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Abstract

Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide
variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid
diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of
these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now
show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a
mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were
significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as
renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular
epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease
despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly
altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest
that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular
podocytes displaying the greatest sensitivity to Pdss2 impairment.
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Introduction

Coenzyme Q (CoQ) is a benzoquinone molecule with a

polyisoprenylated side chain that ranges from 6 to 10 isoprenyl

units in length. It functions as an electron carrier in the

mitochondrial respiratory chain, where it transports electrons

from complexes I or II to complex III. The polyisoprenyl

diphosphate synthases which form the isoprenyl side chain of

CoQ in mice and humans are each heterotetramers of two protein

subunits [1]. The genes that encode these subunits are now

designated Pdss1 and Pdss2 in mice, and PDSS1 and PDSS2 in

humans. Although its identity was not understood at the time, the

first known mutation in the Pdss2 gene arose spontaneously in the

CBA/CaH colony of Dr. Mary Lyon and was designated kidney

disease (kd). Homozygotes for the kd allele develop a lethal disease

characterized by tubulointerstitial nephritis, dilated tubules, and

proteinuria [2]. Mutant kd/kd homozygotes appear healthy for at

least the first 8 weeks of life, but histological examination of the

kidneys beginning at about 12 weeks of life reveals a mononuclear

cell infiltrate and tubular dilatation with proteinaceous casts in

cortical areas. Over time this extends to involve the entire kidney

with resultant renal failure [3,4,5].

Renal disease pathogenesis was initially thought to be immune

mediated, rather than resulting from a structural or developmental

defect [3,6]. However, we have since shown that the same renal

disease, including leukocytic infiltration of macrophages and

natural killer cells, develops spontaneously in kd/kd;Rag-12/2

double homozygotes lacking functional T and B lymphocytes [7].

Furthermore, mutant kd/kd mice are now recognized to have

features of collapsing glomerulopathy (CG), a unique glomerular

morphology in which hyperplastic and hypertrophic podocytes

overlie collapsed capillary loops. While interstitial nephritis is often

present in CG, no single definable pathogenic trigger for this

disease has emerged [8]. Dysregulation of podocyte terminal

differentiation in kd/kd mice was demonstrated by de novo

expression of cyclin D1 (marking cell-cycle engagement) and Ki-
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67 (indicating podoctye cell-cycle progression), with loss of

expression of differentiation markers WT-1 and synaptopodin

[9]. These results suggested that there may indeed be an intrinsic

structural defect in the podocytes of kd/kd mice, with the

inflammatory reaction playing only a secondary role.

A positional cloning approach demonstrated that the kd allele is

a missense mutation in a prenyltransferase-like mitochondrial

protein [10], now designated Pdss2. This enzyme forms a

heterotetramer with another enzyme encoded by Pdss1 to generate

nonaprenyl diphosphate in mice or decaprenyl diphosphate in

humans. The polyisoprenoid diphosphate precursor is added to 4-

hydroxybenzoic acid, forming polyisoprenyl-hydroxybenzoic acid,

an early intermediate in CoQ biosynthesis [1]. Compound

heterozygous PDSS2 mutations were recently identified in a child

with severe Leigh syndrome and nephrotic syndrome [11].

Primary CoQ deficiency in humans is a rare condition that

typically presents with neurologic or myopathic disease that is

often ameliorated with CoQ supplementation [12]. It has now

been associated with mutations in three of the nine nuclear genes

encoding component enzymes of the CoQ biosynthesis pathway

including COQ2, PDSS1, and PDSS2 [11,13,14,15] as well as with

electron-transferring-flavoprotein dehydrogenase (ETFDH) muta-

tions affecting the transfer of electrons to CoQ [16]. Nephrotic

syndrome has been seen in individuals with mutations in PDSS2

[11], as well as COQ2 [13,14,17]. Mechanisms underlying tissue-

specific disease manifestations remain unclear.

We report here results of extensive phenotypic characterizations

of both kd/kd (B6.Pdss2kd/kd) missense and tissue-specific condi-

tional Pdss2 knockout mice, including those affecting renal

glomerular podocytes (B6.Podocin/cre,Pdss2loxP/loxP), renal tubular

epithelium and hepatocytes (B6.PEPCK/cre,Pdss2loxP/loxP), mono-

cytes (B6.LysM/cre,Pdss2loxP/loxP), and hepatocytes (B6.Alb/cre,

Pdss2loxP/loxP). This work demonstrates that renal disease in

Pdss2kd/kd mice results from podocyte-specific Pdss2 dysfunction.

In addition, while biochemical evidence of significant CoQ

deficiency, respiratory chain dysfunction in isolated mitochondria,

and altered amino acid profiles is present in livers of both

B6.Pdss2kd/kd missense and B6.Alb/cre,Pdss2loxP/loxP mutant mice, no

overt manifestations of liver or other extra-renal disease were

observed in any of the mutants through eight months of life.

Results

Pdss2kd/kd Phenotype Is Recapitulated in B6.Podocin/
cre,Pdss2loxP/loxP Mice

The Pdss2loxP construct was prepared as shown in Figure 1. The

total knockout (B6.Zp3/Cre,Pdss2loxP/loxP) was embryonically lethal ,

with no homozygous embryos surviving beyond 10.5 days of

gestation (data not shown). This is in agreement with the findings

of Levavasseur et al. [18] and Nakai et al. [19], who reported that

mouse embryos deficient in CoQ synthesis as a result of clk-1/coq7

(demethoxyubiquinone hydroxylase) mutations also arrest devel-

opment at mid-gestation. Tissue-specific conditional knockouts

were therefore generated by crossing B6.Pdss2loxP/loxP mice with

several Cre-expressing strains. As shown in Figure 2, the Pdss2 gene

was successfully targeted in the glomeruli but not the collecting

tubules of B6.Podocin/cre,Pdss2loxP/loxP mice, whereas the collecting

tubules and hepatocytes but not the glomeruli were targeted in

B6.PEPCK/cre,Pdss2loxP/loxP mice.

B6.Podocin/cre,Pdss2loxP/loxP but not B6.PEPCK/cre,Pdss2loxP/loxP

mice had the same kidney disease phenotype as B6.Pdss2kd/kd

missense mice, as judged by albuminuria and histological evidence

of nephritis. Sections of kidneys from B6.Podocin/cre,Pdss2loxP/loxP

mice, B6.PEPCK/cre,Pdss2loxP/loxP mice, and controls are shown in

Figure 3. The phenotype of B6.Podocin/cre,Pdss2loxP/loxP is histolog-

ically indistinguishable from that of a B6.Pdss2kd/kd missense

mutant, with both showing greatly dilated tubules and extensive

interstitial infiltration. In contrast, neither feature is seen in the

B6.PEPCK/cre,Pdss2loxP/loxP or the B6.Pdss2loxP/loxP control. Renal

tissue from conditional knockouts was also examined by electron

microscopy, with results shown in Figure 4. No significant

ultrastructural differences were observed between B6 and

B6.Pdss2loxP/loxP control kidneys (Figures 4A and 4C), but the

abnormalities present in the B6.Podocin/cre,Pdss2loxP/loxP knockout

(Figure 4D) were the most extensive of any Pdss2 mutant studied

[10]. Measurements of 24-hour urine albumin and semi-

quantitative histological scores from Pdss2 missense, all conditional

knockout mutants, as well as controls, are shown in Table 1. Only

the B6.Podocin/cre,Pdss2loxP/loxP knockouts had a phenotype that

resembled that of the B6.Pdss2kd/kd mice, as measured by either

albuminuria or histologically-scored nephritis.

Another phenotypic abnormality seen in B6.Pdss2kd/kd homozy-

gotes is elevated serum cholesterol and triglycerides [20]. In an

effort to determine whether this alteration may in part result from

the underlying biochemical defect in CoQ biosynthesis rather than

wholly as a consequence of nephrotic syndrome, we measured

cholesterol and triglyceride levels in B6.Podocin/cre,Pdss2loxP/loxP

and B6.Alb/cre,Pdss2loxP/loxP mice. B6.Podocin/cre,Pdss2loxP/loxP mice

developed renal disease associated with significantly elevated plasma

cholesterol levels (Table 2), suggesting hypercholesterolemia is

largely a consequence of nephrotic syndrome. However, significantly

elevated plasma cholesterol was also seen in B6.Alb/cre,Pdss2loxP/loxP

(94 +/2 7.1 mg/dl) when compared with B6.Pdss2loxP/loxP controls

(61 +/2 5.5 mg/dl), suggesting that a Pdss2 defect in the hepatocytes

does contribute to hypercholesterolemia.

