SNPs lie in

sequences that are conserved across distantly related yeast species.

Thus, closely related species must be used to identify the 7% of all

noncoding SNPs estimated to be deleterious (Table 5). Although

there is not sufficient divergence to identify single bases under

constraint, deleterious and neutral changes can be distinguished if

they are known to occur within functionally conserved transcrip-

tion factor binding sites, which constitute a significant fraction of

conserved noncoding sequences [53,69].

Previous studies have shown that there is sufficient divergence

among the sensu strictu Saccharomyces species to reliably identify

instances of conserved binding sites [53]. Further, methods have

been developed to compare the likelihood of any nucleotide

change under a binding site model and a neutral model in a

phylogenetic context [8,70]. To identify SNPs that disrupt

conserved transcription factor binding sites, we used likelihood

ratio tests to distinguish conserved transcription factor binding

sites from neutrally evolving sequences and to distinguish neutral

and deleterious SNPs within conserved binding sites.

To test each SNP, we used 422 models of transcription factor

binding sites from various sources [54,71] and 1,981,495 bp of

aligned intergenic sequences that include at least three other sensu

strictu Saccharomyces species. Out of 16,401 high-quality, Phred

quality of 40 or more, noncoding SNPs examined, 2083 (13%)

occur in sequences annotated as conserved binding sites (P,0.01),

typically two conserved binding site predictions per SNP. For each

SNP within a conserved binding site, we calculated the posterior

probability of the SNP under a conserved binding site model and a

model with loss along the SNP containing lineage [8]. For SNPs

within multiple conserved binding site models, we calculated the

average posterior probability weighted by the fit of the conserved

model to the data. Compared to the conserved model, 1191 of the

SNPs are twice as likely under a binding site loss model, suggesting

that these SNPs introduce an unprefered nucleotide into a

transcription factor binding site. The same analysis on shuffled

noncoding alignments identified 597 SNPs that are twice as likely

under the loss model, implying a false discovery rate of 50%. Using

a more conservative cutoff for conserved binding sites (P,0.001),

383/636 SNPs are twice as likely under the loss model. The same

analysis on shuffled alignments indicates a false discovery rate of

20% for identifying deleterious SNPs that result in loss of

conserved transcription factor binding sites. Of these 1191 SNPs

predicted to disrupt a conserved binding site, 761 (64%) are in

positions that are identical across the Saccharomyces sensu strictu

species. Only 13% of positions show both SNP alleles present in

other species.

Deleterious SNPs in Conserved Noncoding Motifs
In the previous section, we used models of transcription factor

binding sites to identify deleterious SNPs. There are a number of

concerns with this approach. First, most models of transcription

factor binding sites are estimates of the true model and slight errors

in these estimates are not accounted for in the binding site loss

model [8]. Second, sequences bound by the same factor may

evolve under different selective constraints, e.g. selection for strong

or weak binding, resulting in a SNP being deleterious in one

binding site but not another. Finally, identifying deleterious

noncoding SNPs is predicated on a complete list of binding site

models. One way of ameliorating these concerns is to combine

motif finding with the identification of deleterious SNPs to avoid

using published binding site models.

Using the Phylonet algorithm, we identified conserved noncod-

ing sequences similar to those flanking a noncoding SNP of

interest. Phylonet is a motif finding algorithm that uses a BLAST-

like method to search the genome for sequences with conservation
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Figure 3. Conservation of SNPs containing coding and
noncoding sequences in different yeast species. The fraction of
S. cerevisiae SNPs in sequences conserved to S. paradoxus (Spar), S.
mikatae (Smik), S. kudriavzevii (Skud), and S. bayanus (Sbay), C. glabrata
(Cgla) S. castelli (Scas), S. kluyveri (Sklu), K. lactis (Klac), A. gossypii (Agos),
and C. albicans (Calb). Homologous coding and noncoding sequences
were identified by TBLASTX and BLASTN, respectively.
doi:10.1371/journal.pgen.1000183.g003
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profiles similar to that of a query profile [54]. To determine

whether there is any preference between two SNP alleles, we

modified Phylonet to mask the SNP position in the query

alignment. The resulting list of profile alignments were then used

to obtain unbiased estimates of the frequency of the two SNP

alleles and determine whether they were significantly different

from one another. By this method, the likelihood of a SNP being

deleterious is different depending on whether it occurs in a weak or

strong binding site and depending on the number of similarly

conserved motifs. Figure 4 shows an example of this approach

applied to a SNP in the promoter of GPB2, including the query

alignment, the resulting profile alignments, the motif model and

the likelihood ratio test for a significant difference in allele

frequency.

Phylonet identified 4762 SNPs (30% of those tested) as

occurring within multiple copy conserved motifs. The median

number of alignments per motif was 36. HyPhy was used to

implement a likelihood ratio test comparing the probability of the

two SNP alleles being equivalent to each other or not. A total of

2452 and 1643 SNPs were significant at a low (P,0.01) and high

(P,0.001) confidence cutoff, respectively. Application of the same

method to shuffled alignments produced 191 and 104 SNPs,

suggesting a false discovery rate of 7.7% and 6.2% for the low and

high confidence cutoffs, respectively.