Pdss2 Mutations Diminish CoQ Tissue Levels
CoQ content was determined in lipid extracts of tissue

homogenates from livers and kidneys dissected from mutant and

control mice. As shown in Figure 5 (Panel A), there was a

significant reduction in CoQ9 and CoQ10 levels in the kidneys of

B6.Pdss2kd/kd mice compared to age-matched B6 controls. There

were no significant differences in kidney CoQ9 content between

the B6, B6.Pdss2loxP/+, or B6.Pdss2loxP/loxP control mice (Panels A

and B). Neither the B6.Podocin/cre,Pdss2loxP/loxP nor the B6.PEPCK/

Author Summary

Coenzyme Q is a critical component of the mitochondrial
respiratory chain, the process by which cells make energy.
Coenzyme Q deficiency in humans causes a wide range of
disease manifestations affecting the nervous system, mus-
cles, and kidneys. Here, we show that the failure to make
Coenzyme Q due to a Pdss2 mutation is the cause of a lethal
kidney disease in mice that was previously thought to result
from an autoimmune process. Studying both a spontane-
ously occurring missense mutant and a series of mutants
generated to have the Coenzyme Q deficiency targeted
solely to liver, kidney, or macrophages, we show that the
specific cell type in which the kidney disease arises is the
glomerular podocyte. No other manifestations of disease are
evident in these animals. However, our analysis of livers from
these mice reveals that they have significant depletion of
Coenzyme Q, impairment of mitochondrial respiratory chain
function, and disturbance of many other basic metabolic
processes. Similar microarray patterns of cellular alterations
to primary mitochondrial dysfunction were seen both in
these mice and in a previously reported nematode model,
suggesting that a common cellular profile of primary
respiratory chain function may exist across evolution.

Renal Disease in Pdss2 Mutant Mice
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Figure 2. Pdss2 Conditional Knockout Confirmation. PCR products after laser capture microdissection, using primers for exon 2 (A) or exon 4
(B). Lanes: 1, Pdss2loxP/loxP glomerulus; 2, Pdss2loxP/loxP tubules; 3, B6.Podocin/cre,Pdss2loxP/loxP mouse 1, glomerulus; 4, B6.Podocin/cre,Pdss2loxP/loxP

mouse 1 tubules; 5, B6.Podocin/cre,Pdss2loxP/loxP mouse 2, glomerulus; 6, B6.Podocin/cre,Pdss2loxP/loxP mouse 2 tubules; 7, B6.PEPCK/cre,Pdss2loxP/loxP

mouse 1 glomerulus; 8, B6.PEPCK/cre,Pdss2loxP/loxP mouse 1, tubules; 9, B6.PEPCK/cre,Pdss2loxP/loxP mouse 2 glomerulus; 10, B6.PEPCK/cre,Pdss2loxP/loxP

mouse 2, tubules.
doi:10.1371/journal.pgen.1000061.g002

Figure 1. Generation of a Pdss2 Conditional Null Allele. Generation of a Pdss2 conditional null allele, showing a map of the Pdss2 genomic
locus and the targeting vector with exons represented by open boxes. The relative position of PCR primers (small arrowheads), loxP (large
arrowheads), as well as cassettes encoding neomycin phosphotransferase (neo) are shown. Primers koF, koF2 and koR were used in PCR genotype
analysis. Cre-mediated deletion results in either the Pdss2 null allele (deletion of exon 3 ) or the Pdss2 loxP/loxP allele (exon 2 flanked by loxP sites).
Abbreviations: Ba, BamH I; Aa. Aat II; Xh, Xho I; Dr, Dra III.
doi:10.1371/journal.pgen.1000061.g001

Renal Disease in Pdss2 Mutant Mice
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cre,Pdss2loxP/loxP mice had a significant reduction in the CoQ9

levels of total liver or kidney homogenates (Panels B and C),

which is consistent with the fact that only a small subset of

cells were affected by these targeted disruptions. However, the

B6.Alb/cre,Pdss2loxP/loxP mice had less than 30 pmol CoQ9 per

mg liver protein, which would be expected if most

hepatic cells were affected by the albumin promoter-driven Cre

expression.

Pdss2 Mutations Do Not Consistently Alter Pdss1
Expression in Liver or Whole Kidney

Relative quantitation expression studies in isolated liver tissue

demonstrated significant Pdss2 knock-down in each of three

B6.Alb/cre,Pdss2loxP/loxP mutants (mean 97.2% decrease; range

97.0% to 97.3% decrease), but no consistent change in nine

B6.Pdss2kd/kd missense mice (mean 6% increase; range 40%

decrease to 250% increase) in comparison with appropriate strain-

and age-matched pooled controls. Pdss1 expression showed

inconsistent alterations both among six B6.Alb/cre,Pdss2loxP/loxP

mutants (mean 21% increase; range 50% decrease to 180%

increase) as well as nine B6.Pdss2kd/kd missense mutants (mean 4%

decrease; range 22% decrease to 57% increase) in comparison

with pooled Pdss2loxP/loxP or B6 respective controls. Finally, relative

quantitation demonstrated a decrease in expression of both Pdss1

and Pdss2 transcripts in RNA isolated from intact single kidneys of

three B6.Pdss2kd/kd missense mutants with renal disease [(Pdss1

mean 71% decrease; range 65% to 80% decrease) and (Pdss2

mean 35% decrease; range 26% to 44% decrease)], but no

consistent alteration of either transcript in RNA isolated from

intact single kidneys of three B6.Podocin/cre,Pdss2loxP/loxP mutants

with renal disease [(Pdss1 mean 31% decrease; range 75%

decrease to 55% increase) and (Pdss2 mean 17% increase; range

4% decrease to 57% increase)].

Pdss2 Mutations Impair Mitochondrial Respiratory Chain
Function

B6.Alb/cre,Pdss2loxP/loxP mice had no evidence of disease through

8 months of life, but isolated liver mitochondria respiratory chain

capacity in 6 to 8 month old animals was impaired to a similar

extent as seen in B6.Pdss2kd/kd missense mice. Specifically,

polarography of freshly isolated liver mitochondria showed

significantly decreased complex I- and complex II-dependent

integrated respiratory chain capacity in both B6.Pdss2kd/kd and

B6.Alb/cre,Pdss2loxP/loxP mutants compared with controls (Figure 6,

panels A and B). Significantly increased complex IV-dependent

respiratory capacity was also observed in both the B6.Pdss2kd/kd

and B6.Alb/cre,Pdss2loxP/loxP mutants (Figure 6, panel C). This

suggests that the degree of CoQ deficiency in liver is sufficient to

cause secondary upregulation of respiratory chain components

(complex IV) distal to the genetic deficiency (CoQ). These

functional alterations are supported by spectrophotometric

electron transport chain enzyme activity analyses performed on

frozen liver mitochondria from these same animals (Figure 6,

Panel D). Frozen mitochondria isolated from single whole kidney

Figure 3. Histologic Features of Renal Disease in Pdss2 Mutant and Control Mice. Histologic features of renal disease in mutant and control
mice (H & E-stained sections, original magnifications all 200x). A, B6.Podocin/cre,Pdss2loxP/loxP mouse (290 days old; 64 mg albumin; histologic score,
4+). B, B6.PEPCK/cre, Pdss2loxP/loxP (191 days old; 0.04 mg albumin; histologic score 0). C, B6.Pdss2kd/kd (146 days old; 15 mg albumin; histologic score,
3+). D, B6. Pdss2loxP/loxP mouse, (191 days old; 0.12 mg albumin; histologic score, 0). Note the prominent tubular dilatation and interstitial infiltrates in
panels A and C, but absent in panels B and D.
doi:10.1371/journal.pgen.1000061.g003

Renal Disease in Pdss2 Mutant Mice
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homogenates were also studied from five B6 and three

B6.Pdss2loxP/loxP controls, as well as three animals each of

genotypes B6.Pdss2kd/kd, B6.Podocin/cre,Pdss2loxP/loxP, B6.PEPCK/

cre, Pdss2loxP/loxP, and B6.Alb/cre,Pdss2loxP/loxP. No significant

differences were detected in activities of enzyme complex I-III,

II-III, III, or IV normalized to citrate synthase activity for any of

the mutants in comparison with controls, although a trend toward

increase was observed for complex IV enzyme activity in

B6.Pdss2kd/kd kidney mitochondria (data not shown).