Comparison of Deleterious SNP Predictions
The overlap between deleterious nonsynonymous SNPs pre-

dicted by SIFT and the likelihood ratio test (LRT) is high, 47% of

all SNPs identified (Figure 5). The overlap between the two

methods is 84% for those SNPs that disrupt amino acids perfectly

conserved across all species. Thus, the difference between the two

methods is mostly due to constrained but not perfectly conserved

amino acid positions.

The overlap between deleterious noncoding SNPs predicted by

the binding site model and the Phylonet-based motif model is low,

9% (Figure 5). This is not entirely due to the much larger number

of Phylonet predictions; the overlap is 17% using the 1191

predictions from the binding site model with the less stringent

cutoff. Some of the difference between the two sets of predictions

can be attributed to SNPs only tested by one of the two models.

Out of 598 SNPs that occur in both conserved binding sites and

conserved Phylonet motifs, 361 SNPs were predicted deleterious

by the binding site model and 263 SNPs were predicted

deleterious by the Phylonet model. The overlap between these

predictions, 35%, is much higher, indicating that part of the

difference between the two methods lies in identifying a

significantly conserved binding site or motif. Compared to

Phastcons, a method that doesn’t rely on multi-copy conserved

sequences, 45% of SNPs predicted by the binding site model and

12% of SNPs predicted by the Phylonet model were identified as

significantly conserved sites by Phastcons using a posteriori

probability cutoff of greater than 0.90 [51].

Deleterious cis-Regulatory SNPs
SNPs that disrupt conserved noncoding sequences may often

affect the regulation of an adjacent gene. To test whether changes

in gene expression are associated with deleterious noncoding

SNPs, we used allele-specific expression assays to measure the

Figure 4. Identifying deleterious SNPs using Phylonet. Using a
SNP in the promoter of GPB2 as an example, a profile of conservation
was generated from sequences adjacent to a SNP (A) and compared to
all other noncoding profiles in the genome, ignoring the SNP
containing column. Sixteen of the 178 profile alignments are shown
with upper case letters indicating conservation across all species and
instances of the derived SNP allele highlighted in red (B). The motif
generated from these alignments is shown by a motif logo (C).
Extracting the SNP containing positions from each profile alignment (D),
a likelihood ratio test was used to determine whether the two SNP
alleles were selectively equivalent to one another, measured by
comparing the likelihood under equal base frequencies to the
likelihood under a model where one allele is preferred over the other
(E). Allele-specific expression of GPB2 (F) shows that the S288C allele has

reduced expression relative to M22 and YPS163 (P = 0.0027). The
difference is found in YPD, YPG, amino acid (AA) starvation, nitrogen
(N2) starvation and heat shock, which shows the maximum difference,
1.85-fold and 2.08-fold in comparison to M22 and YPS163, respectively.
doi:10.1371/journal.pgen.1000183.g004
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expression of 190 genes in hybrids of either M22, YPS163 or

S288C. Nine of the predicted SNPs occur in divergently

transcribed intergenic sequences and so expression of both genes

was measured in order to query a total of 181 SNPs. Although four

of the genes contain two deleterious SNP predictions and one gene

contains three predictions, 60% of the SNPs tested were not

confounded with any other noncoding SNP in the same intergenic

sequence.

Based on measurements of allele-specific expression across nine

environmental conditions, we found 51 differentially expressed

genes at a 5% false discovery rate (Table 6 and Dataset S1). In

most cases, allele-specific expression was found in multiple

conditions. For example, GPB2 showed allele-specific expression

in five of the nine conditions (Figure 4F). The maximum difference

in allele-specific expression observed across the 9 conditions

ranged from 1.12-fold to 14.3-fold, with a median value of 1.47-

fold. As a positive and negative control, we also measured allele-

specific expression for RME1, which contains an InDel in its

promoter known to affect expression and sporulation efficiency

[72], and RAS2, which contains an InDel known to affect

sporulation without a concomitant change in gene expression

levels [73]. As expected, the S288C allele of RME1 was expressed

2.7-fold higher than that of YPS163 after 12 hours in sporulation

medium and no significant change in expression was found for

RAS2.

Out of the 51 SNPs associated with allele-specific expression,

73% (37/51) were predicted deleterious by the binding site or the

Phylonet model. In 86% (32/37) of cases showing allele-specific

expression, SNPs were only predicted deleterious by one of the two

models. However, not all predictions were associated with allele-

specific expression. Expression differences were found for 36% of

SNPs predicted by the binding site model but not Phylonet and

41% of SNPs predicted by the Phylonet but not the binding site

model. Surprisingly, only 18% of SNPs predicted by both models

were found associated with changes in gene expression. No

obvious differences were found for SNPs predicted by one method

versus those predicted deleterious by both methods, e.g. the

median Phastcons posteriori probability is 0.83 for SNPs predicted

by both models versus 0.77 for SNPs predicted by only one of the

two models.

In contrast to SNPs with binding site or Phylonet predictions,

21% of SNPs without any prediction were associated with allele-

specific expression. We also tested 34 SNPs predicted deleterious

at a lower confidence cutoff (0.001,P,0.01) by either model.

While only 6/34 (18%) of the low confidence SNPs were

associated with allele-specific expression, 2/3 low confidence

SNPs predicted by both models were associated with changes in

expression. In comparison to a method that identifies blocks of

conserved sequences, only 26% of SNPs with sites predicted to be

conserved by Phastcons [51], using a posteriori probability cutoff

of greater than 0.90, were associated with allele-specific expres-

sion.

Discussion

Genome sequencing of multiple organisms from the same

species makes it possible to both catalog DNA polymorphism and

identify variation with fitness and/or functional consequences.

Using genome sequences of two strains of S. cerevisiae, we found

variation in genome content, structure and sequence. Overall,

there is substantial evidence for functional variation, based on

disruption of sequences annotated in the reference genome, and

deleterious variation, based on disruption of sequences conserved

across other yeast species.

Towards a Catalog of DNA Polymorphism
Using whole-genome sequence data, we identified multiple

types of polymorphism, including variation in genome content,

structure and sequence. Assuming no major skew in the allele

frequency spectrum [74], ,1% of these variants should represent

rare alleles, less than 1% population frequency.

We identified four genome rearrangements and validated one

reciprocal translocation that was previously characterized [58,59].

In comparison, a single 32.5 kb inversion polymorphism on

Table 6. Deleterious SNPs associated with changes in gene
expression.

SNP Class Tested Significant5 Significant (%)

Binding Site Model Only1 25 9 36

Phylonet Model Only1 56 23 41

Both Binding Site and Phylonet
Model2

28 5 18

Weak Evidence3 34 6 18

No evidence4 38 8 21

Total 181 51 28

1Deleterious SNPs predicted by either the binding site or Phylonet model but
not both.

2Deleterious SNPs predicted by both models.
3SNPs with lower confidence predictions (0.001,P,0.01) by either the binding
site or Phylonet model.

4SNPs not predicted by the binding site or Phylonet model with low or high
confidence.

5Significant differences in the expression of adjacent genes at a 5% false
discovery rate.

doi:10.1371/journal.pgen.1000183.t006
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Figure 5. Comparison of deleterious SNPs predicted by
different methods. The overlap between nonsynonymous SNPs
predicted by the likelihood ratio test (LRT) and SIFT (A). The numbers in
parentheses are for the subset of predictions within perfectly conserved
amino acid positions. The overlap between noncoding SNPs predicted
by the binding site model and the Phylonet motif model (B). The
numbers in parentheses are for the subset of SNPs that occur in both
conserved binding sites and conserved Phylonet motifs.
doi:10.1371/journal.pgen.1000183.g005
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chromosome XIV and a translocation between chromosomes VI

and X were identified by sequencing a clinical isolate, YJM789, to

near completion [18]. The YJM789 translocation is likely the same

VI to X rearrangement found in M22 (Table S1). Due to low

coverage, it’s not clear whether M22 or YPS163 contain the

inversion.

Although genome coverage was low, we found variation in

genome content by identifying sequences present in one strain but

absent in one or more strains and by identifying insertions or

deletions in genome alignments. A total of 261 kb of S288C

sequences are present as gaps of greater than 5 kb in length in

both the M22 and YPS163 assemblies. Another 273 kb of gaps are

present in just M22 or YPS163, but not both. One of the M22-

specific gaps spans a 7.9 kb region on chromosome I that was

introgressed from S. paradoxus into YJM789 but not S288C [18].

This M22-specific gap can be explained by high divergence rather

than variation in genome content; a reexamination of sequences in

the M22 assembly but not present in the genome alignments

includes one contig which does align to this region using a set of

less stringent BLAST parameters. Finally, a number of strain-

specific gaps, totaling 90 kb, overlapped an InDel defined by the

other two strains.

We also found sequences present in M22 or YPS163 but absent

from S288C. A total of 71 kb of sequence was absent from the

complete S288C genome but present in more than one of the four

other strain of S. cerevisiae with genome sequence data. This is likely

an underestimate since a total of 323 kb of assembled M22 or

YPS163 sequences were not included in the alignments. Many of

these sequences are likely M22 and YPS163 duplications since

they often matched S288C where other contigs were aligned with

higher similarity. The estimates of variation in genome content

presented in Table 3 are similar to those obtained from the

comparison of YJM789 and S288C, where 49 kb of sequence was

found absent in S288C and 276 kb of sequence was found absent

in YJM789 [18].

When covered by a contig, insertions and deletions were

detected. We found 238 kb of large InDels, greater than 100 bp in

length, and 21 kb of small InDels. The majority of the large InDels

represent transposable elements present in S288C but absent in

both M22 and YPS163. In only a few cases were InDels greater

than one kb not associated with a transposable element. These

cases include ENA1, FLO9 and TFP1, the two former genes being

recently duplicated in S288C. Interestingly, the latter is a YPS613-

specific deletion that corresponds exactly to the intein VDE, a site-

specific endonuclease that shows similarity to the HO endonucle-

ase [75].

As measured by the number of distinct segregating sites, SNPs

and small InDels are the most abundant class of polymorphism

(Table 3). Similar to the analysis of YJM789 [18], the ratio of

SNPs to InDels is high, 12.8. However, within noncoding regions

the ratio of SNPs to InDels, 6.0, is more similar to the overall ratio

of 7.3, obtained from the sequencing of a human genome [76].

The difference between coding and noncoding ratios of SNPs to

InDels is expected since most InDels result in frame-shifts. The

higher frequency of InDels in noncoding sequences may

contribute to the paucity of noncoding sequences conserved

across distantly related yeast (Figure 3).