Metabolic Effects of Pdss2 Liver Conditional Knockout
A significantly altered metabolic phenotype at the level of

concordant biochemical pathway expression changes was clearly

present in B6.Alb/cre,Pdss2loxP/loxP mutants by 6 months of life, as

summarized in Figure 7 (left column). Specific metabolic

consequences of Pdss2-based CoQ deficiency include significant

upregulation at a nominal p-value,0.05 in 43 of 95 essential

KEGG biochemical pathways analyzed by Gene Set Enrichment

Analysis including oxidative phosphorylation itself, the tricarbox-

ylic acid (TCA) cycle, and multiple metabolic pathways that

provide substrates necessary for energy production including fatty

acid metabolism and 8 different amino acid metabolic pathways.

Many of these same pathways were similarly upregulated upon

expression profiling of C. elegans mitochondrial mutants in nuclear-

encoded respiratory chain subunits of complexes I, II, and III

(Figure 7, middle and right columns) [21].

Figure 4. Glomerular Electron Micrographs From Pdss2 Mutant and Control Mice. Electron micrographs from mutant and control mouse
kidney glomeruli; original magnifications all 10,000x; scale bar = 2 microns. A, B6, 362 days old; arrows show podocyte foot processes. B, B6.Pdss2kd/kd,
267 days old; arrows show regions of foot process effacement. C, B6.Pdss2loxP/loxP mouse, 248 days old; arrows show foot processes. D, B6.Podocin/
cre,Pdss2loxP/loxP 290 days old; arrows show regions of foot process effacement.
doi:10.1371/journal.pgen.1000061.g004

Renal Disease in Pdss2 Mutant Mice
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Unique to the CoQ biosynthetic defect, B6.Alb/cre,Pdss2loxP/loxP

mutants have upregulation of CoQ biosynthesis, likely in

compensation for their underlying CoQ deficiency. Similarly,

the substrates immediately prior to the Pdss2-encoded prenyldi-

phosphate synthase enzymatic block (such as farnesyl pyrophos-

phate) appear to get funneled toward alternative biochemical

pathways, as above. Interestingly, regulation of autophagy is

uniquely upregulated in the B6.Alb/cre,Pdss2loxP/loxP mutants,

supporting previously reported findings of mitophagy occurring

in these animals as characterized by endoplasmic reticulum

engulfing liver mitochondria [10]. Consistent with CoQ function

in both prooxidant and antioxidant roles, global expression

analysis demonstrates the upregulation of multiple cellular defense

pathways including the metabolism of P450 and glutathione,

ascorbate metabolism, as well as the degradation of bisphenol A,

limonene, pinene, and gamma-hexachlorocyclohexane. These

mutants also appear to have alterations in basic DNA metabolism,

as evidenced by upregulation of the metabolism of purines,

pyrimidines, nucleotide sugars, ribosomes, aminoacyl-tRNAs, and

RNA polymerase. Finally, four KEGG pathways appear on initial

inspection to be discordantly expressed between mouse Pdss2

mutants and C. elegans complex I subunit mutants (Figure 7, left

and middle columns, green highlight); however, none of these

pathways upregulated in B6.Alb/cre,Pdss2loxP/loxP were validated as

having altered expression in the independent C. elegans dataset

comprised of eight different complex I, II, and III respiratory

chain subunit mutants (Figure 7, right column).

Altered amino acid metabolism is further supported by

significant concentration differences among multiple amino acids

quantified in livers of B6.Alb/cre,Pdss2loxP/loxP mutants (Figure 8,

Panels C and D). Hepatic glutamate was lowered to less than half

the control value (p,0.01; Figure 8, Panel D). Glutamate

depletion could account for decreased levels of glutamine and

alanine (Figure 8, Panel D) that derive from glutamate via

glutamine synthetase and alanine aminotransferase, respectively.

Similarly, a loss of glutamate could lower hepatic concentrations of

phenyalanine, methionine, leucine, isoleucine and valine (Figure 8,

Panel C), each of which forms from glutamate by a specific

transaminase. The total absence of citrulline (Figure 8, Panel C)

suggests ureagenesis is compromised in Pdss2 mutant mice.

Similarly, the sole amino acid to be significantly increased was

the urea cycle precursor, aspartate (Figure 8, Panel C), with a

sharp reduction in the glutamate:aspartate ratio (1:4 vs 4:1) of

mutant vs control liver.

Pdss2 Missense Mutants Have No Clinical Manifestations
of Extra-Renal Disease

Histological sections of the brain, retina, liver, and skeletal

muscle of B6.Pdss2kd/kd mutants demonstrated no obvious

structural abnormalities. Skeletal muscle sections stained with

Gomori/trichrome and antibodies to muscle enzymes (ATPase,

NADH, SDH) showed no evidence of subsarcolemmal mitochon-

drial aggregates or other abnormalities. In addition, no differences

were observed in bone mineral density or concentration, lean body

mass, complete blood count, or liver transaminase (ALT) (data not

shown). Several significant differences were noted in the liver

amino acid levels of these animals (Figure 8, Panels A and B), but

these changes were not as intense or widespread as observed in

livers of B6.Alb/cre,Pdss2loxP/loxP mutants (Figure 8 Panels C and D).

The fact that most of these changes affected essential amino acids

– threonine, phenylalanine and isoleucine, for example – could

reflect albuminuria with concomitant nitrogen wasting and

relative protein deficiency in these animals.

Discussion

The occurrence of a kidney disease phenotype in B6.Podocin/

cre,Pdss2loxP/loxP but not B6.PEPCK/cre,Pdss2loxP/loxP mice resolves a

long-standing question regarding the cellular localization of the

primary defect in B6.Pdss2kd/kd mice [3,20]. Table 1 shows that a

primary defect in podocytes recapitulates the kd/kd disease

phenotype and is responsible for the development of nephrotic

syndrome, which was not the case for mice expressing the defect

primarily in renal tubular epithelium and hepatocytes (B6.PEPCK/

cre,Pdss2loxP/loxP). Hence, interstitial nephritis occurs as a conse-

quence of a Pdss2 defect in glomerular podocytes. Knocking out

the Pdss2 gene in podocytes resulted in a more severe phenotype

than that observed in mice homozygous for the Pdss2kd mutation

(Figure 4), as would be expected if the product of the missense

allele has at least some residual activity. Detection of CoQ9 and

CoQ10 in the kidneys of B6.Pdss2kd/kd mice, while almost ten-fold

lower than age-matched B6 controls, suggests that the V117M

amino acid substitution mutation in the Pdss2kd gene product

retains partial activity (Figure 5).

That tubular dilatation and interstitial nephritis are downstream

consequences of a CoQ deficiency in podocytes is illustrated by

Figure 3. Our results suggest that CoQ deficiency negatively

impacts mitochondrial respiratory chain function, although loss of

CoQ antioxidant function may also be involved in pathogenesis,

which leads to podocyte death with important consequences for

kidney function. The slit diaphragm, which is dependent on

podocyte foot processes, is essentially destroyed, causing leakage of

various proteins normally maintained within the circulation, such

as serum albumin. Some of these molecules have deleterious effects

Table 1. Phenotypes of mice with conditional knockout and
control genotypes*

Genotype
Urine albumin
(mg/24 hrs) Nephritis

B6.Podocin/cre,Pdss2loxP/loxP 32.89 +/2 7.64 (28)** 1.80 +/2 0.29 (26)

B6.PEPCK/cre, Pdss2loxP/loxP 0.18 +/2 0.05 (18) 0.05 +/2 0.05 (20)

B6.LysM/cre, Pdss2loxP/loxP 0.12 +/2 0.01 (6) 0.33 +/2 0.08 (6)

B6.Alb/cre,Pdss2loxP/loxP 0.13 +/2 0.03 (6) 0.17 +/2 0.15 (6)

B6.Pdss2kd/kd 21.17 +/2 5.41 (6) 2.11 +/2 0.40 (9)

B6. Pdss2loxP/loxP 0.24 +/2 0.07 (7) 0.73 +/2 0.22 (11)

B6 0.12 +/2 0.01 (8) 0.58 +/2 0.18 (12)

*All mice at least 120 days old.
**Mean +/2 SEM; N is shown in parentheses.
doi:10.1371/journal.pgen.1000061.t001

Table 2. Plasma cholesterol levels in mice with conditional
knockout and control genotypes

Genotype Plasma cholesterol (mg/dl)

B6.Podocin/cre,Pdss2loxP/loxP 144 +/2 21.3 (7)

B6.Alb/cre,Pdss2loxP/loxP 94 +/2 7.1 (7)

B6. Pdss2loxP/loxP 61 +/2 5.5 (7)

All mice were at least 120 days old; data express mean +/2 SEM; N is shown
in parentheses. For B6.Podocin/cre,Pdss2loxP/loxP vs. B6. Pdss2loxP/loxP, t = 3.50 and
p = 0.004; for B6.Podocin/cre,Pdss2loxP/loxP vs. B6.Alb/crePdss2loxP/loxP, t = 2.09 and
p = 0.058; for B6.Alb/cre,Pdss2loxP/loxP vs. B6. Pdss2loxP/loxP, t = 3.34 and p = 0.006.
doi:10.1371/journal.pgen.1000061.t002
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on the collecting tubules, which leads to tubular dilatation and

dysfunction, release of inflammatory mediators, and development

of interstitial nephritis.