Overall, our results are similar to other whole-genome

polymorphism surveys [18,76]; most DNA sequence variations

are SNPs followed by InDels and structural variation; but

variation in genome structure, including large InDels, makes the

largest contribution to total sequence differences. Although the

relative importance of large structural variations, small InDels and

SNPs is still an open question [77], each is likely to contain a

subset that is functional and relevant to phenotype variation

present in nature.

Introgression
We found evidence of introgression of 29 genes from 16

different chromosomal regions of S. paradoxus into S. cereviae

(Dataset S1). One of the regions on chromosome IV shows the

highest rate of polymorphism in the genomes of these three strains,

and includes the tandemly duplicated ENA1, ENA2 and ENA5

genes, P-type ATPases that transport sodium and lithium out of

the cell [78]. The association between a quantitative trait locus for

resistance to lithium chloride [79] and introgression into S288C

and M22, but not the lithium sensitive YPS163 strain implies that

the introgressed region may be responsible for differences in

lithium sensitivity. Previous studies found introgression of a 12 kb

region on chromosome I from S. paradoxus into YJM789 but not

S288C [18] and introgression of a 23 kb subtelomeric segment of

chromosome XIV from S. cerevisiae into S. paradoxus [80]. The latter

region covers ten genes for which we also found evidence of

introgression.

Functional Polymorphism
A complete or nearly complete catalog of DNA polymorphism

provides unprecedented insight into the genetic basis of pheno-

typic variation present in nature. A number of lines of evidence

suggest that a significant fraction of the polymorphisms that we

identified has phenotypic consequences. First, variation in genome

content includes genes present in one strain but not another.

Second, numerous SNPs or InDels alter gene length, either by

changing the start or stop codon or by shifting the frame.

Combining variation in genome content due to unaligned

sequences, insertions, deletions or duplications, we found 591 kb

of variable sequence, 5.2% of the 11.4 Mbp of aligned genome

sequences (Table 3). This includes 15 putative coding sequences

that do not match the S288C genome but show similarity to

known proteins (Table S5) and 54 genes annotated in S288C that

lie within gaps of 5 kb or more in both the M22-S288C and

YPS163-S288C alignments (Dataset S1), suggesting that these are

unlikely to be explained by low-coverage.

The Saccharomyces Genome Database provides updated

annotations of the S288C reference genome and includes a list

of genes not in the systematic S288C sequence and genes known to

vary in copy number among strains [81]. A total of 38 nuclear

encoded genes are listed as not present in the systematic S288C

sequence, including five genes that function in sucrose degradation

(SUC genes), 14 genes involved in maltose metabolism (MAL

genes), 10 genes involved in melibiose metabolism (MEL genes),

along with KHS1, STRP, RTM1, AWA1, TAT3, MPR1, BIO6,

MATA1, and MATA2. (The MAT genes are a consequence of

sequencing a haploid alpha strain.) In comparison, we found

sequences similar to KHS1, AWA1, and MPR1 in M22 or YPS163.

In addition to the SUC, MAL and MEL genes, CUP1 and ASP3

are known to vary in copy number among strains. CUP1 varies in

copy number between strains, resulting in substantial variation in

copper resistance [82]. Although gaps in the assemblies make it

difficult to estimate copy number in M22 and YPS163, there is

significant variation in copper resistance among these strains [56].

All four copies of the ASP3 gene lie within a 28 kb gap present in

both M22 and YPS163. Previous work has implicated variation in

asparaginase gene content to strain differences in the utilization of

dipeptides as a nitrogen source [83].

The majority of large InDels, 83/119, involve transposable

elements, primarily Ty1 and Ty2 elements of the Copia family

(Table S2). One of the Ty1 insertions occurs at the 3’ end of
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HAP1, significantly impairing its function [84]. The remaining Ty

associated InDels occur within noncoding sequences (Dataset S1),

one of which occurs upstream of the copper transporter CTR3 and

results in loss of copper-dependent transcriptional regulation [85].

Although the effects of the other Ty InDels are uncertain, eight of

the genes adjacent to these InDels are differentially expressed

among strains segregating these InDels [56]: ATP1, MET17,

GRX3, PHO12, POR1, RPS25A, RPT2, YDL038C. Of the 17

InDels that are not related to Ty elements and that include protein

coding sequences, 12 involve in-frame tandem repeats: BBC1,

BUD27, CHS5, DDR48, EGT2, FIT1, NUP159, SED1, SPA2,

YFR016C, YIL169C, YMR317W, some of which have been

previously described [86].

In addition to variation in gene content, we found a large set of

genes with significantly altered protein products, as measured by

frame-shifting InDels and SNPs that disrupt or create start or stop

codons. Although false positive InDels due to sequencing errors is

a concern, 146/503 frame-shifting InDels are unlikely errors since

they are either greater than 3 bp in length or are present in both

M22 and YPS163 (Dataset S1). High quality SNPs, Phred quality

cutoff of 40, result in the loss of 34 start codons, 31 stop codons

and create 92 premature stop codons. In comparison to known

variation in gene structure, the Saccharomyces Genome Database

lists 9 cases where InDels or SNPs result in the split of a single gene

into two in S288C, four of which are annotated as pseudogenes. In

comparison to variation in gene structure in different yeast species,

Kellis et al. [3] found 32 cases of two adjacent genes joined into a

single gene in at least two other Saccharomyces species, and 210 and

330 cases of different conserved start and stop codons, respectively.

Although there is some overlap between previous annotations and

variation in M22, YPS163 and S288C, most variation is new: only

41/146 large or shared Indels and 22/157 of the polymorphic

start/stop codons occur in genes previously identified as showing

variation in gene structure.

The functional significance of variation in gene structure is not

easily known. There are, however, a number of compelling

examples. An 11 bp deletion in the aquaporin, AQY2, splits the

gene into two open reading frames and affects water transport and

freeze tolerance [87,88]. YPS163 does not have the 11 bp deletion

and shows significantly greater freeze tolerance compared to both

M22 or S288C [56]. Another example is a large 3885 bp deletion

of ENA1 in M22 relative to S288C. ENA1 encodes a P-type

ATPase sodium, lithium transporter and a major effect quantiative

trait locus for resistance to lithium chloride maps to the tandemly

duplicated ENA gene cluster [79]. Finally, MUC1 has the most

frame-shifting InDels in the genome (10) and different MUC1

alleles have been shown to affect biofilm formation [89]. MUC1

also has the largest number of nonsynonymous SNPs in the

genome, 43, excluding nonsynonymous changes resulting from

frame-shifting InDels. The high levels of variation at these loci

make positive selection a plausible explanation.

The Frequency of Positive Selection
In contrast to other species, particularly Drosophila species, we

found little evidence that positive selection has made a significant

impact on polymorphism or divergence. In Drosophila species, there

is a strong correlation between rates of recombination and levels of

neutral variation [21,24,90,91], consistent with selective sweeps.

We found a significant but very weak correlation that only

accounts for ,3% of variation in levels of polymorphism.

However, the lack of a strong correlation may be a consequence

of the mating system since other species that both self-fertilize and

outcross also show a weak correlation [17,20]. Alternatively, the

high rate of recombination in yeast, 0.34 cM/kb on average [92],

may limit the effects of hitchhiking to closely linked sites.

In Drosophila species, McDonald-Kreitman style tests have

indicated that adaptive substitutions are common in both coding

and noncoding sequences [26–30]. We found no evidence of

positive selection either in individual genes or across the genome.

Although the power to detect positive selection on individual genes

is limited, there is no lack of power in the analysis of the combined

data from multiple gene regions. One explanation for the lack of

evidence for positive selection is an abundance of deleterious

polymorphisms [28]. However, the abundance of deleterious

polymorphisms is similar in S. cerevisiae and D. melanogaster (see

below). The absence of evidence for positive selection in both

inbred and outcrossing species of Arabidopsis suggests that special

considerations may be needed to interpret the Drosophila rather

than the yeast data [93].

The Frequency of Deleterious Polymorphism
Our estimate of the proportion of nonsynonymous SNPs that

are deleterious, 36%, is similar to estimates from D. melanogaster,

27% [28], and Humans, 20–38% [46–48,50]. We also estimated

that 19% of SNPs within conserved noncoding sequences are

deleterious (Table 5). Since there is just as much conserved

noncoding as coding sequence in most eukaryotic genomes, our

results imply that noncoding sequences carry a significant fraction

of deleterious SNPs present within the genome.

The frequency of deleterious SNPs differs among strains. One

explanation is differences in selective constraint, caused by either

differences in effective population size or differences in the selective

regime [94]. Consistent with this explanation, S288C, which has

recently been maintained in the near absence of natural selection in

the laboratory, shows the highest proportion of deleterious to

neutral SNPs in coding sequences (Table 5). Interestingly, M22

shows the highest proportion of deleterious SNPs in noncoding

sequences and has been hypothesized to have gone through a recent

population bottleneck with other vineyard strains of yeast [95]. The

discrepancy between which strain has the most deleterious coding or

noncoding SNPs may be the result of differences in the strength of

selection on coding and noncoding sequences or differences

between the genome histories of S288C and M22. In YPS163,

the high rate of synonymous polymorphism combined with the low

rate of deleterious SNPs implies that its genome experienced a

larger effective population size than that of M22 and S288C.

Distinguishing Deleterious and Neutral SNPs
Using a likelihood ratio test, we identified 1472 nonsynonymous

SNPs that are deleterious. The likelihood ratio test differs from SIFT

and other heuristic methods based on protein structure or sequence

conservation [47,49,50]. Without a neutral expectation, heuristic

approaches can have a high rate of false positives depending on the

data to which they are applied [96]. We used synonymous sites as a

neutral expectation. Although this approach may be quite sensitive,

it may also identify SNPs that occur in positions that are slightly but

not absolutely conserved, as a result of either weak or episodic

selection. However, the predictions made by the likelihood ratio test

and SIFT are quite similar for nonsynonymous SNPs that disrupt

perfectly conserved amino acid positions (Figure 5).

Distinguishing deleterious and neutral SNPs in noncoding

sequences is much more difficult than in coding sequences. First,

even though 34–43% of noncoding sequences are selectively

constrained [53,69], only 3% of noncoding SNPs lie in sites that

are conserved to distantly related species. The difference between

conservation of coding and noncoding sequences (Figure 3) can be

attributed to differences in the level and type of constraints in coding
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and noncoding sequences and to differences in the sensitivity of

BLASTN versus BLASTP. Two aspects of divergence that likely

differ between coding and noncoding sequences are compensatory

changes, as hypothesized by the binding site turnover model [97],

and InDels, which are much more common in noncoding sequences.