The results in Table 2 suggest that the elevation in serum

cholesterol that is characteristic of Pdss2kd/kd homozygotes [20] is not

entirely attributable to kidney disease, but likely results from

shunting of farnesyl diphosphate (one of the precursors in the CoQ

biosynthetic pathway immediately proximal to the Pdss2 enzymatic

block) to alternative pathways, primarily involving cholesterol

biosynthesis. This is supported by transcriptional profiling of

B6.Alb/cre,Pdss2loxP/loxP liver which demonstrated upregulation of

two pathways for which cholesterol is the starting substrate, namely

bile acid biosynthesis and steroid biosynthesis (Figure 7).

In light of the severe, multi-system phenotype of the child with

primary CoQ deficiency due to PDSS2 mutations [11], we

undertook an extensive phenotypic evaluation of B6.Pdss2kd/kd

Figure 5. CoQ Measurements in Pdss2 Missense, Conditional Knockout, and Strain-Matched Control Mice. CoQ measurements in
Pdss2kd/kd; Podocin/cre,Pdss2loxPloxP; PEPCK/cre,Pdss2loxPloxP; Alb/cre,Pdss2loxP/loxP; and strain-matched control mice (B6 and B6.Pdss2loxPloxP). A, Kidney
levels of CoQ9 and CoQ10 are significantly lower in B6.Pdss2kd/kd (missense) mice than in B6 control mice. B, Kidney levels of CoQ9 and CoQ10 are
similar in B6.Podocin/cre,Pdss2loxPloxP; B6.PEPCK/cre,Pdss2loxPloxP; B6.Alb/cre,Pdss2loxP/loxP; and control mice. The 92-day-old controls are B6.Pdss2loxP/+,
and the 94-day-old control is B6.Pdss2loxP/loxP. C, Liver levels of CoQ9 in B6.Alb/cre,Pdss2loxP/loxP mice were below 30 picomoles/mg protein (*) while
these same levels in B6.Podocin/cre,Pdss2loxPloxP and B6.PEPCK/cre,Pdss2loxPloxP mice were similar to those in control mice. The strains of the control
mice in are the same as those in panel B.
doi:10.1371/journal.pgen.1000061.g005
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spontaneous missense homozygous mutants. All studies were

performed in animals more than 120 days old, the time by which

renal dysfunction is present. No overt non-renal disease manifes-

tations could be detected, although significant deficiencies were

observed in their respiratory function and activity of isolated liver

mitochondria (Figure 6), as well as quantitative amino acid profiles

in liver (Figure 8). It remains possible that additional manifesta-

tions of CoQ deficiency would develop with time but do not

because of the high mortality of their renal disease. This possibility

is being further evaluated by prolonged observation of tissue-

specific conditional knockouts without renal disease.

Interestingly, B6.Alb/cre,Pdss2loxP/loxP liver-conditional knockout

mutants manifest no overt symptoms or signs of liver disease

through at least eight months of life. Nonetheless, focused

evaluations of the livers of these animals demonstrated substantial

(97%) knockdown of Pdss2 expression; pronounced CoQ9

deficiency (Figure 5) and significant impairment of complex I-

and complex II-dependent integrated respiratory capacity as well

as complex I-III and II-III enzyme activities with compensatory

increase in complex IV-dependent respiratory capacity in isolated

mitochondria (Figure 6). The relatively robust respiratory electron

transport chain activities are quite remarkable, given that CoQ9

was not detected over background in these liver lipid extracts. The

low levels of CoQ9 present in these animals must support

significant activities of complexes I, II, and III. Very small

amounts of CoQ support significant respiratory chain activity in

Figure 6. CoQ Deficiency Causes Mitochondrial Dysfunction in Pdss2 Mutant Mice. Impact of coenzyme Q deficiency on mitochondrial
function in B6.Pdss2kd/kd and B6.Alb/cre,Pdss2loxP/loxP mice compared to concurrent age- and strain-matched controls (B6 and B6.Pdss2loxP/loxP,
respectively). Panels A, B, and C demonstrate polarographic results of freshly isolated liver mitochondria with substrates which specifically interrogate
complex I-dependent (malate+glutamate), complex II-dependent (succinate), and complex IV-dependent (TMPD+ascorbate) OXPHOS capacity.
B6.Pdss2kd/kd missense mutants have impaired complex I- and complex II-dependent OXPHOS capacity by 23% and 33%, respectively, with a 19%
increase in complex IV-dependent OXPHOS capacity. B6.Alb/cre,Pdss2loxP/loxP mutants have impaired complex I- and complex II-dependent OXPHOS
capacity by 20% and 40% respectively, with a 43% increase in complex IV-dependent OXPHOS capacity. Values represent state 3 (near maximal)
oxygen consumption mean rate and standard error. Panel D summarizes electron transport chain activity assays for complexes I-III, II, III, and IV
performed on remaining aliquots of liver mitochondria frozen following completion of polarography. Similar to polarographic results, I-III enzyme
activity is significantly decreased by 19% in B6.Pdss2kd/kd missense mutants and by 41% in B6.Alb/cre,Pdss2loxP/loxP mutants when compared to pooled
controls. Complex IV enzyme activity demonstrates a trend toward increase by 11% in B6.Pdss2kd/kd missense mutants and by 23% in B6.Alb/
cre,Pdss2loxP/loxP mutants when compared to pooled controls, but does not reach the level of statistical significance, perhaps because of small sample
size (n = 2 for remaining mitochondria from B6.Alb/cre,Pdss2loxP/loxP mutants). As expected, no change is seen in complex II or III activity for either
mutant. Values represent mean enzyme activity and standard error. B6 and B6.Pdss2loxP/loxP ETC activity values were pooled to increase control sample
size following demonstration of no significant differences between these strains. Statistical analyses comparing mutants and controls were performed
by one-way ANOVA, where * indicates p,0.05 and ** indicates p,0.01.
doi:10.1371/journal.pgen.1000061.g006
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other models (yeast, nematode, isolated mitochondria). Liu et al.

[22] showed that hepatocytes in clk-1/+ heterozygous mice lose

heterozygosity (become clk-1 2/2), and these cells undergo clonal

expansion within the liver. These findings suggest that liver cells

perform quite adequately with low CoQ content.

A significantly altered cellular metabolism phenotype in liver of

B6.Alb/cre,Pdss2loxP/loxP mice was evidenced by concordant upre-

gulation of 43 biochemical pathways (Figure 7) with significant

deficiency of 9 amino acids (Figure 8). Taken together, these

alterations confirm that Pdss2 dysfunction is a nuclear gene-based

mitochondrial respiratory chain defect to which cellular adapta-

tion is occurring. Indeed, 15 key biochemical pathways were

concordantly upregulated on transcriptional profiling in this

murine model of primary mitochondrial dysfunction and in

previously reported C. elegans models of primary respiratory chain

dysfunction due to mutations in nuclear gene-encoded subunits of

complexes I, II, and III (Figure 7). These similarities spanning

evolution provides support that a transcriptional ‘‘signature’’ of

mutations in the respiratory chain appears to be stimulation of the

constituent components of oxidative phosphorylation, the enzymes

of the TCA cycle, and many pathways (e.g., glycolysis, amino acid

metabolism, fatty acid metabolism) that furnish substrate to it, as

well as stimulation of key cellular defense pathways such as

glutathione and P450 metabolism [21].