A number of methods have been developed to identify

conserved noncoding sequences, e.g. [51,98,99]. However, closely

related species that are readily aligned do not provide single-base

resolution of selective constraint, i.e. single nucleotide sites are

often expected to be identical in all species by chance. Using

conservation of sequences adjacent to a SNP of interest, we used

two a binding site model and a model based on Phylonet motifs to

identify 1863 deleterious noncoding SNPs. Although the overlap

between the two sets of predictions is low, much of this can be

attributed to the low overlap between significantly conserved

binding sites and significantly conserved Phylonet motifs (Figure 5).

Regardless of the method, compensatory changes and binding site

turnover [8] place substantial constraints on the power of

comparative methods to identify all deleterious noncoding SNPs.

Phenotypic Consequences of Deleterious SNPs
The phenotypic effects of some deleterious SNPs may be large.

Out of eleven quantitative traits that have been mapped to single

nucleotide sites, eight alter amino acids that are significantly

conserved and are easily identified by the likelihood ratio test

implemented in this study (Table 7). The test could not be applied

to the quantitative trait nucleotide in END3 since it occurs in a

repetitive sequence and only closely related sensu strictu homologs

were identified even after removing BLAST filters. Of the 1472

deleterious nonsynonymous SNPs, 393 have a likelihood ratio test

P-value within the range of the cases listed in Table 7. This

suggests that there is a large set of nonsynonymous SNPs with

effects that could be as large as major effect quantitative trait

nucleotides. The two quantitative trait nucleotides in noncoding

sequences were both InDels and so the SNP-based binding site

and Phylonet methods were not applied.

Assessing the phenotypic effects of deleterious noncoding SNPs

is more difficult. First, the majority of deleterious SNPs occur

upstream of genes with no detectable allele-specific differences in

expression. It is possible that some of the deleterious SNPs affect

temporal aspects of gene regulation or disrupt sequences with

functions other than gene regulation. For example, polymorphism

in the 3’ UTR of RHO2 contributes to a high temperature growth

phenotype but shows no detectable effect on RHO2 mRNA

expression levels [100]. Similarly, an InDel upstream of RAS2

affects sporulation but shows no effect on RAS2 mRNA expression

level [73]. Another difficulty with assessing the effects of

deleterious noncoding SNPs is that genetic variation in gene

expression is abundant and much of it may be neutral [101,102].

Consistent with these observations we found that 16% of SNPs

associated with changes in gene expression were not predicted to

be deleterious by any model (Table 6). However, 73% of the genes

showing allele-specific expression contained deleterious SNPs

upstream of their coding sequences, implying that a significant

fraction of genetic variation in gene expression levels may be

caused by deleterious cis-regulatory SNPs.

Conclusions
The ability to sequence multiple organisms of the same species

has the potential to revolutionize the analysis of quantitative traits

and human diseases. Realizing this potential depends on our

ability to link phenotypes to genotypes without being limited by

recombination. Our analysis of DNA polymorphisms among three

strains of yeast outline two general approaches to identifying

candidate genotypes for any given phenotype. First, candidates

can be selected from DNA polymorphisms that disrupt sequences

that have been experimentally annotated, e.g. frame-shift and

nonsense polymorphisms. Second, candidates can be selected from

DNA polymorphisms that are deleterious and disrupt evolution-

arily conserved coding or noncoding sequences. Although not all

traits of interest may be caused by polymorphisms that disrupt

annotated and/or conserved sequences, the abundance of

candidates present in the genomes of three strains of yeast implies

that they may impact a considerable number of traits. Our results

show that probabilistic evolutionary models can be used to

distinguish deleterious and neutral SNPs in both coding and

noncoding sequences, an important step in identifying SNPs that

underlie quantitative traits and human diseases.

Materials and Methods

Sequencing and Assembly
DNA was extracted from rho2 derivatives of S. cerevisiae strains

YPS163, isolated from an Oak tree in Pennsylvania, and M22,

Table 7. Conservation of quantitative trait nucleotides.

Gene SNP LRT P-value Phenotype Reference

ASP1 D142H 7.9E-10 Acetic acid production Marullo et al. 2007

CYS4 I123N 3.9E-09 Multi-drug sensitivity Kim and Fay 2007

END3 S258N NA High temperature growth Sinha et al. 2006

GPA1 S469I 9.7E-09 Cell elongation, gene regulation Yvert et al. 2003; Nogami et al. 2007

MKT1 G30D 2.5E-08 Sporulation efficiency, High temperature growth Deutschbauer et al. 2005; Sinha et al. 2006

MLH1 D761G 4.5E-07 Mismatch repair Heck et al. 2006

PHO84 L259P 3.2E-08 Drug sensitivity Perlstein et al. 2007

PMS1 R818K 1.1E-06 Mismatch repair Heck et al. 2006

TAO3 E1493Q 2.9E-06 Sporulation efficiency Deutschbauer et al. 2005

RAS2 A[-9]- NA Sporulation efficiency Ben-Ari et al. 2006

RME1 -[-308]A NA Sporulation efficiency Deutschbauer et al. 2005

LRT P-value is from alignments of distantly related homologs, no distant homologs were identified for the END3 SNP. Promoter polymorphisms are indicated by position
relative to the start codon in brackets, dash indicates deletion. The likelihood ratio test is not applicable to InDels.
doi:10.1371/journal.pgen.1000183.t007
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isolated from a vineyard in Italy. Rho- strains were obtained by

growth in minimal medium with 25 ug/ml ethidium bromide

[103]. A genomic DNA library was made using the plasmid

pOTw13 and sheared DNA with an average insert size of 3.8 kb.