Global amino acid alterations in Pdss2 mutant liver further

suggest that significant impairment may be occurring in flux

Figure 7. Metabolic Pathway Alterations Are Seen by Expression Profiling in B6.Alb/cre,Pdss2loxP/loxP Mouse Liver. Global genome
expression profiling in B6.Alb/cre,Pdss2loxP/loxP mouse liver identifies concordant transcriptional alterations interpretable at the level of multiple
metabolic pathways, which suggest significantly altered intermediary metabolism occurs despite an apparent absence of symptomatic disease.
Extensive evolutionary concordance in upregulation of key biochemical pathways is seen in primary mitochondrial dysfunction, both in this
mammalian Pdss2 liver-conditional knockout model of coenzyme Q deficiency and in a previously reported C. elegans gas-1(fc21) missense mutant
model of primary complex I dysfunction [21]. Biochemical pathways as curated from the KEGG online database (http://genome.jp.kegg) are indicated
with the # of genes in each pathway (cluster size), normalized enrichment score (NES), statistical significance of altered pathway expression between
mutant and wildtype controls (p-value), and false positive percentage in the form of a false discovery rate (FDR q-value) according to GSEA. Pathways
are ranked by descending NES in the Pdss2 mutant (left data column). Comparison to previously reported complex I gas-1(fc21) missense C. elegans
mutant dataset (middle data column) and a ‘‘validation’’ C. elegans dataset of 8 different complex I, II, and III missense and RNAi-interference
generated mutants (right data column) is indicated by differential highlights [21]. Font color denotes a pathway as relatively upregulated (red),
downregulated (green), or unchanged (black).
doi:10.1371/journal.pgen.1000061.g007
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through key biochemical pathways, including glycolysis, the

pyruvate dehydrogenase reaction, the TCA cyle, and ureagenesis.

Changes in the hepatic amino acid profile were not qualitatively

dissimilar in B6.Alb/cre,Pdss2loxP/loxP mutants compared with those

of the B6.Pdss2kd/kd missense mutants, but alterations in the liver-

conditional knockout were far more widespread and intense

(Figure 8). The characteristic pattern in both mutants was a sharp

reduction of hepatic amino acid concentrations, which appear to

be related to a relative depletion in the hepatic concentration of

glutamate. Indeed, glutamate is the ‘‘pivot’’ of nearly all amino

acid metabolism as it furnishes amino groups to ketoacids to support

the concentrations of alanine, leucine, isoleucine, valine, and

phenylalanine, as well as to glutamine via glutamine synthetase. In

addition, glutamate rapidly enters the TCA cycle as a-ketoglutarate

either via transamination or the glutamate dehydrogenase pathway.

We propose that diminished glutamate may occur in Pdss2 mutants

due to their enhanced utilization of glutamate as a metabolic fuel in

response to a relative diminution in their glucose consumption rate

via glycolysis. It is recognized that in some tissues – particularly

kidney and brain – glutamate can become an important metabolic

substrate [23]. The significant reduction observed in alanine

concentration (Figure 8, Panel C) is consistent with this formulation,

since alanine carbon forms from pyruvate that is produced in

glycolysis. Similarly, the sharp reduction in the glutamate:aspartate

ratio in mutant liver implies an increase of hepatic oxaloacetate, a

TCA cycle intermediate which is the obligatory precursor both to

aspartate carbon as well as to the TCA cycle citrate synthetase

reaction. In other words, if glycolytic flux is relatively diminished in

the Pdss2 mutants, less pyruvate will be produced and flux through

pyruvate dehydrogenase will be attenuated, thereby limiting

availability of acetyl-CoA to the citrate synthase reaction, which

would augment the hepatic pool of oxaloacaetate and impair TCA

cycle flux. Diminished glutamate would also impede production of

N-acetylglutamate, an obligatory effector of the carbamylphosphate

synthetase reaction sequence in the mitochondrial segment of the

urea cycle that leads from ammonia to citrulline, the total absence of

which (Figure 8, Panel C) points to a compromise of ureagenesis in

the liver of B6.Alb/cre,Pdss2loxP/loxP mice. It is of interest in this regard

that the sole amino acid to be significantly increased is aspartic acid

(Figure 8, Panel C), since a failure of citrulline synthesis would

sharply curtail flux through cytosolic argininosuccinate synthetase, a

step in the urea cycle that utilizes both citrulline and aspartate as

precursors. The diminished glutamate:aspartate ratio highlighted

above also denotes compromised flux through the hepatic urea cycle,

to which aspartate is a major nitrogen donor. Additional

investigations are necessary and underway to verify the extent to

which metabolic flux is impaired in Pdss2 CoQ biosynthetic mutants.

We conclude that the Pdss2kd allele causes a milder phenotype in

homozygous mice than that observed in the homologous human

case [11]. What is especially puzzling about the Pdss2kd/kd mutant

mouse is why an intermediate level of activity in oxidative

phosphorylation should uniquely affect podocytes, a cell type not

previously characterized by unusually high levels of respiratory

activity. However, it is clear that CoQ concentrations and

Figure 8. Pdss2 Mutants Have Altered Amino Acid Profiles in Liver. Pdss2 mutants have altered amino acid profiles in liver. Quantitative liver
amino acid analysis detects significant differences in B6.Pdss2kd/kd missense mutants compared with B6 controls (Panels A and B), as well as in B6.Alb/
cre,Pdss2loxP/loxP mutants compared with B6.Pdss2loxP/loxP controls (Panels C and D). To better demonstrate differences in all amino acids, results for
three amino acids in highest abundance are shown separately (Panels B and D) with a greater scale compared to that used for the remainder of the
amino acids present in relatively lower abundance (Panels A and C). Values represent mean +/2 SEM. Statistical analyses comparing mutants and
controls were performed by Student’s t-test, where * indicates p,0.05 and ** indicates p,0.01.
doi:10.1371/journal.pgen.1000061.g008
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intermediary metabolism are significantly altered in the missense

mutants. It is also interesting that the Pdss2kd/kd mouse is a

mammalian model of mitophagy, a process recently described in

yeast to involve the preferential degradation of impaired mitochon-

dria before initiating cell death [24]. The occurrence of a

subsequent intense inflammatory response suggests that autoanti-

gens are exposed by autophagy to initiate either an innate or

adaptive immune response. The inflammatory response is not the

primary cause of the renal disease, but appears to be the mechanism

used to collect and dispose of cellular debris. Availability of

B6.Pdss2loxP/loxP mice will now permit future investigations into the

specific sites of CoQ deficiency and tissue damage, particularly in

the central nervous system and skeletal muscle, which lead to the

heterogeneous but severe consequences of primary mitochondrial

disease as observed in the human PDSS2 patient.

Materials and Methods

Construction of Vectors
The targeting construct and Pdss2loxP/loxP construct were made

as follows. The 11.8 kb linearized DNA containing the Pdss2 exon

2 was from a bacterial artificial chromosome (BAC #RP23-

256E1) with digestion of BamH 1 and Dra III, and was subcloned

into pBlueScript vector. The cassette containing loxP-neo-loxP

was inserted into an Aat II site, and a loxP was introduced into an

Xho I site. The PdssloxP/loxP targeting construct is depicted in

Figure 1 and contains approximately 7 kb of homology regions.

This linear targeting construct was electroporated into R1 ES cells.

Stably transfected cells were isolated after selection in G418 (350

ul/ml, Gibco), and 384 clones were screened for the desired

homologous recombination event with PCR. Chimeric mice were

generated by aggregation of ES cells with morulae of B6 mice, and

the modified allele was passed through the germline by breeding

chimeras to B6 mice. The genotypes of all offspring were analyzed

by polymerase chain reaction using DNA from the ear of mice or

the yolk sac of embryos. The k/oF and k/oR primers for

determination of Exon 2 (PCR product of 440 bp) were 59-

GGAGGTTGAGTCCCTGTGTC-39 and 59- GCAGGAAAT-

CAGTGGGACTC-39 respectively. PCRs were carried out for 30

cycles (94uC for 20 s, 60uC for 30 s, 72uC for 1 min) in a buffer

containing 1.5 mM MgCl2.

Mice
Mice homozygous for the floxed gene (B6.Pdss2loxP/loxP) were

crossed with partners that expressed cre under the control of a zona

pelucida glycoprotein 3 promoter (C57BL/6-Tg(Zps-cre)93 Knw/

J; Zp3/cre), obtained from The Jackson Laboratory (Bar Harbor,

ME), which caused the floxed gene to be deleted in all tissues.

Podocyte-specific knockouts (B6.Podocin/cre,Pdss2loxP/loxP), were

obtained by crossing mice homozygous for the floxed gene with

partners that expressed cre under the control of the Podocin

promoter [25]. The mutation was targeted to the renal proximal

tubular epithelial cells (as well as a subset of hepatocytes) by

mating B6.Pdss2loxP/loxP mice with partners that express a PEPCK/

cre transgene [26]; to hepatocytes by utilizing mice with an

albumin/cre promoter (B6.Cg-Tg(Alb-cre)21 Mgn/J (Alb/cre)),

obtained from The Jackson Lab; or cells of the myeloid

lineage with mice that express cre under the control of the

lysozyme M promoter (B6.129P2-Lyzstm1(cre)Ifo/J; LysM/cre [27]

obtained from The Jackson Laboratory. Mice with the

Pdss2kd/kd missense mutation on the B6 background have been

previously reported [7,10]. All procedures were approved by the

Institutional Animal Care and Use Committee of the University of

Pennsylvania.

Albumin Assay
A mouse albumin ELISA kit was obtained from Bethyl

Laboratories Inc. Briefly, ELISA plates (Nunc, No: 442404) were

coated overnight with goat anti-mouse albumin antibody (10 ml /

ml) in bicarbonate buffer pH 9.6. Wells were washed with distilled

water, blocked with PBS-1% BSA, washed with PBS-0.05%

Tween 20, and 100 ml of serially diluted samples or standards

added for 1 hour at room temperature. Plates were then washed

using PBS-0.05% Tween 20, and incubated with 100 ml of HRP-

conjugated goat anti-mouse albumin antibody at room tempera-

ture for 1 hour. After further washing with PBS-0.05% Tween 20,

wells were incubated with 100 ml ABTS solution at room

temperature for 20 min, then with 100 ml 2 M H2SO4 stopping

solution and the plate was read with an ELISA reader at 405 nm.

Histology
Kidneys from mutant and control mice were fixed in formalin,

paraffin-embedded, and 4 mm sections through the longitudinal

axis of each kidney were prepared and stained with hematoxylin

and eosin. The sections were examined blindly and scored as

follows: 0 = no tubular dilatation and no mononuclear cell

infiltrates; 1 = small focal areas of cellular infiltration and tubular

dilatation involving less than 10% of the cortex; 2 = involvement of

up to 25% of the cortex; 3 = involvement of up to 50% of the

cortex; 4 = extensive damage involving more than 75% of the

cortex. Coronal sections of the brain were stained by H & E. To

examine the retina, anesthetized mice were perfused through the

heart with freshly prepared 2% PFA+2% glutaraldehyde in 0.2 M

sodium cacadylate buffer (pH 7.4). Eyes were removed and

eyecups were fixed in the same buffer for 4 hours at room

temperature. Tissues were then dehydrated in a graded ethanol

series, infiltrated, and embedded in EMbed812 (Electron Micros-

copy Sciences). Sections of 1–2 m in thickness were cut and stained

with toluidine blue. Liver sections were examined after H & E and

Oil Red O staining. Skeletal muscle was stained by Gomori/

trichrome stain, and with antibodies to ATPase, SDH, NADH,

and acid phosphatase.

Laser Capture Microdissection and PCR Amplification
Mouse kidney sections 6 mm in thickness were cut onto

nuclease-free Membrane Slides for Laser microdissection (Molec-

ular Machines and Industries, Lenor City VA). After hematoxylin

staining, laser microdissection of glomeruli or collecting tubules

was done using the SL mcut system, and samples were collected

onto adhesive caps of 0.5 ml tubes as previously described [25].

Microdissected samples were incubated with 50 ml lysis buffer

containing 10 mM Tris HCl (pH 8.3), 50 mM KCl, 2 mM

MgCl2, 0.1 mg/ml gelatin, 0.45% NP40, 0.45% Tween 20, 6

ml/ml Proteinase K overnight at 55uC. 0.5 ml lysis buffer was used

for each PCR reaction. Primers with the PCR product containing

exon 2 of Pdss2 were as follows: forward, 59-AGCTGTGCA-

CATGTGTGTGA-39 and reverse, 59-AAGCTTTTATGTGC-

CCGATG-39. Primers with the PCR product containing exon 4 of

Pdss2 were: forward, 59-TGCAGGAGGATTATCACAGC-39

and reverse, 59-TGCACATCAATTTTTCCCATT-39.

Electron Microscopy
As previously described [28], kidney tissue samples were fixed in

2.5% glutaraldehyde and 2.0% paraformaldehyde in 0.1 M

sodium cacodylate buffer, pH 7.4, overnight at 4uC. After three

cacodylate buffer washes, the samples were post-fixed with 2.0%

osmium tetroxide in 0.1 M cacodylate buffer for one hour at 4uC.

After two additional sodium cacodylate washes and a wash in
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dH2O, samples were stained with 2% aqueous uranyl acetate for

30 minutes at room temperature. Samples were rinsed again in

H2O subsequent to dehydration in graded ethanols, and

infiltration and embedding in Embed-812 (Electron Microscopy

Sciences, Fort Washington, PA). All sections were examined in a

JEOL 1010 electron microscope, and digital images were recorded

with a Hamamatsu camera system.

CoQ Measurements in Mouse Kidney and Liver
Homogenates

Whole kidneys and livers were dissected from sacrificed mice

and were stored at 280uC until homogenization. Individual

kidneys or lobes of livers were placed in 5 mL of 1X PBS, pH 7.4

(137 mM NaCl, 8 mM Na2HPO4, 2.7 mM KCl, 1.5 mM

KH2PO4) 4uC, and tissues were homogenized a total of 10 strokes

with a tight-fitting Teflon pestle rotating at maximal speed with a

Fisher Scientific Lab Stirrer LR400A. The homogenate was

centrifuged at 10006g for 5 minutes. The supernatants were

removed to fresh vials, and protein concentrations were measured

by the bicinchoninic acid assay (Pierce, Rockford, IL). Aliquots of

each homogenate were transferred to 50 ml glass tubes and stored

at 280uC until extracted. Lipid extractions were performed on

CoQ9 standards, CoQ10 standards, and mouse tissue homogenates

by adding the same amount of coenzyme CoQ6 internal standard

along with 0.5 ml water, 9 ml methanol, and 6 ml petroleum

ether to each. Mixtures were vortexed for 1 min, centrifuged at

9106g, and the top layer of petroleum ether was removed and

saved in a separate vial. Fresh petroleum ether (6 ml) was added to

each vial containing the aqueous phase and vortexed for 1 min.

The vials were subjected to centrifugation as before and the second

petroleum ether layer removed. The process was repeated once

more, and the three pooled petroleum ether fractions were dried

under nitrogen and resuspended in 200 ml methanol. The

quinones were then separated and quantified by HPLC connected

to an electrochemical detector as described [29], with the

following exceptions: the precolumn electrode was the only

electrode used and was set at +650 mV to oxidize all hydroqui-

nones, and a Gilson 118 UV/Vis detector was utilized to detect

quinones (275 nm) as they eluted from the column. The amount of

CoQ9 and CoQ10 in the standards and samples was normalized to

the amount of CoQ6 recovered in the individual lipid extracts.

Integrated Respiratory Capacity Analysis of Freshly
Isolated Liver Mitochondria

Mice were sacrificed by cervical dislocation without general

anesthetic, since anesthetics may exacerbate mitochondrial

dysfunction in primary mitochondrial disease [30]. Mouse liver

mitochondria were isolated in a similar manner as described

previously for rat liver mitochondria [31]. Briefly, livers were

immediately dissected and collected in MSM buffer (220 mM

mannitol, 70 mM sucrose and 5 mM MOPS, pH: 7.4). All

subsequent mitochondrial isolation procedures were done on ice.

Livers were washed twice with MSM, finely minced, and then

homogenized in MSM-E (MSM containing 2 mM EDTA) with 2

slow strokes using a tight-fitting Teflon pestle in a glass Potter/

Elvehjem tissue grinder (DuPont, Wilmington, Delaware) at

400 rpm using an IKA RW20 digital homogenizer (Cole-Palmer,

Illinois). Following initial centrifugation at 300 g610 minutes at

4uC, the supernatant was collected and centrifuged at

7000 g610 minutes at 4uC (Eppendorf 5810R centrifuge, rotor

F34-6-38, Hamburg, Germany). The pellet containing mitochon-

dria was then washed twice in MSM with high speed

centrifugation at 7000 g610 minutes at 4uC. 2% protease

inhibitor cocktail was added to the final washed pellet preparation

(SIGMA, St. Louis, MO). Protein concentration was determined

by Lowry assay [32]. Mitochondrial oxygen uptake by polarog-

raphy using a clark-type electrode (Oxytherm, Hansatech

Instruments, UK) was performed on freshly isolated mitochondria

at 30uC, as previously described [30]. Substrates used were

malate+glutamate, succinate, and TMPD+ascorbate to assess

complex I-, II-, and IV- dependent integrated respiratory capacity,

respectively. State 3 oxidative phosphorylation (OXPHOS)

respiratory rates were measured in the presence of ADP to

approximate maximal mitochondrial capacity. Mean state 3 rates

with standard errors were calculated from at least duplicate

tracings for each electron donor substrate for liver mitochondria

isolated from 6 B6.Pdss2kd/kd missense mutants, 3 B6. Alb/

cre,Pdss2loxP/loxP conditional knockout mutants, and a total of 9

concurrent age- and strain-matched controls (66B6 and

36B6.Pdss2loxP/loxP, respectively). As no statistically significant

differences were detected in state 3 rates for any substrate between

B6 and B6.Pdss2loxP/loxP controls, all control data (B6+B6.Pdss2loxP/

loxP) were used for comparative analysis with each mutant strain.