Sequencing was carried out in Washington University’s Genome

and Sequencing Center and reads were deposited into NCBI’s

trace archive (TI:2017509004-2017433010).

Genome assemblies were generated using PCAP [57]. Because

of the low coverage, many singlet reads were not included in the

assembled contigs. After eliminating unplaced reads of less than

500 bp, more than 50% low quality bases and those designated as

repeats, 1686 unplaced reads from M22 and 990 from YPS163

were added to the assembly. Genome assemblies were deposited

into GenBank (Accession ABPC00000000 and ABPD00000000).

Genome Rearrangements
Genome rearrangements were identified by paired reads with

unique but inconsistent matches to the reference genome. Unique

matches were defined as those with a BLAST E-value less than

1.0e-90 and no secondary hit greater than 1.0e-50. Out of 16,074

read-pairs from M22 and 18,381 from YPS163, 37 YPS163 pairs

and 27 M22 pairs were inconsistent with the reference genome

either because they matched different chromosomes or matched

greater than 20 kbp apart from one another on the same

chromosome.

Genome Alignments and DNA Polymorphism
Contigs from both M22 and YPS163 were aligned to the S288C

reference genome using BLAST. Alignments were subsequently

filter to ensure one-to-one alignment for both genome alignments:

M22-S288C and YPS163-S288C. The two genome alignments

were combined using S288C as a reference. Variation in genome

content was identified by sequences not present in the genome

alignments. SNPs and InDels were identified within the genome

alignments. A more detailed description of methods and results

can be found in Supporting Information (Text S1). A tally of

synonymous, nonsynonymous and noncoding SNPs in each gene

and noncoding sequence can be found in Supporting Information

(Dataset S3).

Polymorphism Relative to Recombination
Recombination rates were obtained from genetic mapping data

[81] and Spo11 mediated mapping of double strand breaks [104].

A polynomial fit of genetic to physical distance was obtained for

each chromosome using the loess function in the statistical

software package R. The recombination rate for each interval of

interest was obtained by calculating the slope of the fitted

relationship over the interval. Since both the genetic mapping

data and the double strand break data gave similar correlation

coefficients with rates of polymorphism, only the genetic mapping

data was used.

McDonald-Kreitman Style Tests
Modified McDonald-Kreitman tests [67] were carried out using

HyPhy [105]. This enabled the use of realistic nucleotide (HKY85)

and codon (MG94xHKY85) substitution models and accurately

accounted for multiple substitutions at the same site. For genome-

wide comparisons, sequences were concatenated and a likelihood

ratio test was used to determine whether constraints on

polymorphism were significantly different from constraints on

divergence for the polymorphism tree (M22, YPS163 and S288C)

and the divergence tree (S288C and S. paradoxus). The two trees

were simultaneously maximized and shared all parameters except

those measuring selective constraints. For coding sequences,

selective constraint was measured by the ratio of nonsynonymous

to the synonymous substitution rate. For noncoding sequences,

constraint was measured by the ratio of the substitution rate in

conserved and unconserved noncoding sequences. To avoid bias,

conserved noncoding sequences were defined by sequences

identical in S. mikatae, S. kudriavzevii and S. bayanus or identical

any two of the three species if one sequence was missing.

Unconserved noncoding sequences were defined as the comple-

ment of the conserved sequences. Transposable elements and

other noncoding genes were eliminated from the analysis. The

likelihood ratio test was also applied to each coding and noncoding

region individually.

Number of Deleterious SNPs
The fraction of coding or noncoding SNPs that are deleterious

was estimated by the difference between constraint estimated from

polymorphism data and constraint estimated from divergence data

[46]. In the absence of deleterious polymorphisms, constraint on

coding sequences within species, pN/pS, should be the same as

constraint on coding sequences between species, dN/dS, where

dN, dS, pN, pS are the rate of nonsynonymous and synonymous

divergences and polymorphism, respectively. The fraction of

nonsynonymous SNPs that are deleterious was estimated by the

ratio of these two constraints dNpS/dSpN. The expected number

of deleterious SNPs was estimated by the fraction of deleterious

SNPs multiplied by the observed number of SNPs. Similar

calculations were made for noncoding SNPs.

Deleterious SNPs in Conserved Sequences
A total of 11,075 nonsynonymous and 16,164 noncoding SNPs

have a Phred quality score of 40 or more, excluding those in

sequences within overlapping annotations. Homologs in 10 yeast

genomes were identified using TBLASTX (word size = 3 amino

acids, E-value,1e-10, filter = seg, qframe = 1) for coding SNPs

and BLASTN (word size = 6, filter = dust, E-value,1e-10) for

noncoding SNPs. For nonsynonymous SNPs we used the codon

containing the SNP along with 33 codons upstream and

downstream and for noncoding SNPs we used 100 bp upstream

and downstream. Multiple alignments were generated by com-

bining the ungapped BLAST alignments using S288C as a

reference.