Comparison of means was done by one-way ANOVA assuming

equal variance (SPSS v.12.0, Chicago, IL).

Liver and Kidney Mitochondrial Enzyme Activity Analyses
Following polarographic analysis of isolated liver mitochondria,

as described above, remaining mitochondrial aliquots were

promptly frozen in 280uC and subsequently available for study

on 4 B6.Pdss2kd/kd missense mutants, 2 B6.Alb/cre,Pdss2loxP/loxP

conditional knockout mutants, and a total of 6 concurrent age-

and strain-matched controls (46B6 and 26B6.Pdss2loxP/loxP,

respectively). Duplicate frozen aliquots of each strain were studied,

when available. Mitochondria from single whole kidney homog-

enates were isolated in a similar fashion as described above for

liver mitochondria with the exception that the renal capsule was

first manually removed by squeezing. As yields of mitochondria

were insufficient to permit polarography with all substrates as

described above, kidney mitochondria quality was assessed for 3

representative strains by polarography with malate+glutamate and

succinate to demonstrate robust state 3 rates, respiratory control

ratios . 3 and . 2, respectively, and ADP/O malate+glutamate

. 3.5.

Enzyme assays for citrate synthase and the partial reactions of

electron transport were performed at 37uC in a total reaction

volume of 1 mL using standard methods [33]. Absorbance

changes were continuously monitored using the dual-beam mode

of an OLIS-converted DW2a spectrophotometer. Sensitivity to

enzymatic inhibitors was used to confirm assay specificity.

Complex I+III was measured at 550 nm minus 540 nm (extinction

coefficient 19.0 mM21 cm21) as rotenone-sensitive NADH-cyto-

chrome c oxidoreductase. Complex II+III was measured at

550 nm minus 540 nm 19.0 mM21 cm21) as antimycin A-

sensitive succinate-cytochrome c oxidoreductase [7,8]. Aliquots

of mitochondria were preincubated with succinate for 10 minutes

before assay of complex II+III. Complex III was measured at

550 nm minus 540 nm (19.0 mM21 cm21) using decylubiquinol

as antimycin A-sensitive ubiquinol-cytochrome c oxidoreductase.

Complex IV was measured at 550 nm minus 540 nm

(19.0 mM21 cm21) as azide-sensitive ferrocytochrome c oxidase.

Citrate synthase was measured at 412 nm minus 360 nm

(13.6 mM21 cm21) using 5,5-dithio-bis(2-nitrobenzoic acid) to

detect free sulfhydryl groups in coenzyme A. Individual enzyme

activities are reported in nmol/min/mg protein. As no statistically

significant differences were detected in activities for any substrate

between B6 and B6.Pdss2loxP/loxP liver mitochondria controls, all
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control data (B6+B6.Pdss2loxP/loxP) were used for comparative

analysis with each mutant strain. Comparison of means was done

by paired t-test.

Pdss1 and Pdss2 Expression Analysis
Standard precautions were followed to avoid contamination or

degradation of RNA samples [34]. Total RNA was extracted from

30 to 90 mg aliquots of freshly isolated liver collected from each

animal sacrificed for polarographic analysis (see above), and liver

from an additional three animals each with genotypes B6.Alb/

cre,Pdss2loxP/loxP B6.Pdss2loxP/loxP , B6, and B6.Pdss2loxP/loxP to verify

Pdss1 expression results. In addition, RNA was extracted from

single whole kidneys of three B6.Pdss2kd/kd missense, three

B6.Podocin/cre,Pdss2loxP/loxP mutant mice, three B6 controls, and

three B6. Pdss2loxP/loxP controls using Trizol reagent (Invitrogen

Corporation, Carlsbad, CA) and purified in RNeasy spin columns

(Qiagen, Inc., Valencia, CA). Total RNA concentration and

dissolution were determined spectrophotometrically at 230 nm,

260 nm, and 280 nm (NanoDrop ND-100 Spectrophotometer

v3.1.2, NanoDrop Technologies, Inc., Wilmington, DE). 10 mg of

total RNA was DNase-treated using a TURBO DNA-free kit

(Ambion Inc., Austin, TX). 1.1 mg of DNase-treated RNA was

reverse-transcribed in 20 ml reaction mixtures to generate cDNA

using a High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA). 40 ng of cDNA was used per

quantitative PCR (qPCR) reaction containing Taqman gene

expression MGB probes with FAM dye-labeled assays for both

endogenous (mouse b-actin Mm02619580_g1) and target (mouse

Pdss1 Mm00450958_m1 or Pdss2 Mm01191894_m1) genes, as

well as Taqman Universal PCR Master Mix (Roche, Branchburg,

NJ), per Applied Biosystems standard protocol (Applied Biosys-

tems, Foster City, CA). Real-time analysis was performed on an

SDS-7500 qPCR machine (Applied Biosystems, Foster City, CA).

Sequence Detection Software 1.2.3 version was used for relative

quantitation gene expression analysis (Applied Biosystems, Foster

City, CA). Relative gene expression is reported as the mean and

range of individual mutant strains each compared with pooled

age- and strain-matched controls.

Biochemical Pathway Expression Profiling Microarray
Analysis

Aliquots of total RNA were prepared from the same 3 B6.Alb/

cre,Pdss2loxP/loxP mutants and 3 B6.Pdss2loxP/loxP controls subjected

to mitochondrial studies as described above. The C. elegans

Genome Array was utilized for expression microarray analysis

(Affymetrix, Inc, Santa Clara, CA). Affymetrix probe-level data

was normalized and summarized in dChip using PM-only model

to obtain a single log2-transformed intensity value per probe set

per array (hyyp://biosun1.harvard.edu/complab/dchip). The

processed data was sent to gene set enrichment analysis (GSEA)

for cluster analysis while genes were ranked by the built-in signal-

to-noise function (GSEA v. 2.0, Broad Institute, Cambridge, MA).

Clusters were designed to represent M. musculus genesets relevant

to human metabolic pathways. Genesets were curated from

biochemical pathway data publicly available from Kyoto Ency-

clopedia of Genes and Genomes (KEGG) (www.genome.jp/kegg).

While 102 KEGG pathways were identified, only 95 genesets

contained 5 or more transcripts to meet criteria for inclusion in the

analysis. C. elegans microarray analysis was performed as previously

reported well-characterized mitochondrial complex I, II, and III

missense and RNA-interference generated hypomorphic mutants

[21]. All microarray expression data is available in a publicly

available MIAME-compliant database (GEO superSeries

GSE9967 for C. elegans arrays and GEO accession GSE10904

for M. musculus arrays).

Quantitative Amino Acid Profiling in Liver
Wedges of liver (,400 mg) were immediately frozen in 280uC

and homogenized in 4 ml aliquots of 4% perchloric acid that

contained e-aminocaproic acid (100 mM) as internal standard.

After centrifugation to remove protein, supernatants were adjusted

to pH 6–7 with KOH, then centrifuged again to remove

precipitated KClO4. Amino acids were measured in the resulting

supernatant by high performance liquid chromatography (HPLC)

using precolumn o-phthalaldehyde derivatization with fluorescent

detection (Varian, Palo Alto, CA) [35]. The protein pellet was

dissolved in 1N NaOH and results were normalized to protein as

determined by Lowry assay [32]. Means were compared with a

Student’s t-test.

Acknowledgments

We thank Dr. Larry Holzman of the University of Michigan for the

Podocin/cre construct; Dr. Tobias Raabe for electroporation and selection of

ES cells; Dr. Jean Richa and his colleagues in the Transgenic and Chimeric

Mouse Facility for generating the chimeric mice; and the members of the

Morphology Core for Molecular Studies in Digestive and Liver Diseases

for histologic preparations. We thank Drs. Rex Ahima, Michael J. Bennett,

and Claire Yager for biochemical measurements; Ilana Nissim, Julian

Ostrovsky, Dr. Evgueni Daikhin, and Dr. Itzhak Nissim for liver amino

acid quantitation; Dr. James Thompson for hematologic assessment; Drs.

Eric A. Pierce, Rebecca G. Wells, Carsten Bonnenmann and Nicholas

Gonatas for examinations of histological sections; Dr. Zhe Zhang for his

expertise in microarray data analysis; and Dr. Jeanne Manson for her

statistical expertise.

Author Contributions

Conceived and designed the experiments: MF VH MY WH CC DG.

Performed the experiments: MP EP MS RM RS AL CC. Analyzed the

data: MP MF VH RK MS MY WH RS AL CC DG. Wrote the paper: MF

VH WH CC DG. Made the constructs: MP. Scored the histological

sections: RK. Did assays on mitochondrial function: EP.

References

1. Saiki R, Nagata A, Kainou T, Matsuda H, Kawamukai M (2005)

Characterization of solanesyl and decaprenyl diphosphate synthases in mice

and humans. FEBS J 272: 5606–5622.

2. Lyon MF, Hulse EV (1971) An inherited kidney disease of mice resembling

human nephronophthisis. J Med Genet 8: 41–48.

3. Neilson EG, McCafferty E, Feldman A, Clayman MD, Zakheim B, et al. (1984)

Spontaneous interstitial nephritis in kdkd mice. I. An experimental model of

autoimmune renal disease. J Immunol 133: 2560–2565.

4. Kelly CJ, Korngold R, Mann R, Clayman M, Haverty T, et al. (1986)

Spontaneous interstitial nephritis in kdkd mice. II. Characterization of a tubular

antigen-specific, H-2K-restricted Lyt-2+ effector T cell that mediates destructive

tubulointerstitial injury. J Immunol 136: 526–531.

5. Sibalic V, Fan X, Wuthrich RP (1997) Characterisation of cellular infiltration

and adhesion molecule expression in CBA/CaH-kdkd mice with tubulointer-

stitial renal disease. Histochem Cell Biol 108: 235–242.

6. Smoyer WE, Kelly CJ (1994) Inherited interstitial nephritis in kdkd mice. Int

Rev Immunol 11: 245–251.

7. Hancock WW, Tsai TL, Madaio MP, Gasser DL (2003) Cutting Edge: Multiple

autoimmune pathways in kd/kd mice. J Immunol 171: 2778–2781.

8. Albaqumi M, Soos TJ, Barisoni L, Nelson PJ (2006) Collapsing glomerulopathy.

J Am Soc Nephrol 17: 2854–2863.

9. Barisoni L, Madaio MP, Eraso M, Gasser DL, Nelson PJ (2005) The kd/kd

mouse is a model of collapsing glomerulopathy. J Am Soc Nephrol 16:

2847–2851.

Renal Disease in Pdss2 Mutant Mice

PLoS Genetics | www.plosgenetics.org 13 April 2008 | Volume 4 | Issue 4 | e1000061



10. Peng M, Jarett L, Meade R, Madaio MP, Hancock WW, et al. (2004) Mutant

prenyltransferase-like mitochondrial protein (PLMP) and mitochondrial abnor-

malities in kd/kd mice. Kidney Int 66: 20–28.

11. Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, et al. (2006) Leigh

syndrome with nephropathy and CoQ10 deficiency due to decaprenyl

diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79:

1125–1129.

12. Rotig A, Mollet J, Rio M, Munnich A (2007) Infantile and pediatric quinone

deficiency diseases. Mitochondrion 7 Suppl. S112–121.

13. Mollet J, Giurgea I, Schlemmer D, Dallner G, Chretien D, et al. (2007)

Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyl-

transferase (COQ2) mutations in ubiquinone deficiency and oxidative

phosphorylation disorders. J Clin Invest 117: 765–772.

14. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, et al. (2006) A Mutation in

Para-Hydroxybenzoate-Polyprenyl Transferase (COQ2) Causes Primary Coen-

zyme Q10 Deficiency. Am J Hum Genet 78: 345–349.

15. DiMauro S, Quinzii CM, Hirano M (2007) Mutations in coenzyme Q10

biosynthetic genes. J Clin Invest 117: 587–589.

16. Gempel K, Topaloglu H, Talim B, Schneiderat P, Schoser BG, et al. (2007) The

myopathic form of coenzyme Q10 deficiency is caused by mutations in the

electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:

2037–2044.

17. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, Caridi G, Piemonte F,

et al. (2007) COQ2 Nephropathy: A Newly Described Inherited Mitochondrio-

pathy with Primary Renal Involvement. J Am Soc Nephrol 18: 2773–2780.

18. Levavasseur F, Miyadera H, Sirois J, Tremblay ML, Kita K, et al. (2001)

Ubiquinone is necessary for mouse embryonic development but is not essential

for mitochondrial respiration. J Biol Chem 276: 46160–46164.

19. Nakai D, Yuasa S, Takahashi M, Shimizu T, Asaumi S, et al. (2001) Mouse

homologue of coq7/clk-1, longevity gene in Caenorhabditis elegans, is essential

for coenzyme Q synthesis, maintenance of mitochondrial integrity, and

neurogenesis. Biochem Biophys Res Commun 289: 463–471.

20. Madaio MP, Ahima RS, Meade R, Rader DJ, Mendoza A, et al. (2005)

Glomerular and tubular epithelial defects in kd/kd mice lead to progressive renal

failure. Am J Nephrol 25: 604–610.

21. Falk MJ, Zhang Z, Rosenjack JR, Nissim I, Daikhin E, et al. (2008) Metabolic

pathway profiling of mitochondrial respiratory chain mutants in C. elegans. Mol

Genet Metab.

22. Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, et al. (2005) Evolutionary

conservation of the clk-1-dependent mechanism of longevity: loss of mclk1
increases cellular fitness and lifespan in mice. Genes Dev 19: 2424–2434.

23. Nissim I, Yudkoff M (1990) Carbon flux through tricarboxylic acid cycle in rat

renal tubules. Biochim Biophys Acta 1033: 194–200.
24. Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, et al. (2005) Impairing

the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in
yeast. Cell Death Differ 12: 1613–1621.

25. Moeller MJ, Kovari IA, Holzman LB (2000) Evaluation of a new tool for

exploring podocyte biology: mouse Nphs1 5’ flanking region drives LacZ
expression in podocytes. J Am Soc Nephrol 11: 2306–2314.

26. Rankin EB, Tomaszewski JE, Haase VH (2006) Renal cyst development in mice
with conditional inactivation of the von Hippel-Lindau tumor suppressor.

Cancer Res 66: 2576–2583.
27. Cross M, Mangelsdorf I, Wedel A, Renkawitz R (1988) Mouse lysozyme M

gene: isolation, characterization, and expression studies. Proc Natl Acad Sci U S A

85: 6232–6236.
28. Hallman TM, Peng M, Meade R, Hancock WW, Madaio MP, et al. (2006) The

mitochondrial and kidney disease phenotypes of kd/kd mice under germfree
conditions. J Autoimmun 26: 1–6.

29. Jonassen T, Marbois BN, Faull KF, Clarke CF, Larsen PL (2002) Development

and fertility in Caenorhabditis elegans clk-1 mutants depend upon transport of
dietary coenzyme Q8 to mitochondria. J Biol Chem 277: 45020–45027.

30. Falk MJ, Kayser EB, Morgan PG, Sedensky MM (2006) Mitochondrial complex
I function modulates volatile anesthetic sensitivity in C. elegans. Curr Biol 16:

1641–1645.
31. Hoppel C, DiMarco JP, Tandler B (1979) Riboflavin and rat hepatic cell

structure and function. Mitochondrial oxidative metabolism in deficiency states.

J Biol Chem 254: 4164–4170.
32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement

with the Folin phenol reagent. J Biol Chem 193: 265–275.
33. Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial

oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and

transmitochondrial cell lines. Methods Enzymol 264: 484–509.
34. Sambrook J, Russell DW, editors (2001) Extraction, Purification, and Analysis of

mRNA from Eukaryotic Cells. 3rd ed: Cold Spring Harbor Laboratory Press.
35. Jones BN, Gilligan JP (1983) o-Phthaldialdehyde precolumn derivatization and

reversed-phase high-performance liquid chromatography of polypeptide hydro-
lysates and physiological fluids. J Chromatogr 266: 471–482.

Renal Disease in Pdss2 Mutant Mice

PLoS Genetics | www.plosgenetics.org 14 April 2008 | Volume 4 | Issue 4 | e1000061