Deleterious SNPs were identified by a likelihood ratio test. For

coding sequences we compared the likelihood of the codon

containing the SNP under two models: dN equal to dS and dN less

than dS, where dN and dS are the nonsynonymous and

synonymous substitution rate respectively. A dS of 18 substitutions

per site was obtained from the median synonymous substitution

rate of 2046 genes using a set phylogeny [106]. dN was from the

codon of interest. Significance was examined by comparing the

likelihood ratio of the null and the alternative model, which has

one additional parameter (selective constraint), to a Chi-squared

distribution with one degree of freedom. The results are in

Supporting Dataset S2.

SNPs in Transcription Factor Binding Sites
Using 125 transcription factor binding site models from

chromatin immunoprecipitation data [71], an NDT80 model

from the literature [107], and 296 models predicted by the

Phylonet algorithm [54], we tested each SNP that occurred in an

S. cerevisiae sequence with a log-odds score greater than 2 for a

match to the binding site model versus background [108]. By this

criteria, a total of 125,520 tests were conducted for 16,164 high

quality SNPs, Phred quality score cutoff of 40, for which there
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were alignments with fewer than 50% of gapped positions and

with at least three other sensu strictu Saccharomyces species besides S.

cerevisiae. To identify binding sites conserved across species, we

calculated the likelihood under a neutral and conserved binding

site model [8]. To identify SNPs that disrupt conserved binding

sites, we added the strain containing the alternative SNP allele to

the alignment and calculated the likelihood of the data under a

conserved binding site model to one with loss along the lineage

containing the derived allele. When multiple conserved binding

sites were predicted for a single SNP, we calculated the average

posterior probability of loss based on the five models with the best

fit, weighted by the fit of each model to the data, where the fit is

measured by the likelihood ratio of the conserved model relative to

a neutral model.

Deleterious SNPs Identified using Phylonet
The Phylonet algorithm is described in [54]. Three changes

were made to the algorithm to identify sequences that show

constraints similar to a query sequence containing a SNP. First, we

masked the SNP position in the query so that the resulting

alignments are unbiased with respect to the allele at the SNP

position. Second, only motifs overlapping the SNP position were

included in the analysis, those matching flanking sequences were

discarded. Third, we eliminated those alignments inconsistent with

the best motif model. Alignments were eliminated as follows.

Using the algorithm’s profile clustering method, all high scoring

pairs were combined to find the best possible motif using the

average log-likelihood ratio score. Each alignment was then scored

again using only the positions within the boundary of the best

motif and insignificant alignments were discarded. This step

helped eliminate spurious sites that were high scoring alignments

based on similarity to the query in sequences adjacent to the

discovered motif and SNP of interest. In comparison, the original

Phylonet algorithm uses all alignment scores to determine which

overlapping profile alignments to generate predicted motifs from

and can generate multiple motifs from a single query.

Allele-Specific Expression
Allele-specific expression was measured in nine different

environmental conditions: rich medium, glycerol, amino acid

starvation, nitrogen starvation, heat shock, stationary phase, and

three time points of sporulation. For rich medium, cells from an

overnight YPD (1% yeast extract, 2% peptone, 2% dextrose)

culture were diluted in fresh YPD and sampled after eight hours of

growth. For glycerol, cells from an overnight YPD culture were

diluted into YPG (2% glycerol, 2% peptone, 2% dextrose) and

sampled after eight hours of growth. For amino acid starvation,

cells from a mid-log phase culture of YPD were resuspended in

minimal medium (0.67% yeast nitrogen base with ammonium

sulfate, 2% glucose) and sampled after 45 minutes. For nitrogen

starvation, cells from a mid-log phase YPD culture were

resuspended in 2% dextrose with 0.17% yeast nitrogen base

without ammonium sulfate and sampled after 8.5 hours of growth.

For heat shock, cells from a mid-log phase YPD culture growing at

20C were transfered to 37C for 20 minutes and then sampled. For

stationary phase, a YPD culture was grown for 54 hours and then

sampled. For sporulation, cells from an overnight YPA (1% yeast,

2% peptone, 1% potassium acetate) culture were resuspended in

1% potassium acetate and sampled after 4, 8 and 12 hours. For

the S288C-M22 hybrid, samples were taken at 8, 12 and 20 hours

to account for the slower rate at which tetrads formed compared to

the M22-YPS163 and S288C-YPS163 hybrids.

RNA was extracted using the Qiagen RNEasy kit from the nine

environmental conditions for three biological replicates of each

hybrid strain. cDNA was synthesized for each RNA sample using a

poly-T primer and the Qiagen Omniscript RT kit. Genomic DNA

was extracted from each hybrid for a reference. The samples were

diluted to a concentration of 2.5 ng/ul and quantitatively

genotyped using the Sequenom MASSArray method following

the manufacturer’s protocol (Sequenom, San Diego, CA). The

allele frequencies of each SNP were obtained from the Sequenom

allele frequency data report.

Significant differences in allele-specific expression were identi-

fied using an analysis of variance on the ratio of alleles across all

conditions. Both cDNA and DNA samples were included in the

analysis of variance. The same results were obtained if cDNA

samples were analyzed alone after normalization to the DNA

ratios. For the 86% of the cases where there was informative data

from two hybrids, a term for the hybrid effect was included in the

ANOVA model. The significance of was estimated by permutation

resampling of the expression ratios, shuffling the column labels

20,000 times. A P-value cutoff of 0.019 corresponds to a false

discovery rate of 5% (Dataset S1).
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